2023 Vol. 43, No. 3
Article Contents

ZHENG Yongsheng, TANG Wenqiang, YI Haisheng, PEI Ziwei, YANG Mei, XING Haoting, YANG Yun, WANG Sufeng. 2023. Coupling relationship between sedimentation of favorable intervals and lake level change and its controlling factors in lacustrine tight reservoir: A case study of the Lower Shangganchaigou Formation in the Gasi area, western Qaidam Basin, China. Sedimentary Geology and Tethyan Geology, 43(3): 475-488. doi: 10.19826/j.cnki.1009-3850.2022.04011
Citation: ZHENG Yongsheng, TANG Wenqiang, YI Haisheng, PEI Ziwei, YANG Mei, XING Haoting, YANG Yun, WANG Sufeng. 2023. Coupling relationship between sedimentation of favorable intervals and lake level change and its controlling factors in lacustrine tight reservoir: A case study of the Lower Shangganchaigou Formation in the Gasi area, western Qaidam Basin, China. Sedimentary Geology and Tethyan Geology, 43(3): 475-488. doi: 10.19826/j.cnki.1009-3850.2022.04011

Coupling relationship between sedimentation of favorable intervals and lake level change and its controlling factors in lacustrine tight reservoir: A case study of the Lower Shangganchaigou Formation in the Gasi area, western Qaidam Basin, China

More Information
  • Exploring the relationship between favorable sedimentary intervals and the change of lake level can provide some reference for the exploration and development deployment of the lake-phase dense reservoir. In this study, taking the Oligocene Lower Shangganchaigou Formation in the Gasi area of the western Qaidam Basin as an example, Fischer diagrams and U-TOC regression fitting method were used to reconstruct the process of lake level change during the Oligocene sedimentary period using Natural gamma ray (GR) curve data, and the climate controlling factors of lake level change were discussed in combination with magnetic susceptibility data. The results show that: (1) The Fischer diagram of Lower Shangganchaigou Formation in the Gasi area is consistent with the trends of mud content and TOC content, all reflecting that it has undergone two lake retreat and lake advance processes during deposition, which are favorable for the formation of source rocks and reservoirs; (2) The high water level sedimentary system formed during the lacustrine rising period corresponds to the enrichment intervals of high-quality source rocks in tight sandstone reservoirs, which can effectively form a source-reservoir symbiotic configuration; (3) The change of lake level in the Oligocene was controlled by the climate under the westerly wind condition. The water vapor brought by the westerly wind formed relatively humid climate conditions and caused the rise of lake level, which was favorable for the formation of source rocks and presented a coupling relationship with the deposition of favorable intervals.

  • 加载中
  • [1] Bao J, Wang Y D, Song C H, et al. , 2017. Cenozoic sediment flux in the Qaidam Basin, northern Tibetan Plateau, and implications with regional tectonics and climate[J]. Global & Planetary Change, 155: 56-69.

    Google Scholar

    [2] Bao X J, Zhang, S H, Jiang G Q, et al. , 2018. Cyclostratigraphic constraints on the duration of the Datangpo Formation and the onset age of the Nantuo (Marinoan) glaciation in South China[J]. Earth and Planetary Science Letters, 483: 52–63. doi: 10.1016/j.jpgl.2017.12.001

    CrossRef Google Scholar

    [3] Bellanca A, Calvo J P, Censi P, et al. , 1992. Recognition of lake-level changes in Miocene lacustrine units, Madrid Basin, Spain. Evidence from facies analysis, isotope geochemistry andclay mineralogy[J]. Sedimentary Geology, 76(3-4): 135-153. doi: 10.1016/0037-0738(92)90080-B

    CrossRef Google Scholar

    [4] Bian Q, Zhang D W, Yu X J, et al. , 2019. Transpressional salt tectonic system in western Qaidam Basin, Western China[J]. AAPG Bulletin, 103(3): 547–568. doi: 10.1306/08161817119

    CrossRef Google Scholar

    [5] Bookman R, Enzel Y, Agnon A, et al. , 2004. Late Holocene lake levels of the Dead Sea[J]. Geological Society of America Bulletin, 116(5-6): 555-571.

    Google Scholar

    [6] Bosboom R E, DupontNivet G, Houben A J P, et al. , 2011. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 299(3-4): 385–398.

    Google Scholar

    [7] 曹怀仁, 2017. 松辽盆地烃源岩形成环境与页岩油地质评价研究[D]. 中国科学院大学.

    Google Scholar

    Cao H, 2017. The paleo-environment of source rock formation and geological evaluation of shale oil in the Songliao Basin[D]. University of Chinese Academy of Sciences(in Chinese with English abstact).

    Google Scholar

    [8] 陈云, 伊海生, 陈璐洁, 等, 2021. 青藏高原古近系牛堡组三段天文周期旋回分析及古湖平面演化研究: 以尼玛盆地尼1井为例[J/OL]. 沉积与特提斯地质: 1-12

    Google Scholar

    Chen Y, Yi H S, Chen L J, et al., 2021. Astronomical cycles analysis and paleolake level evolution characteristics of Paleogene upper Niubao Formation: A case study from the Ni-1 well in Tibetan Plateau[J/OL]. Sedimentary Geology and Tethyan Geology: 1-12.

    Google Scholar

    [9] Dow W G, 1974. Application of oil-correlation and source-rock data to exploration in Williston Basin[J]. AAPG Bulletin, 58(7): 1253-1262.

    Google Scholar

    [10] 丁文龙, 王燮培, 李衍达, 等, 2004. 柴西地区尕斯断陷同生逆断裂构造特征与形成演化[J]. 石油与天然气地质, 6: 634-638 doi: 10.11743/ogg20040607

    CrossRef Google Scholar

    Ding W L, Wang X P, Li Y D. , et al. , 2004. Structural features and evolution of contemporaneous reversed faults in Gas faulted depression in western Qaidam basin[J]. Oil & Gas Geology, 6: 634-638. doi: 10.11743/ogg20040607

    CrossRef Google Scholar

    [11] 董国栋, 张琴, 严婷, 等, 2013. 致密油勘探研究现状[J]. 石油地质与工程, 27(5): 1-4+145 doi: 10.3969/j.issn.1673-8217.2013.05.001

    CrossRef Google Scholar

    Dong G D, Zhang Q, Yan T, et al. , 2013. Current situation of researching tight oil exploration[J]. Petroleum Geology and Engineering, 27(5): 1-4+145. doi: 10.3969/j.issn.1673-8217.2013.05.001

    CrossRef Google Scholar

    [12] 杜金虎, 何海清, 杨涛, 等, 2014. 中国致密油勘探进展及面临的挑战[J]. 中国石油勘探, 19(1): 1672-7703

    Google Scholar

    Du J H, He H Q, Yang T, et al. , 2014. Progress in China's Tight Oil Exploration and Challenges[J]. China Petroleum Exploration, 19(1): 1672-7703.

    Google Scholar

    [13] Fang X M, Yan M D, Vander Voo R, et al. , 2005. Late Cenozoic deformation and uplift of the NE Tibetan Plateau: Evidence from high-resolution magnetos tratigraphy of the Guide Basin, Qinghai Province, China[J]. Geological Society of America Bulletin, 117(9-10): 1208-1225.

    Google Scholar

    [14] 冯子辉, 方伟, 王雪, 等, 2009. 松辽盆地海侵制约油页岩形成的微体古生物和分子化石证据[J]. 中国科学, 39(10): 1375-1386

    Google Scholar

    Feng Z H, Fang W, Wang X, et al. , 2009. Microfossils and molecular records in oil shales of the Songliao Basin and implications for paleo-depositional environment[J]. Science in China Press, 39(10): 1375-1386.

    Google Scholar

    [15] 冯子辉, 霍秋立, 王雪, 等, 2015. 青山口组一段烃源岩有机地球化学特征及古沉积环境[J]. 大庆石油地质与开发, 34(4): 1-7 doi: 10.3969/J.ISSN.1000-3754.2015.04.001

    CrossRef Google Scholar

    Feng Z H, Huo Q L, Wang X, et al. , 2015. Organic Geochemical Characteristics and Paleosedimentary Environments of The Source Rocks in Member 1 of Qingshankou Formation[J]. Petroleum Geology & Oilfield Development in Daqing, 34(4): 1-7. doi: 10.3969/J.ISSN.1000-3754.2015.04.001

    CrossRef Google Scholar

    [16] Fischer A G, 1964. The Lofer cyclothem of the Alpine Triassic In[C]//Symposium on cyclic sedimentation. Kansas State Geology Survey Bulletin. 169(1): 107-149.

    Google Scholar

    [17] Frierson D M W, Lu J, Chen G, et al. , 2007. Width of the Hadley cell in simple and comprehensive general circulation models[J]. Geophysical Research Letters, 34 (18): L18804. doi: 10.1029/2007GL031115

    CrossRef Google Scholar

    [18] 付锁堂, 张道伟, 薛建勤, 等, 2013. 柴达木盆地致密油形成的地质条件及勘探潜力分析[J]. 沉积学报, 31(4): 672-682 doi: 10.14027/j.cnki.cjxb.2013.04.011

    CrossRef Google Scholar

    Fu S T, Zhang D W, Xue J Q, et al. , 2013. Exploration Potential and Geological Conditions of Tight Oil in the Qaidam Basin[J]. Acta Sedimentologica Sinica, 31(4): 672-682. doi: 10.14027/j.cnki.cjxb.2013.04.011

    CrossRef Google Scholar

    [19] 付锁堂, 马达德, 陈琰, 等, 2016. 柴达木盆地油气勘探新进展[J]. 石油学报, 37(S1): 1-10 doi: 10.7623/syxb2016S1001

    CrossRef Google Scholar

    Fu S T, Ma D D, Chen Y, et al. , 2016. New advance of petroleum and gas exploration in Qaidam Basin[J]. Acta Petrolei Sinica, 37(S1): 1-10. doi: 10.7623/syxb2016S1001

    CrossRef Google Scholar

    [20] 高军平, 2009.柴西西岔沟新近系磁组构特征对环境变化的响应[J].沉积学报,27(1):128-136.

    Google Scholar

    Gao J P, 2009. Response of magnetic mabric of Xichagou Section in Late Tertiary to mlimate mhange,Western Qaidam Basin[J]. Acta Sedimentologica Sinica, 27(1): 128-136.

    Google Scholar

    [21] Goncalves F T T, 2002. Organic and isotope geochemistry of the Early Cretaceous rift sequence in the Camamu Basin, Brazil: paleolimnological inferences and source rock models[J]. Organic Geochemistry, 33(1): 67–80. doi: 10.1016/S0146-6380(01)00128-0

    CrossRef Google Scholar

    [22] 龚大兴, 周家云, 陈科贵, 等, 2014. 海相碳酸盐台地含钾层段旋回地层学响应和识别——以川中广安地区三叠系为例[J]. 高校地质学报, 20(2): 230-238 doi: 10.3969/j.issn.1006-7493.2014.02.007

    CrossRef Google Scholar

    Gong D X, Zhou J Y, Chen K G, et al. , 2014. Identification of the Potassium-rich Member in Carbonate Platform and Its Response to the Gamma Ray Well Logging from the Perspective of Cyclostratigraphy: A Case Study in Triassic of Guangan Area, in the Central Sichuan Basin[J]. Geological Journal of China Universities, 20(2): 230-238. doi: 10.3969/j.issn.1006-7493.2014.02.007

    CrossRef Google Scholar

    [23] 郭华粘, 2020. 柴达木盆地西部尕斯地区上干柴沟组下勘探开发方案[R]. 青海: 中国石油青海油田公司勘探开发研究院.

    Google Scholar

    Guo H Z, 2020. Exploration and development program for the Lower Shangganchaigou Formation in the Gasi area of the Western Qaidam Basin[R]. Exploration and Development Research Institute of Qinghai Oilfield Company, PetroChina.

    Google Scholar

    [24] 韩刚, 张文婧, 黄清华, 等, 2012. 松辽盆地晚白垩世青山口组缺氧事件层的地质地球化学特征[J]. 现代地质, 26(4): 741-746 doi: 10.3969/j.issn.1000-8527.2012.04.015

    CrossRef Google Scholar

    Han G, Zhang W J, Huang Q H, et al. , 2012. Geological and Geochemical Characteristics of Anoxic Event Bed in the Qingshankou Formation of Late Cretaceous in Songliao Basin[J]. Geoscience, 26(4): 741-746. doi: 10.3969/j.issn.1000-8527.2012.04.015

    CrossRef Google Scholar

    [25] Hannon G E, Gaillard M J, 1997. The plant-macrofossil record of past lake-level changes[J]. Journal of Paleolimnology, 18(1): 15-28. doi: 10.1023/A:1007958511729

    CrossRef Google Scholar

    [26] Harrison S P, Digerfeldt G, 1993. European lakes as palaeohydrological and palaeoclimatic indicators[J]. Quaternary Science Reviews, 12(4): 233-248. doi: 10.1016/0277-3791(93)90079-2

    CrossRef Google Scholar

    [27] 侯启军, 冯志强, 冯子辉, 2009. 松辽盆地陆相石油地质学[M]. 北京: 石油工业出版社, 97-99

    Google Scholar

    Hou Q J, Feng Z Q, Feng Z H, 2009. Continental petroleum geology of Songliao Basin[M]. Beijing: Petroleum Industry Press, 97-99.

    Google Scholar

    [28] 何胡军, 2003. 浅析湖平面变化与地球化学特征的关系——以潜江凹陷为例[J]. 新疆石油学院学报, 15(4): 18-21

    Google Scholar

    He H J, 2003. Study on The Character of Geochemistry in Sequence Stratigrap HY Units of Saline Basin on Qianjiang Group in Qianjiang Depression[J]. Journal of Xinjiang Petroleum Institute, 15(4): 18-21.

    Google Scholar

    [29] 胡守云, 王苏民, AppelE, 等, 1998. 呼伦湖湖泊沉积物磁化率变化的环境磁学机制[J]. 中国科学(D辑: 地球科学), 28(4): 334-339

    Google Scholar

    Hu S Y, Wang S M, Appel E, et al. , 1998. Environmental magnetic mechanism of magnetic susceptibility variation of lake sediments in Hulun Lake[J]. Science in China Press, 28(4): 334-339.

    Google Scholar

    [30] 黄第藩, 张大江, 王培荣, 等, 2003. 中国未成熟石油成因机制和成藏条件[M]. 北京: 石油工业出版社.

    Google Scholar

    Huang D F, Zhang D J, Wang P R, et al. , 2003. Genetic mechanism and accumulation conditions of immature petroleum in China[M]. Beijing: Petroleum Industry Press.

    Google Scholar

    [31] 贾承造, 邹才能, 李建忠, 等, 2012. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报, 33(3): 343-350

    Google Scholar

    Jia C Z, Zou C N, Li J Z, et al. , 2012. Assessment criteria, main types, basic features and resource prospects of the tight oil in China. Acta Petrolei Sinica, 33(3): 343–350.

    Google Scholar

    [32] 金强, 查明, 2000. 柴达木盆地西部第三系蒸发岩与生油岩共生沉积作用研究[J]. 地质科学, 35(4): 465-473 doi: 10.3321/j.issn:0563-5020.2000.04.010

    CrossRef Google Scholar

    Jin Q, Zha M, 2000. Co-Sedimentation of Tertiary Evaporites and Oil Source Rocks in the Western Qaidam Basin[J]. Scientia Geologica Sinica, 35(4): 465-473. doi: 10.3321/j.issn:0563-5020.2000.04.010

    CrossRef Google Scholar

    [33] Johanson C M, Fu Q, 2009. Hadley cell widening: model simulations versus observations[J]. Journal of Climate, 22: 2713–2725. doi: 10.1175/2008JCLI2620.1

    CrossRef Google Scholar

    [34] Kelts, K, 1988. Environments of deposition of lacustrine petroleum source rocks: an introduction[J]. Geological Society, London, Special Publications, 40: 3–26. doi: 10.1144/GSL.SP.1988.040.01.02

    CrossRef Google Scholar

    [35] Kong X X, Jiang Z X, Han C, et al. , 2018. The tight oil of lacustrine carbonate-rich rocks in the eocene shulu sag: implications for lithofacies and reservoir characteristics[J]. Journal of Petroleum Science and Engineering, 175: 547-559.

    Google Scholar

    [36] Kukla G J, 1987. Loess stratigraphy in center China[J]. Quaternary Science Review, 6: 191-219. doi: 10.1016/0277-3791(87)90004-7

    CrossRef Google Scholar

    [37] 雷群, 王红岩, 赵群, 等, 2008. 国内外非常规油气资源勘探开发现状及建议[J]. 天然气工业, 28(12): 7-10+134 doi: 10.3787/j.issn.1000-0976.2008.12.003

    CrossRef Google Scholar

    Lei Q, Wang H Y, Zhao Q, et al. , 2008. Status Analysis and Advices on Exploration and Development of Unconventional Hydrocarbon Resources[J]. Natural Gas Industry, 28(12): 7-10+134. doi: 10.3787/j.issn.1000-0976.2008.12.003

    CrossRef Google Scholar

    [38] Leng M J, Marshall J D, 2004. Palaeoclimate interpretation of stable isotope data from lake sediment archives[J]. Quaternary Science Reviews, 23(7): 811-831.

    Google Scholar

    [39] 李俊武, 2016. 柴西南地区古—新近系致密油储层特征及有利探区预测[D]. 成都: 成都理工大学.

    Google Scholar

    Li J W, 2016. The characteristics of tight oil reservoir and favorable exploration Area Prediction of Paleogene and Neogene in the Southwestern area, Qaidam Basin[D]. Chengdu: Chengdu University of Technology.

    Google Scholar

    [40] 李启来, 2017. 西藏尼玛地区古近系牛堡组古湖平面变化的沉积地球化学记录[D]. 成都: 成都理工大学.

    Google Scholar

    Li Q L, 2017. Sedimentary geochemistry and lake-level changes from the Paleogene Niubao Formation of Nima area, Tibet [D]. Chengdu: Chengdu University of Technology.

    Google Scholar

    [41] 李禹成, 2019. 白垩纪松辽盆地青山口组高频古湖平面变化及其控制因素[D]. 北京: 中国地质大学.

    Google Scholar

    Li Y C, 2019. High Frequency Paleolake Level Change and Its Controlling Factors of Qingshankou Formation in Cretaceous Songliao Basin [D]. Beijing: China University of Geosciences.

    Google Scholar

    [42] Li F J, Yang Y. C, Li J W, et al. , 2014. Lacustrine tempestite and its geological significance in the Cenozoic study of the Qaidam Basin[J]. Journal of Asian Earth Sciences, 92: 157–167. doi: 10.1016/j.jseaes.2014.06.020

    CrossRef Google Scholar

    [43] 林森虎, 邹才能, 袁选俊, 等, 2011. 美国致密油开发现状及启示[J]. 岩性油气藏, 23(4): 25-30+64 doi: 10.3969/j.issn.1673-8926.2011.04.005

    CrossRef Google Scholar

    Lin S H, Zou C N, Yuan X J, et al. , 2011. Status quo of tight oil exploitation in the United States and its implication[J]. Lithologic Reservoirs, 23(4): 25-30+64. doi: 10.3969/j.issn.1673-8926.2011.04.005

    CrossRef Google Scholar

    [44] 林孝先, 侯中健, 2014. 松辽盆地中部扶余油层相对湖平面变化定量研究[J]. 地层学杂志, 38(2): 170-180 doi: 10.19839/j.cnki.dcxzz.2014.02.005

    CrossRef Google Scholar

    Lin X X, Hou Z J, 2014. A Quantitative Analysis Research on Relative Lacustrine Level Changes in the Lower Cretaceous Fuyu Reservoir in the Songliao Basin[J]. Journal of Stratigraphy, 38(2): 170-180. doi: 10.19839/j.cnki.dcxzz.2014.02.005

    CrossRef Google Scholar

    [45] Liu M J, Xiong C, 2021. Diagenesis and reservoir quality of deep–lacustrine sandy–debris–flow tight sandstones in Upper Triassic Yanchang Formation, Ordos Basin, China: Implications for reservoir heterogeneity and hydrocarbon accumulation[J]. Journal of Petroleum Science and Engineering, 202: 1–16.

    Google Scholar

    [46] Liu W G, Li X Z, An Z S, et al. , 2013. Total organic carbon isotopes: A novel proxy of lake level from Lake Qinghai in the Qinghai–Tibet Plateau, China[J]. Chemical Geology, 347: 153-160. doi: 10.1016/j.chemgeo.2013.04.009

    CrossRef Google Scholar

    [47] 刘顺宇, 赵荣, 2019. 柴达木盆地油气资源研究现状及问题[J]. 能源与环保, 41(2): 92-97+101

    Google Scholar

    Liu S Y, Zhao R, 2019. Research status and problems of oil and gas resources in Qaidam Basin[J]. China Energy and Environmental Protection, 41(2): 92-97+101.

    Google Scholar

    [48] 刘占国, 朱超, 李森明, 等, 2017. 柴达木盆地西部地区致密油地质特征及勘探领域[J]. 石油勘探与开发, 44(2): 196-204 doi: 10.11698/PED.2017.02.03

    CrossRef Google Scholar

    Liu Z G, Zhu C, Li S M, et al. , 2017. Geological features and exploration fields of tight oil in the Cenozoic of western Qaidam Basin, NW China[J]. Petroleum Exploration and Development, 44(2): 196-204. doi: 10.11698/PED.2017.02.03

    CrossRef Google Scholar

    [49] 马达德, 陈琰, 夏晓敏, 等, 2019. 英东油田成藏条件及勘探开发关键技术[J]. 石油学报, 40(1): 115-130 doi: 10.7623/syxb201901010

    CrossRef Google Scholar

    Ma D D, Chen Y, Xia X M, et al. , 2019. Reservoir formation conditions and key exploration &development technoloiges in Yingdong oilfield, Qaidam Basin[J]. Acta Petrolei Sinica, 40(1): 115-130. doi: 10.7623/syxb201901010

    CrossRef Google Scholar

    [50] 马洪, 李建忠, 杨涛, 等, 2014. 中国陆相湖盆致密油成藏主控因素综述[J]. 石油实验地质, 36(6): 668-677 doi: 10.11781/sysydz201406668

    CrossRef Google Scholar

    Ma H, Li J Z, Yang T, et al. , 2014. Main controlling factors for tight oil accumulation in continental lacustrine basins in China[J]. Petroleum Geology & Experiment, 36(6): 668-677. doi: 10.11781/sysydz201406668

    CrossRef Google Scholar

    [51] 梅冥相, 马永生, 周洪瑞, 等, 2001. 雾迷山旋回层的费希尔图解及其在定义前寒武纪三级海平面变化中的应用[J]. 地球学报, 22(5): 429-436 doi: 10.3321/j.issn:1006-3021.2001.05.010

    CrossRef Google Scholar

    Mei M X, Ma Y S, Zhou H R, et al. , 2001. The Fischer Plots of Wumishan Cyclothems as Records of Third-Order Sea Level Changes in Precambrian[J]. Acta Geosicientia Sinica, 22(5): 429-436. doi: 10.3321/j.issn:1006-3021.2001.05.010

    CrossRef Google Scholar

    [52] Meyers P A, 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes[J]. Organic Geochemistry, 34(2): 261–289. doi: 10.1016/S0146-6380(02)00168-7

    CrossRef Google Scholar

    [53] Molnar P, England P, Martinod J, 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 31: 357-397. doi: 10.1029/93RG02030

    CrossRef Google Scholar

    [54] Patience A J, Lallier–Verges E, Alberic P, et al. , 1996. Relationships between organo–mineral supply and early diagenesis in the lacustrine environment: A study of surficial sediments from the Lac du Bouchet (Haute Loire, France) [J]. Quaternary Science Reviews, 15(2-3): 213–221. doi: 10.1016/0277-3791(95)00024-0

    CrossRef Google Scholar

    [55] 庞正炼, 邹才能, 陶士振, 等, 2012. 中国致密油形成分布与资源潜力评价[J]. 中国工程科学, 14(7): 60-67 doi: 10.3969/j.issn.1009-1742.2012.07.009

    CrossRef Google Scholar

    Pang Z L, Zou C N, Tao S Z, et al. , 2012. Formation, distribution and resource evaluation of tight oil in China[J]. Engineering Sciences, 14(7): 60-67. doi: 10.3969/j.issn.1009-1742.2012.07.009

    CrossRef Google Scholar

    [56] 庞正炼, 陶士振, 张琴, 等, 2018a.四川盆地中部侏罗系大安寨段储集层微观结构及油气意义[J].石油勘探与开发,45(1):62-72.

    Google Scholar

    Pang Z L, Tao S Z, Zhang Q, et al., 2018a.Reservoir micro structure of Da’anzhai Member of Jurassic and its petroleum significance in Central Sichuan Basin, SW China. Petroleum Exploration and Development. 2018, 45(1): 62-72.

    Google Scholar

    [57] 庞正炼, 陶士振, 张琴, 等, 2018b.四川盆地侏罗系致密油二次运移机制与富集主控因素[J].石油学报,39(11):1211-1222.

    Google Scholar

    Pang Z L, Tao S Z, Zhang Q, et al., Secondary migration mechanism and accumulation controlling factors of Jurassic tight oil in Sichuan Basin[J]. Acta Petrolei Sinica, 2018, 39(11): 1211-1222.

    Google Scholar

    [58] Rashid F, Glover P W J, Lorinczi P, et al. , 2015. Porosity and permeability of tight carbonate reservoir rocks in the north of Iraq[J]. Journal of Petroleum Science and Engineering, 133: 147–161. doi: 10.1016/j.petrol.2015.05.009

    CrossRef Google Scholar

    [59] Read B, Goldhammer R K, 1988. Use of Fischer Plots to define third order sealevel curves in peritidal cyclic carbonates, Early Ordovieian, Appalaehians[J]. Geology, 16(10): 895–899. doi: 10.1130/0091-7613(1988)016<0895:UOFPTD>2.3.CO;2

    CrossRef Google Scholar

    [60] 石金华, 杨成, 李仕远, 等, 2016. 扎哈泉储层致密史与致密油聚集关系探讨[J]. 特种油气藏, 23(4): 42-45+153 doi: 10.3969/j.issn.1006-6535.2016.04.009

    CrossRef Google Scholar

    Shi J H, Yang C, Li S Y, et al. , 2016. Relationship between Reservoir Densification History and Tight Oil Accumulation in Zhahaquan[J]. Special Oil & Gas Reservoirs, 23(4): 42-45+153. doi: 10.3969/j.issn.1006-6535.2016.04.009

    CrossRef Google Scholar

    [61] Shi J Y, Jin Z J, Liu Q Y, et al. , 2018. Terrestrial sedimentary responses to astronomically forced climate changes during the Early Paleogene in the Bohai Bay Basin, eastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 502: 1–12.

    Google Scholar

    [62] 施之新, 1997. 江汉平原47号钻孔中的化石硅藻及其在古环境分析上的意义[J]. 植物学报, 39(1): 68-76

    Google Scholar

    Shi Z X, 1997. Fossil Diatoms in NO. 47 Borehole of Jianghan Plain and Their Significance to Paleoenvironmental Analysis[J]. Acta Botanica Sinica, 39(1): 68-76.

    Google Scholar

    [63] 孙晶, 薛林福, 李双林, 等, 2012. 渤海湾盆地孔南地区孔二段湖盆性质研究[J]. 地球科学进展, 27(S1): 408-410

    Google Scholar

    Sun J, Xue L F, Li S L, et al. , 2012. Study on lake basin properties of the second Member of Kongdian Formation in Kongnan area, Bohai Bay Basin[J]. Advances in Earth Science, 27 (S1): 408-410.

    Google Scholar

    [64] Sun Z M, Yang Z Y, Pei J L, et al, 2005. Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China: Implications for tectonic uplift and block rotation in northern Tibetan plateau[J]. Earth and Planetary Science Letters, 237(3-4): 635–646. doi: 10.1016/j.jpgl.2005.07.007

    CrossRef Google Scholar

    [65] Talbot M R, Livingstone D A, 1989. Hydrogen index and carbon isotopes of lacustrine organic matter as lake level indicators[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 70(1-3): 121–137.

    Google Scholar

    [66] Tang W Q, Yi F, Chen X D, et al, 2021. Abrupt aridification in the upper eocene of the western Qaidam Basin, northeastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 577: 110515.

    Google Scholar

    [67] Thompson R, 1975. Magnetic susceptibility of lake sediments[J]. Limnology and Oceanograpy, 20(5): 687-698. doi: 10.4319/lo.1975.20.5.0687

    CrossRef Google Scholar

    [68] 王亚东, 张涛, 迟云平, 等, 2011. 柴达木盆地西部地区新生代演化特征与青藏高原隆升[J]. 地学前缘, 18(3): 141-148

    Google Scholar

    Wang Y D, Zhang T, Chi Y P, et al. , 2011. Cenozoic uplift of the Tibetan Plateau: Evidence from tectonic-sedimentary evolution of the Western Qaidam Basin[J]. Earth Science Frontiers, 18(3): 141-148.

    Google Scholar

    [69] 王亚青, 2009. 湖平面变化对王58地区浊积扇形成与演化的控制作用研究[J]. 西北地质, 42(1): 51-56 doi: 10.3969/j.issn.1009-6248.2009.01.004

    CrossRef Google Scholar

    Wang Y Q, 2009. Effect of Lake Level Fluctuations on Turbidite Fan Development in Wang 58 Block[J]. Northwestern Geology, 42(1): 51-56. doi: 10.3969/j.issn.1009-6248.2009.01.004

    CrossRef Google Scholar

    [70] 王艳清, 刘云田, 黄革萍, 等, 2014. 柴达木盆地西部地区古近-新近系沉积体系与油气分布[M]. 北京: 石油工业出版社.

    Google Scholar

    Wang Y Q, Liu Y T, Huang G P, et al. , 2014. Paleogene-neogene sedimentary system and oil and gas distribution in western Qaidam Basin[M]. Beijing: Petroleum Industry Press(in Chinese).

    Google Scholar

    [71] Wang J Y, Fang X M, Appel E, et al. , 2012. Pliocene–Pleistocene Climate Change At the NE Tibetan Plateau Deduced From Lithofacies Variation In the Drill Core SG-1, Western Qaidam Basin, China[J]. Journal of Sedimentary Research, 82(12): 933-952. doi: 10.2110/jsr.2012.76

    CrossRef Google Scholar

    [72] Wang X F, Wang C S, Feng Z H, et al. , 2009. Filling types of terrestrial basin and their control on the formation of hydrocarbon source rocks: Taking Songliao Basin as an example[J]. Earth Science Frontiers, 16(5): 192–200.

    Google Scholar

    [73] Williams J A, 1974. Characterization of oil types in Williston Basin[J]. AAPG Bulletin, 58(7): 1243-1252.

    Google Scholar

    [74] Wu M H, Zhuang G S, Hou M Q, et al. , 2021. Expanded lacustrine sedimentation in the Qaidam Basin on the northern Tibetan Plateau: Manifestation of climatic wetting during the Oligocene icehouse[J]. Earth and Planetary Science Letters, 565: 116935. doi: 10.1016/j.jpgl.2021.116935

    CrossRef Google Scholar

    [75] 武向峰, 2010. 柴达木盆地西部上、下干柴沟组湖平面变化程式及控制因素[D]. 成都: 成都理工大学.

    Google Scholar

    Wu X F, 2010. Lake level fluctuation pattern and controlling factors of Shangganchaigou Formation and Xiaganchaigou Formation , Western Qaidam Basin[D]. Chengdu: Chengdu University of Technology.

    Google Scholar

    [76] 吴伟, 林畅松, 刘景彦, 等, 2011. 利用上超点法重建渤海湾盆地辽中凹陷渐新世湖平面变化[J]. 沉积学报, 29(6): 1115-1121 doi: 10.14027/j.cnki.cjxb.2011.06.008

    CrossRef Google Scholar

    Wu W, Lin C S, Liu J Y, et al. , 2011. Reconstruction of Oligocene Lake Level Change through Onlap Points: A case from Liaozhong Depression, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 29(6): 1115-1121. doi: 10.14027/j.cnki.cjxb.2011.06.008

    CrossRef Google Scholar

    [77] 吴伟, 林畅松, 周心怀, 等, 2012. 辽东湾古近纪东营期古气候演化及其对湖平面变化的影响[J]. 中国石油大学学报(自然科学版), 36(1): 33-39+46 doi: 10.3969/j.issn.1673-5005.2012.01.006

    CrossRef Google Scholar

    Wu W, Lin C S, Zhou X H, et al. , 2012. Paleoclimate evolution and its influence on lake level changes of Paleogene Dongying epoch in Liaodong Bay, East China[J]. Journal of China University of Petroleum, 36(1): 33-39+46. doi: 10.3969/j.issn.1673-5005.2012.01.006

    CrossRef Google Scholar

    [78] 席党鹏, 李罡, 万晓樵, 等, 2009. 松辽盆地东南区姚家组—嫩江组一段地层特征与湖泊演变[J]. 古生物学报, 48(3): 556-568 doi: 10.3969/j.issn.0001-6616.2009.03.024

    CrossRef Google Scholar

    Xi D P, Li G, Wan X Q, et al. , 2009. Stratigraphic characteristics and lake evolution of yaojia Formation - Nenjiang Formation 1 member in southeast Songliao Basin[J]. Acta Palaeontologica Sinica, 48(3): 556-568. doi: 10.3969/j.issn.0001-6616.2009.03.024

    CrossRef Google Scholar

    [79] Xi D P, Wan X Q, Jansa L, et al., 2011. Late Cretaceous paleoenvironment and lake level fluctuation in the Songliao Basin, northeastern China. Island Arc, 20(1): 6-22.

    Google Scholar

    [80] Xiong Y, Tan X C, Wu K Y, et al. , 2021. Petrogenesis of the Eocene lacustrine evaporites in the western Qaidam Basin: Implications for regional tectonic and climate changes[J]. Sedimentary Geology, 416: 105867. doi: 10.1016/j.sedgeo.2021.105867

    CrossRef Google Scholar

    [81] 徐程, 2018. 中国中西部致密油-烃源岩的地质与地球化学特征[D]. 西安: 长江大学.

    Google Scholar

    Xu C, 2018. Geological and geochemical characteristics of tight oil-source rocks in central and western China[D]. Xian: Yangtze University.

    Google Scholar

    [82] 徐延康, 2014. 松辽盆地嫩江组下部高频湖平面变化及其与有机质丰度的关系[D]. 北京: 中国地质大学(北京).

    Google Scholar

    Xu Y K, 2014. High Frequency Lake Level Fluctuation and its Correspondence with the Abundance of Organic Matter in Lower Nenjiang Formation of Songliao Basin, NE China[D]. Beijing: China University of Geosciences(Beijing).

    Google Scholar

    [83] Xu Z J, Liu L F, Wang T Q, et al. , 2017. Analysis of the charging process of the lacustrine tight oil reservoir in the Triassic Chang 6 Member in the southwest Ordos Basin, China[J]. Canadian Journal of Earth Sciences, 54(12): 1-66.

    Google Scholar

    [84] 杨大明, 2017. 松辽盆地嫩一段及嫩二段高频湖平面变化重建及其受控因素[D]. 北京: 中国地质大学.

    Google Scholar

    Yang D M, 2017. High-freqency lake-level fluctuation in numbers 1 and 2 of Nenjiang Formation in Songliao Basin and its controlling factors[D]. Beijing: China University of Geosciences(Beijing).

    Google Scholar

    [85] Yang D M, Huang Y J, Guo W, et al. , 2018. Late Santonian–early Campanian lake–level fluctuations in the Songliao Basin, NE China and their relationship to coeval eustatic changes[J]. Cretaceous Research, 92: 138–149. doi: 10.1016/j.cretres.2018.07.008

    CrossRef Google Scholar

    [86] 杨藩, 马志强, 许同春, 等, 1992. 柴达木盆地第三纪磁性地层柱[J]. 石油学报, 13(2): 97-101 doi: 10.7623/syxb199202016

    CrossRef Google Scholar

    Yang F, Ma Z Q, Xu T C, et al. , 1992. A Tertiary Paleomagnetic Stratigraphic Profile in Qaidam Basin[J]. Acta Petrolei Sinica, 13(2): 97-101. doi: 10.7623/syxb199202016

    CrossRef Google Scholar

    [87] Ye C C, Yang Y B, Fang X M, et al. , 2020. Paleolake salinity evolution in the Qaidam Basin (NE Tibetan Plateau) between ~42 and 29 Ma: Links to global cooling and Paratethys Sea incursions[J]. Sedimentary geology, 409: 105778. doi: 10.1016/j.sedgeo.2020.105778

    CrossRef Google Scholar

    [88] 伊海生, 张小青, 朱迎堂, 2006. 青藏高原中部湖泊岩心记录的第四纪湖平面变化及气候意义[J]. 地学前缘, 13(5): 300-307 doi: 10.3321/j.issn:1005-2321.2006.05.003

    CrossRef Google Scholar

    Yi H S, Zhang X Q, Zhu Y T, 2006. Lake level change recorded by core of the Quaternary lacustrine sediment in the central Tibetan plateau and its climatic implications[J]. Earth Science Frontiers, 13(5): 300-307. doi: 10.3321/j.issn:1005-2321.2006.05.003

    CrossRef Google Scholar

    [89] 伊海生, 时志强, 朱迎堂, 等, 2009. 利用泥质岩硼含量重建过去湖泊古盐度和湖面变化历史[J]. 湖泊科学, 21(1): 77-83 doi: 10.3321/j.issn:1003-5427.2009.01.010

    CrossRef Google Scholar

    Yi H S, Shi Z Q, Zhu Y T, et al. , 2009. Reconstruction of paleo-salinity and lake-level fluctuation history by using boron concentration in lacustrine mudstones[J]. Journal of Lake Sciences, 21(1): 77-83. doi: 10.3321/j.issn:1003-5427.2009.01.010

    CrossRef Google Scholar

    [90] 伊海生, 2011. 测井曲线旋回分析在碳酸盐岩层序地层研究中的应用[J]. 古地理学报, 13(4): 456-466 doi: 10.7605/gdlxb.2011.04.009

    CrossRef Google Scholar

    Yi H S, 2011. Application of well log cycle analysis in studies of sequence stratigraphy of carbonate rocks[J]. Journal of Palaeogeography, 13(4): 456-466. doi: 10.7605/gdlxb.2011.04.009

    CrossRef Google Scholar

    [91] Yin Q, Yi H S, Xia G Q, et al. , 2015. Accommodation space and Milankovitch orbit cycle sequence of the Paleogene stratigraphic frames in Lunpola basin based on the spectrum analysis of the logging curve[J]. Progress in Geophysics, 30(3): 1288–1297.

    Google Scholar

    [92] 袁亚娟, 吕宝凤, 刘见宝, 等, 2010. 柴达木盆地断裂发育特征及其动力学机制探讨[J]. 西南石油大学学报(自然科学版), 32(6): 46-52+186

    Google Scholar

    Yuan Y J, Lv B F, Liu J B, et al. , 2010. The Kinematic Characteristics of the Fault System of Qaidam Basin and its Dynamic Mechanism[J]. JournalofSouthwestPetroleum University(Science& Teehn~~logyEdition), 32(6): 46-52+186.

    Google Scholar

    [93] Zachos J C, Dickens G R, Zeebe R E, 2008. An early Cenozoic perspective on greenhouse warming and carbon–cycle dynamics[J]. Nature, 451: 279–283. doi: 10.1038/nature06588

    CrossRef Google Scholar

    [94] Zhang T, Zhang C M, Fan T L, et al. , 2019. Cyclostratigraphy of Lower Triassic terrestrial successions in the Junggar Basin, northwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 539: 109493.

    Google Scholar

    [95] 张道伟, 马达德, 陈琰, 等, 2019. 柴达木盆地油气地质研究新进展及勘探成果[J]. 新疆石油地质, 40(5): 505-512

    Google Scholar

    Zhang D W, Ma D D, Chen Y, et al. , 2019. Research Progress on Oil and Gas Geology and Exploration Practice in Qaidam Basin[J]. Xinjiang Petroleum Geology, 40(5): 505-512.

    Google Scholar

    [96] 张葳, 2013. 川中东北部早中侏罗世古湖泊演化与致密油储层形成[D]. 成都: 成都理工大学.

    Google Scholar

    Zhang W, 2013. The evolution of the ancient lake and tight oil reservoirsformation of the early and middle Jurassic in the NE part of Central Sichuan Basin[D]. Chengdu: Chengdu University of Technology.

    Google Scholar

    [97] 张平中, 王先彬, 陈践发, 等, 1995. 湖相有机质的氢指数及碳同位素组成——湖面波动评价的指标——以RH孔为例[J]. 科学通报, 40(18): 1682-1685 doi: 10.3321/j.issn:0023-074X.1995.18.015

    CrossRef Google Scholar

    Zhang P Z, Wang X B, Chen J F, et al. , 1995. Hydrogen index and carbon isotopic composition of lacustrine organic matter -- indicators for evaluation of lake surface fluctuation -- Taking RH pore as an example[J]. Chinese Science Bulletin, 40(18): 1682-1685. doi: 10.3321/j.issn:0023-074X.1995.18.015

    CrossRef Google Scholar

    [98] 张伟林, 2006. 柴达木盆地新生代高精度磁性地层与青藏高原隆升[D]. 兰州: 兰州大学.

    Google Scholar

    Zhang W L, 2006. Cenozoic Uplift of theTibetan Plateau: Evidence from High Resolution Magnetostratigraphy of the Qaidam Basin[D]. Lanzhou: Lanzhou University.

    Google Scholar

    [99] 郑敬贵, 赖维成, 王军, 等, 2014. 渤海海域辽中南洼渐新统湖平面变化及其油气勘探意义[J]. 地质科技情报, 33(4): 117-122

    Google Scholar

    Zheng J G, Lai W C, Wang J, et al. , 2014. Lake-Level Changes of Oligocene of Liaozhong Southern Sag in Bohai Sea Region and Its Significance in Petroleum Exploration[J]. Geological Science and Technology Information, 33(4): 117-122.

    Google Scholar

    [100] 郑茜, 张小莉, 王国民, 等, 2015. 扎哈泉地区上干柴沟组致密油烃源岩测井评价方法[J]. 岩性油气藏, 27(3): 115-121 doi: 10.3969/j.issn.1673-8926.2015.03.018

    CrossRef Google Scholar

    Zheng Q, Zhang X L, Wang G M, et al. , 2015. Logging evaluation methods of source rocks of tight oil of Upper Ganchaigou Formation in Zhahaquan area[J]. Lithologic Reservoirs, 27(3): 115-121. doi: 10.3969/j.issn.1673-8926.2015.03.018

    CrossRef Google Scholar

    [101] 邹才能, 董大忠, 王社教, 等, 2010. 中国页岩气形成机理, 地质特征及资源潜力[J]. 石油勘探与开发, 37(6): 641-653 doi: 10.1016/S1876-3804(11)60001-3

    CrossRef Google Scholar

    Zou C N, Dong D Z, Wang S J, et al. , 2010. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 37(6): 641-653. doi: 10.1016/S1876-3804(11)60001-3

    CrossRef Google Scholar

    [102] 邹才能, 朱如凯, 吴松涛, 等, 2012. 常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J]. 石油学报, 33(2): 173-187 doi: 10.7623/syxb201202001

    CrossRef Google Scholar

    Zou C N, Zhu R K, Wu S T, et al. , 2012. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 33(2): 173-187. doi: 10.7623/syxb201202001

    CrossRef Google Scholar

    [103] 邹才能, 张国生, 杨智, 等, 2013. 非常规油气概念、特征、潜力及技术——兼论非常规油气地质学[J]. 石油勘探与开发, 40(4): 385-399 doi: 10.11698/PED.2013.04.01

    CrossRef Google Scholar

    Zou C N, Zhang G S, Yang Z, et al. , 2013. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology[J]. Petroleum Exploration and Development, 40(4): 385-399. doi: 10.11698/PED.2013.04.01

    CrossRef Google Scholar

    [104] 邹才能, 李君, 杨慎, 等, 2018. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发, 45(4): 604-618 doi: 10.1016/S1876-3804(18)30066-1

    CrossRef Google Scholar

    Zou C N, Li J, Yang S, et al. , 2018. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 45(4): 604-618. doi: 10.1016/S1876-3804(18)30066-1

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(1449) PDF downloads(200) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint