2023 Vol. 43, No. 3
Article Contents

ZHENG Xiaoyu, ZHANG Xiang, LI Jian, TIAN Jingchun, PENG Minghong, ZHANG Qiyuan, ZHANG Yue. 2023. Diagenesis and diagenetic evolution of tidal flat facies clastic rocks of Sinian Sugetbrak Formation in Northwest Tarim Basin. Sedimentary Geology and Tethyan Geology, 43(3): 530-541. doi: 10.19826/j.cnki.1009-3850.2022.04017
Citation: ZHENG Xiaoyu, ZHANG Xiang, LI Jian, TIAN Jingchun, PENG Minghong, ZHANG Qiyuan, ZHANG Yue. 2023. Diagenesis and diagenetic evolution of tidal flat facies clastic rocks of Sinian Sugetbrak Formation in Northwest Tarim Basin. Sedimentary Geology and Tethyan Geology, 43(3): 530-541. doi: 10.19826/j.cnki.1009-3850.2022.04017

Diagenesis and diagenetic evolution of tidal flat facies clastic rocks of Sinian Sugetbrak Formation in Northwest Tarim Basin

More Information
  • A set of tidal flat facies deposits are developed in the Sugetbrak Formation in the northwest of the Tarim Basin, which is the main target of oil and gas exploration in this formation. Based on the geological survey of Shiairike, Qigebrak and Qiaoenbrak sections, the diagenesis and diagenetic evolution of marine clastic rocks are studied by means of thin section identification, cathodoluminescence, scanning electron microscope, fluid inclusion temperature measurement and clay mineral X-diffraction, so as to provide a geological basis for further oil and gas exploration deployment and reservoir prediction of the Sugetbrak Formation in the Tarim Basin. The results show that: (1) Sand bodies in tidal flat sedimentary environment are developed in the Sugetbrak Formation in the study area, the sandstones are mainly lithic quartz sandstone and lithic sandstone, and feldspathic lithic sandstone is occasionally seen, with medium compositional maturity and structural maturity; (2) The sandstone of the Sugetbrak Formation has experienced diagenesis such as compaction, cementation, dissolution and replacement. Compaction is the direct cause of reservoir densification, and calcareous and siliceous cementation are the fundamental factors of reservoir densification; (3) The diagenetic evolution stage of Sugetbrak sandstones has reached the middle diagenetic stage B. the diagenetic evolution sequence is: compaction / autogenous clay mineral (chlorite) rim - the first stage feldspar and rock debris dissolution - the first stage silica cementation - the first stage mud microcrystalline calcite cementation / pressure dissolution / illitization of clay minerals - the second stage silica cementation / the second stage iron calcite cementation - calcium cement dissolution. The diagenetic evolution model provides a reliable geological basis for the prediction of ultra-deep tight sandstone reservoirs in the Tarim Basin.

  • 加载中
  • [1] 陈汉林, 黄伟康, 李勇, 等, 2020. 塔里木盆地西北缘震旦系沉积物源分析及对盆地属性的制约[J]. 石油实验地质, 42(05): 756-766 doi: 10.11781/sysydz202005756

    CrossRef Google Scholar

    CHEN H L, HUANG W K, LI Y, et al. , 2020. Provenance analysis of Sinian sediments on the northwestern margin of Tarim Basin and its restriction on basin types[J]. Petroleum Geology & Experiment, 42(5): 756-766. doi: 10.11781/sysydz202005756

    CrossRef Google Scholar

    [2] 邓浩博, 2019. 塔里木盆地北部上震旦统奇格布拉克组沉积相及储层特征研究[D]. 成都理工大学.

    Google Scholar

    Deng H B, 2019. Study on sedimentary facies and reservoir characteristics of the Upper Sinian qigebulake formation in the northern Tarim Basin[D]. Chengdu University Of Technology.

    Google Scholar

    [3] 郭刚, 许应石, 欧健, 2014. 新疆塔里木盆地西南缘盆山结合带新生代盆地演化与青藏高原北缘隆升的关系[J]. 西北地质, 47(4): 13-23 doi: 10.3969/j.issn.1009-6248.2014.04.003

    CrossRef Google Scholar

    GUO G, XU Y S, OU J, 2014. Evolution of Cenozoic Basin in Basin-range Junction Belt of Southwestern Tarim Basin and Its Relation with Uplift of North Qinghai-Tibet Plateau[J]. Northwestern Geology, 47(4): 13-23. doi: 10.3969/j.issn.1009-6248.2014.04.003

    CrossRef Google Scholar

    [4] 高振家, 王务严, 彭昌文, 等, 1987. 新疆震旦系[M]. 乌鲁木齐: 新疆人民出版社.

    Google Scholar

    Gao Z J, Wang W Y, Peng C W, et al. , 1987. Sinian in Xinjiang[M]. Urumqi: Volksverlag Xinjiang.

    Google Scholar

    [5] 黄思静, 孙伟, 黄培培, 等, 2009. 鄂尔多斯盆地东部太原组碎屑岩中自生伊利石形成机制及其对储层形成的影响[J]. 矿物岩石, 29(4): 25−32.

    Google Scholar

    Huang S J, Sun W, Huang P P, et al. , 2009. Formation mechanism of authigenic illite in clastic rocks of Taiyuan Formation in eastern Ordos Basin and its influence on reservoir formation[J]. Journal of Mineralogy and Petrology, 29(4):25-32.

    Google Scholar

    [6] 贾承造, 庞雄奇, 2015. 深层油气地质理论研究进展与主要发展方向[J]. 石油学报, 36(12): 1457-1469 doi: 10.7623/syxb201512001

    CrossRef Google Scholar

    JIA C Z, PANG X Q, 2015. Research processes and main development directions of deep hydrocarbon geological theories[J]. Acta Petrolei Sinica, 36(12): 1457-1469. doi: 10.7623/syxb201512001

    CrossRef Google Scholar

    [7] 姜海健, 陈强路, 杨鑫, 等, 2017. 塔里木盆地新元古代裂谷盆地层序样式[J]. 地质学报, 91(3): 588-604 doi: 10.3969/j.issn.0001-5717.2017.03.007

    CrossRef Google Scholar

    JIANG H J, CHEN Q L, YANG X, et al. , 2017. The Style of Sequence Stratigraphy of Neoproterozoic Rift Basin in the Tarim Basin[J]. Acta Geologica Sinica, 91(3): 588-604. doi: 10.3969/j.issn.0001-5717.2017.03.007

    CrossRef Google Scholar

    [8] 康建威, 牟传龙, 周恳恳, 等, 2016. 塔里木盆地北缘阿克苏地区震旦系露头层序地层研究[J]. 沉积与特提斯地质, 36(2): 47-54. doi: 10.3969/j.issn.1009-3850.2016.02.006

    CrossRef Google Scholar

    [9] KANG J W, MU C L, ZHOU K K, et al. , 2016. Sequence stratigraphic analysis of the Sinian strata in the Aksu region, Xinjiang[J]. Sedimentary Geology and Tethyan Geology, 36(2): 47-54.

    Google Scholar

    [10] 李慧, 施辉, 吴瑾, 2016. 青藏高原隆升对柴西南区岩性油藏形成的影响作用分析[J]. 科学技术与工程, 16(12): 20−26.

    Google Scholar

    Li H, Shi Hi, Wu J, 2016. The impact analysis of Tibetan Plateau uplifting to the forming of lithologicreservoirs in southwestern Qaidam Basin[J]. Science Technology and Engineering, 16(12).

    Google Scholar

    [11] 李慧, 吴瑾, 于保禄, 2019. 柴达木盆地西南区油气充注与青藏高原隆升耦合关系的包裹体证据[J]. 科学技术与工程, 19(6): 23-31. doi: 10.3969/j.issn.1671-1815.2019.06.005

    CrossRef Google Scholar

    [12] LI H, WU J, YU B L, 2019. The evidence from fluid inclusions in the reservoirs of southwestern Qaidam illustrating the relationship between the uplifting activities of Tibetan Plateau and hydrocarbon accumulations[J]. Science Technology and Engineering, 19(6): 23-31

    Google Scholar

    [13] 李丕龙, 冯建辉, 樊太亮, 等, 2010. 塔里木盆地构造沉积于成藏[M]. 北京: 地质出版社.

    Google Scholar

    Li P L, Feng J H, Fan T L, et al. , 2010. Tectonic sedimentation and reservoir formation in tarim basin[M]. Beijing: Geology Press.

    Google Scholar

    [14] 刘若涵, 何碧竹, 焦存礼, 等, 2020. 新疆阿克苏地区新元古代沉积特征对裂谷发育过程的指示[J]. 岩石学报, 36(10): 3225−3242

    Google Scholar

    Liu R H, He B Z, Jiao C L, et al. , 2020. The indication of Neoproterozoic sedimentary characteristics to rift development process in Aksu area, Xinjiang. Acta Petrologica Sinica, 36(10): 3225−3242.

    Google Scholar

    [15] 刘显凡, 孙传敏, 2013. 矿物学简明教程(第二版)[M]. 北京: 地质出版社.

    Google Scholar

    Liu X F, Sun C M, 2013. Concise Course of Mineralogy (Second Edition)[M]. Beijing: Geology Press.

    Google Scholar

    [16] 马永生, 蔡勋育, 云露, 等, 2022. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 49(1): 1-17 doi: 10.11698/PED.2022.01.01

    CrossRef Google Scholar

    MA Y S, CAI X Y, YUN L, et al. , 2022. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 49(1): 1-17. doi: 10.11698/PED.2022.01.01

    CrossRef Google Scholar

    [17] 石开波, 刘波, 田景春, 等, 2016. 塔里木盆地震旦纪沉积特征及岩相古地理[J]. 石油学报, 37(11): 1343-1360 doi: 10.7623/syxb201611003

    CrossRef Google Scholar

    SHI K B, LIU B, TIAN J C, et al. , 2016. Sedimentary characteristics and lithofacies paleogeography of Sinian in Tarim Basin[J]. Acta Petrolei Sinica, 37(11): 1343-1360. doi: 10.7623/syxb201611003

    CrossRef Google Scholar

    [18] 田建锋, 高永利, 张蓬勃, 等, 2013. 鄂尔多斯盆地合水地区长7致密油储层伊利石成因[J]. 石油与天然气地质, 34(5): 700-707. doi: 10.11743/ogg20130518

    CrossRef Google Scholar

    [19] TIAN J F, GAO Y L, ZHANG P B, et al. , 2013. Genesis of illite in Chang 7 tight oil reservoir in Heshui area, Ordos Basin[J]. Oil & Gas Geology, 34(5): 700-707.

    Google Scholar

    [20] 田雷, 张虎权, 刘军, 等, 2020. 塔里木盆地西南部南华纪—震旦纪裂谷分布及原型盆地演化[J]. 石油勘探与开发, 47(6): 1122-1133. doi: 10.11698/PED.2020.06.06

    CrossRef Google Scholar

    [21] TIAN L, ZHANG H Q, LIU J, et al. , 2020. Distribution of Nanhua-Sinian rifts and proto-type basin evolution in southwestern Tarim Basin, NW China[J]. Petroleum Exploration and Development, 47(6): 1122-1133.

    Google Scholar

    [22] 吴福志, 刘东娜, 赵峰华, 等, 2021. 塔里木盆地西北缘苏盖特布拉克组沉积环境及构造背景研究[J]. 矿物岩石地球化学通报, 40(2): 478-490

    Google Scholar

    WU F Z, LIU D N, ZHAO F H, et al. , 2021. Study on Sedimentary Environment and Tectonic Background of Sugaitebulak Formation in the Northwestern Margin of Tarim Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 40(2): 478-490.

    Google Scholar

    [23] 吴鸿翔, 黄伟康, 励音骐, 等, 2020. 塔里木地块西北缘震旦系发现二叠纪基性岩床侵入事件[J]. 地质学报, 94(6): 1869-1882 doi: 10.3969/j.issn.0001-5717.2020.06.015

    CrossRef Google Scholar

    WU H X, HUANG W K, LI Y Q, et al. , 2020. Discovery of Permian mafic sills intrusion event in the Sinian system, Northwest Tarim block[J]. Acta Geologica Sinica, 94(6): 1869-1882. doi: 10.3969/j.issn.0001-5717.2020.06.015

    CrossRef Google Scholar

    [24] 王志宏, 丁伟铭, 李剑, 等, 2020. 塔里木盆地西缘下寒武统玉尔吐斯组沉积地球化学及有机质富集机制研究[J]. 北京大学学报(自然科学版), 56(4): 667-678

    Google Scholar

    WANG Z H, DING W M, LI J, et al. , 2020. Study on Sedimentary Geochemistry and Organic Matter Enrichment Mechanism of Lower Cambrian Yuertus Formation in the Western Margin of Tarim Basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 56(4): 667-678.

    Google Scholar

    [25] 吴林, 管树巍, 冯兴强, 等, 2020. 塔里木盆地及周缘南华系和震旦系划分对比研究[J]. 岩石学报, 36(11): 3427−3441

    Google Scholar

    Wu L, Guan S W, Feng X Q, et al. , 2020. Discussion on stratigraphic division of the Nanhuan and Sinian of the Tarim Basin and its surrounding regions. Acta Petrologica Sinica, 36(11): 3427−3441.

    Google Scholar

    [26] 姚春彦, 2010. 新疆阿克苏—乌什地区晚埃迪卡拉纪—早寒武世地层地球化学研究[D]. 南京大学.

    Google Scholar

    Yao C Y, 2010. Geochemistry of Late Ediacaran Early Cambrian Strata in Aksu Wushi Area, Xinjiang[D]. Nanjing University.

    Google Scholar

    [27] 杨海军, 陈永权, 潘文庆, 等, 2021. 塔里木盆地南华纪—中寒武世构造沉积演化及其盐下勘探选区意义[J]. 中国石油勘探, 26(4): 84-98 doi: 10.3969/j.issn.1672-7703.2021.04.007

    CrossRef Google Scholar

    YANG H J, Chen Y Q, PAN W Q, et al. , 2021. Study on tectonic and sedimentary evolution during the Nanhua-Middle Cambrian and its significance for subsalt exploration, Tarim Basin [J]. China Petroleum Exploration, 26(4): 84-98. doi: 10.3969/j.issn.1672-7703.2021.04.007

    CrossRef Google Scholar

    [28] 闫磊, 朱光有, 王珊, 等, 2021. 塔里木盆地震旦系—寒武系万米超深层天然气成藏条件与有利区带优选[J]. 石油学报, 42(11): 1446-1457 doi: 10.7623/syxb202111004

    CrossRef Google Scholar

    YAN L, ZHU G Y, WANG S, et al. , 2021. Accmulation conditions and favorable areas for natural gas accumulation in the 10 000 meters ultra-deep Sinian-Cambrian in Tarim Basin[J]. Acta Petrolei Sinica, 42(11): 1446-1457. doi: 10.7623/syxb202111004

    CrossRef Google Scholar

    [29] 杨沛, 刘洪涛, 李宁, 等, 2021. 塔里木油田超深井钻井设计及优化技术——以亚洲最深井轮探1井为例[J]. 中国石油勘探, 26(3): 126-135 doi: 10.3969/j.issn.1672-7703.2021.03.012

    CrossRef Google Scholar

    YANG P, LIU H T, LI N, et al. , 2021. Drilling design and optimization technology of ultra-deep wells in the Tarim Oilfield: a case study of Well Luntan 1, the deepest well in Asia[J]. China Petroleum Exploration, 26(3): 126-135. doi: 10.3969/j.issn.1672-7703.2021.03.012

    CrossRef Google Scholar

    [30] 钟广法, 林社卿, 侯方浩, 1996. 泌阳凹陷核三下亚段砂岩成岩作用及储集性[J]. 矿物岩石, (2): 40-46

    Google Scholar

    ZHONG G F, LING S Q, HOU F H, 1996. Diagenesis and its reservoir quality for sandstones of LOWER HE-3 Member(paleogene)east Biyang Depression, Henan, China[J]. Journal of Mineralogy and Petrology, 16(2): 40-46.

    Google Scholar

    [31] 邹才能, 杜金虎, 徐春春, 等, 2014. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 41(3): 278-293 doi: 10.11698/PED.2014.03.03

    CrossRef Google Scholar

    ZOU C N, DU J H, XU C C, et al. , 2014. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 41(3): 278-293. doi: 10.11698/PED.2014.03.03

    CrossRef Google Scholar

    [32] 张霞, 林春明, 陈召佑, 2011. 鄂尔多斯盆地镇泾区块上三叠统延长组砂岩中绿泥石矿物特征[J]. 地质学报, 85(10): 1659-1671

    Google Scholar

    ZHANG X, LIN C M, CHEN Z Y, 2011. The characteristics of chlorite minerals from Upper Triassic Yanchang Formation in Zhenjing area, Ordos Basin[J]. Acta Geologica Sinica, 85(10): 1659-1671.

    Google Scholar

    [33] 张克信, 王国灿, 陈奋宁, 等, 2007. 青藏高原古近纪—新近纪隆升与沉积盆地分布耦合[J]. 地球科学(中国地质大学学报), (5): 583−597

    Google Scholar

    Zhang K X, Wang G C, Chen F N, et al. , 2007. Coupling between the Uplift of Qinghai−Tibet Plateau and Distribution of Basins of Paleogene−Neogene. Earth Science, 32(5): 583−597.

    Google Scholar

    [34] 周肖贝, 李江海, 王洪浩, 等, 2015. 塔里木盆地南华纪—震旦纪盆地类型及早期成盆构造背景[J]. 地学前缘, 22(3): 290-298

    Google Scholar

    ZHOU X B, LI J H, WANG H H, et al. , 2015. The type of prototypic basin and tectonic setting of Tarim Basin formation from Nanhua to Sinian[J]. Earth Science Frontiers, (3): 290-298.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(1284) PDF downloads(155) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint