2023 Vol. 43, No. 3
Article Contents

CHEN Yun, YI Haisheng, CHEN Lujie, WU Xinhe, TANG Wenqiang, WANG Rui, YANG Yun, ZHANG Cheng-zhi. 2023. Astronomical cycles analysis and paleolake level evolution characteristics of Paleogene upper Niubao Formation: A case study of the Ni-1 well in Tibetan Plateau. Sedimentary Geology and Tethyan Geology, 43(3): 555-564. doi: 10.19826/j.cnki.1009-3850.2021.09003
Citation: CHEN Yun, YI Haisheng, CHEN Lujie, WU Xinhe, TANG Wenqiang, WANG Rui, YANG Yun, ZHANG Cheng-zhi. 2023. Astronomical cycles analysis and paleolake level evolution characteristics of Paleogene upper Niubao Formation: A case study of the Ni-1 well in Tibetan Plateau. Sedimentary Geology and Tethyan Geology, 43(3): 555-564. doi: 10.19826/j.cnki.1009-3850.2021.09003

Astronomical cycles analysis and paleolake level evolution characteristics of Paleogene upper Niubao Formation: A case study of the Ni-1 well in Tibetan Plateau

  • The Nyima Basin in the central Tibetan Plateau is a Cenozoic terrestrial rift basin located over the Bangong-Nujiang suture zone. The Ni-1 well is the first geological exploration well in the Nyima Basin. Based on the spectrum analysis data of the natural gamma logging curves of the Paleogene upper Niubao Formation from the Ni-1 well, it is confirmed that the significant influence of astronomical orbital periods on the deposition of lacustrine strata in the Nyima Basin. Filter analysis shows that the upper Niubao Formation has preserved 41 short eccentricity (~100 kyr) cycles, 76 obliquity (~54 kyr) cycles and 178 precession (~23 kyr) cycles, with an average sedimentation rate of 92.03 m/Ma and a sedimentation time limit of ~4.1 Myr. In addition, combined the change trends of Fischer diagram and total organic carbon contents, it is suggested that the lake levels of the upper Niubao Formation experienced once ascending-descending fluctuations. It is concluded that the formation of high-quality hydrocarbon source rocks in the Nyima Basin is mainly controlled by changes of lake levels induced by astronomical cycles.

  • 加载中
  • [1] Abels H A, Aziz H A, Krijgsman W, et al. , 2010. Long-period eccentricity control on sedimentary sequences in the continental Madrid Basin (middle Miocene, Spain) [J]. Earth & Planetaryence Letters, 289(1-2): 220-231.

    Google Scholar

    [2] Berber A, Loutre M F, Dehant V, 1989. Pre-Quaternary Milankovitch frequencies [J]. Nature, 342 (9): 133.

    Google Scholar

    [3] Calvert S E, 1987. Ocean graphic controls on the accumulation of organic matter in marine sediments [C]// Brook J, Fleet A J, Marine petroleum source rock. London: Blackwell Scientific, 137-151.

    Google Scholar

    [4] 陈义才, 沈忠民, 罗小平, 2007. 石油与天然气有机地球化学 [M]. 北京: 科学出版社.

    Google Scholar

    Chen Y C, Shen Z M, Luo X P, 2007. Petroleum & Gas Organic Geochemistry [M]. Beijing: Science Press.

    Google Scholar

    [5] 陈云, 2018. 西藏尼玛地区上侏罗统沙木罗组沉积特征及生烃潜力评价[D]. 成都理工大学.

    Google Scholar

    Chen Y, 2018. Sedimentary Characteristics and Evaluation of Hydrocarbon Potential of Upper Jurassic Shamuluo Formation in the Nima Area, Tibet [D]. Chengdu University of Technology.

    Google Scholar

    [6] 程日辉, 王国栋, 王璞珺, 2008. 松辽盆地白垩系泉段—三嫩二段沉积旋回与米兰科维奇周期[J]. 地质学报, 82(1): 55-64

    Google Scholar

    Cheng R H, Wang G D, Wang P J. 2008. Sedimentary Cycles of the Cretaceous Quantou—Nenjiang Formations and Milankovitch Cycles of the South Hole of the SLCORE-Ⅰ in the Songliao Basin[J]. Acta Geologica Sinica, 82(1): 55-64.

    Google Scholar

    [7] Cluff R M, Barrows M H, 1982. Hydrocarbon generation and source rock evaluation (origin of petroleum III)[M]. Tulsa Oklahoma: American Association of Petroleum Geologists.

    Google Scholar

    [8] Decelles P G and Kapp P, 2007. Late Cretaceous to Mid-Tertiary Basin Evolution in the Central Tibetan Plateau: Changing Environments in Response to Tectonic Partitioning, Aridification, and Regional Elevation Gain [J]. Geological Society of America Bulletin, 119(5-6): 654-680. doi: 10.1130/B26074.1

    CrossRef Google Scholar

    [9] Demaison G J and Moore G T, 1980. Anoxic environments and oil source bed genesis [J]. AAPG Bulletin, 64: 1179-1209.

    Google Scholar

    [10] 付文钊, 余继峰, 杨锋杰, 等, 2013. 测井记录中米氏旋回信息提取及其沉积学意义—以济阳坳陷区为例[J]. 中国矿业大学学报, 42(6): 1025-1032 doi: 10.3969/j.issn.1000-1964.2013.06.021

    CrossRef Google Scholar

    Fu W Z, Yu J F, Yang F J, et al, 2013. Feature extraction of Milankovitch cycle in well logs and its sedimentological significance: a case study of Jiyang depression zone[J]. Journal of China University of Mining & Technology, 42(6): 1025-1032. doi: 10.3969/j.issn.1000-1964.2013.06.021

    CrossRef Google Scholar

    [11] 龚大兴, 伊海生, 吴驰华, 等, 2011. 南盘江盆地二叠系高频沉积旋回的测井响应及海平面变化趋势[J]. 地球物理学进展, 26(1): 287-293 doi: 10.3969/j.issn.1004-2903.2011.01.033

    CrossRef Google Scholar

    Gong D X, Yi H S, Wu C H, et al, 2011. High-frequency carbonate depositional cycles and its response to the gamma ray well logging data and sea-level change in Permian Nanpanjiang Basin[J]. Progress in Geophysics, 26(1): 287-293. doi: 10.3969/j.issn.1004-2903.2011.01.033

    CrossRef Google Scholar

    [12] Hays J D, Imbrie J, Shackleton N J, 1976. Variations in the Earth's Orbit: Pacemaker of the Ice Ages [J]. Science, 194: 1121-1132. doi: 10.1126/science.194.4270.1121

    CrossRef Google Scholar

    [13] 河南省地质调查院, 2002.1﹕25万尼玛区幅区域地质调查报告[R]. 中国地质调查局地质调查专报A第(H45C001003)号.

    Google Scholar

    Henan Geological Survey Institute, 2002. Regional geological survey report of the people's Republic of China(1: 250000 Nyima area)[R]. Special report on geological survey of China Geological Survey (Part A, No: H45C001003)

    Google Scholar

    [14] 胡济民, 1995. 西藏伦坡拉盆地伦坡拉群研究的新认识[J]. 中扬油气勘查, (1): 15-23

    Google Scholar

    Hu J M, 1995. New insights from the study of the Lunpola Group in the Lunpola Basin, Xizang area [J]. Zhongyang Oil & Gas Exploration, (1): 15-23.

    Google Scholar

    [15] Huang C J, Hinnov L, Fischer A G, et al. , 2010. Astronomical tuning of the Aptian Stage from Italian reference sections [J]. Geology, 38(10): 899-902. doi: 10.1130/G31177.1

    CrossRef Google Scholar

    [16] Huang H, Gao Y, Ma C, et al. , 2021. Organic carbon burial is paced by a ~173-ka obliquity cycle in the middle to high latitudes [J]. Science Advances, 7(28): 9489-9498. doi: 10.1126/sciadv.abf9489

    CrossRef Google Scholar

    [17] Idnurm M and Cook P J, 1980. Palaeomagnetism of beach ridges in South Australia and the Milankovitch theory of ice ages [J]. Nature, 286: 699-702. doi: 10.1038/286699a0

    CrossRef Google Scholar

    [18] Kapp P, Decelles P G, Gehrels G E, et al. , 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nyima area of central Tibet [J]. Geological Society of America Bulletin, 119(7-8): 917-932. doi: 10.1130/B26033.1

    CrossRef Google Scholar

    [19] Laskar J, Robutel P, Joutel F, et al. , 2004. A long-term numerical solution for the insolation quantities of the Earth [J]. Astronomy & Astrophysics, 428(1): 261-285.

    Google Scholar

    [20] 李凤杰, 郑荣才, 罗清林, 等, 2007. 四川盆地东北地区长兴组米兰科维奇周期分析[J]. 中国矿业大学学报, 36(6): 805-810 doi: 10.3321/j.issn:1000-1964.2007.06.018

    CrossRef Google Scholar

    Li F J, Zheng R C, Luo Q L, et al, 2007. Analysis of Milankovitch Cycles of the Changxing Formation in Northeastern Sichuan Basin[J]. Journal of China University of Mining & Technology, 36(6): 805-810. doi: 10.3321/j.issn:1000-1964.2007.06.018

    CrossRef Google Scholar

    [21] 李堃宇, 伊海生, 夏国清, 2018. 基于测井曲线频谱分析柴达木盆地西部七个泉地区上、下油砂山组米兰科维奇旋回特征[J]. 地质科技情报, 37(3): 87-91 doi: 10.19509/j.cnki.dzkq.2018.0312

    CrossRef Google Scholar

    Li K Y, Yi H S, Xia G Q, 2018. Characteristics of Milankovitch Cycles of Shangyoushashan and Xiayoushashan Formations in Qigequan Area, Western Qaidam Basin Based on the Spectral Analysis of the Logging Curve[J]. Geological Science and Technology Information, 37(3): 87-91. doi: 10.19509/j.cnki.dzkq.2018.0312

    CrossRef Google Scholar

    [22] 卢书炜, 任建德, 杜凤军, 等, 2003. 从尼玛地区地质新资料看中特提斯洋的构造演化[J]. 沉积与特提斯地质, 23(3): 35-39 doi: 10.3969/j.issn.1009-3850.2003.03.004

    CrossRef Google Scholar

    Lu S W, Ren J D, Du F J, et al, 2003. Tectonic evolution of the Meso-Tethyan Ocean: An example from the Nyima region in Xizang[J]. Sedimentary Geology and Tethyan Geology, 23(3): 35-39. doi: 10.3969/j.issn.1009-3850.2003.03.004

    CrossRef Google Scholar

    [23] 马立祥, 张二华, 鞠俊成, 等, 1996. 西藏伦坡拉盆地下第三系沉积体系域基本特征[J]. 地球科学, 2: 174-178

    Google Scholar

    Ma L X, Zhang E H, Ju J C, et al, 1996. Basic characteristics of Paleogene deposition systems tract in Lunpola Basin, XiZang(Tibet)[J]. Journal of Earth Science, 2: 174-178.

    Google Scholar

    [24] 马鹏飞, 王立成, 冉波, 2013. 青藏高原中部新生代伦坡拉盆地沉降史分析[J]. 岩石学报, 29(3): 990-1002

    Google Scholar

    Ma P F, Wang L C, Ran B, 2013. Subsidence analysis of the Cenozoic Lunpola basin, central Qinghai-Tibetan Plateau[J]. Acta Petrologica Sinica, 29(3): 990-1002.

    Google Scholar

    [25] Meyers S R, 2019. Cyclostratigraphy and the problem of astrochronologic testing [J]. Earth Science Reviews, 190(1): 190-223.

    Google Scholar

    [26] Milankovitvh M, 1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem[M]. Akademie: Royale Serbe, 133: 1-633.

    Google Scholar

    [27] Plyusnina E E, Ruban D A, Conrad C P, et al. , 2016. Long-term eustatic cyclicity in the Paleogene: a critical assessment [J]. Proceedings of the Geologists’ Association. 127, 425–434.

    Google Scholar

    [28] 秦建中, 2006. 青藏高原羌塘盆地油气资源潜力分析[J]. 石油实验地质, 28(6): 566-573 doi: 10.3969/j.issn.1001-6112.2006.06.012

    CrossRef Google Scholar

    Qin J Z, 2006. Study on the petroleum resource potential in the Qiangtang Basin, Qinghai-Tibet Plateau[J]. Petroleum Geology & Experiment, 28(6): 566-573. doi: 10.3969/j.issn.1001-6112.2006.06.012

    CrossRef Google Scholar

    [29] Shi J Y, Jin Z J, Liu Q Y, et al., 2018. Terrestrial sedimentary responses to astronomically forced climate changes during the early Paleogene in the Bohai Bay Basin, eastern China. Palaeogeograghy Palaeoclimatology Palaeoecology, 502, 1–12.

    Google Scholar

    [30] 石巨业, 金之钧, 刘全有, 等. 2019. 基于米兰科维奇理论的湖相细粒沉积岩高频层序定量划分[J]. 石油与天然气地质, 6: 1205-1214

    Google Scholar

    Shi J Y, Jin Z J, Liu Q Y, et al., 2019. Quantitative classification of high-frequency sequences in fine-grained lacustrine sedimentary rocks based on Milankovitch theory[J]. Oil & Gas Geology, 6: 1205-1214.

    Google Scholar

    [31] 孙涛, 王成善, 李亚林, 等, 2012. 西藏中部伦坡拉盆地古近系沉积有机质特征及意义[J]. 地球化学, 041(6): 530-537 doi: 10.3969/j.issn.0379-1726.2012.06.003

    CrossRef Google Scholar

    Sun T, Wang C S, Li Y L, et al, 2012. Characteristics and significance of sedimentary organic matter in the Paleogene of Lunpola basin, central Tibet[J]. Geochimica, 041(6): 530-537. doi: 10.3969/j.issn.0379-1726.2012.06.003

    CrossRef Google Scholar

    [32] 唐闻强, 伊海生, 伊帆, 等, 2020. 基于测井曲线频谱分析柴西南扎哈泉地区下干柴沟组米兰科维奇旋回特征[C]//SPG/SEG南京2020年国际地球物理会议, 1042-1045

    Google Scholar

    Tang W Q, Yi H S, Yi F, et al., 2020. Characteristics of Milankovitch Cycles of Xia Ganchaigou Formations in Zhahaquan Area, Southwest Qaidam Basin, Based on the Spectral Analysis of the Logging Curve [C]//Proceedings of SPG/SEG Nanjing 2020 International Geophysical Conference, 1042-1045.

    Google Scholar

    [33] Tyson R V, Pearson T H, 1991. Modern and Ancient Continental Shelf Anoxia [C]. Oxford: Geological Society Special Publication, 58: 1–24.

    Google Scholar

    [34] 王波明, 周家声, 闻涛, 等, 2009. 西藏尼玛盆地陆相地层归属及其油气意义[J]. 天然气技术, 3(4): 21-24

    Google Scholar

    Wang B M, Zhou J S, Wen T, et al, 2009. Timing of Terrestrial Strata in Tibetan Nyima Basin and Its Significance[J]. Natural Gas Technology, 3(4): 21-24.

    Google Scholar

    [35] 王成善, 李亚林, 李永铁, 2006. 青藏高原油气资源远景评价问题[J]. 石油学报, 27(4): 1-7 doi: 10.3321/j.issn:0253-2697.2006.04.001

    CrossRef Google Scholar

    Wang C S, Li Y L, Li Y T, 2006. Discussion on evaluation of oil and gas resources in Qinghai-Tibet Plateau[J]. Acta Petrolei Sinica, 27(4): 1-7. doi: 10.3321/j.issn:0253-2697.2006.04.001

    CrossRef Google Scholar

    [36] 王成善, 伊海生, 李勇, 等, 2001. 西藏羌塘盆地地质演化与油气远景评价[M]. 北京: 地质出版社.

    Google Scholar

    Wang C S, Yi H S, Li Y, et al., 2001. The Geological evolution and prospective oil and gas assessment of the Qiangtang Basin in Northern Tibetan Plateau [M]. Beijing: Geological Publishing House.

    Google Scholar

    [37] 王开发, 杨蕉文, 李哲, 等, 1975. 根据孢粉组合推论西藏伦坡拉盆地第三纪地层时代及其古地理[J]. 地质科学, 10(4): 366-374

    Google Scholar

    Wang K F, Yang J W, Li Z, et al, 1975. On the tertiary sporo-pollen assemblages from Lunpola Basin of XiZang, china and their paleogeographic significance[J]. Chinese Journal of Geology, 10(4): 366-374.

    Google Scholar

    [38] Wang L C, Wang C C, Li Y L, et al. , 2011. Organic Geochemistry of Potential Source Rocks in the Tertiary Dingqinghu Formation, Nima Basin, Central Tibet [J]. Journal of Petroleum Geology, 34(1): 67-85. doi: 10.1111/j.1747-5457.2011.00494.x

    CrossRef Google Scholar

    [39] 吴怀春, 张世红, 黄清华, 2008. 中国东北松辽盆地晚白垩世青山口组浮动天文年代标尺的建立[J]. 地学前缘, 15(4): 159-169 doi: 10.3321/j.issn:1005-2321.2008.04.018

    CrossRef Google Scholar

    Wu H C, Zhang S H, Huang Q H, 2008. Establishment of floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation in the Songliao basin of Northeast China[J]. Earth Science Frontiers, 15(4): 159-169. doi: 10.3321/j.issn:1005-2321.2008.04.018

    CrossRef Google Scholar

    [40] 西藏自治区地质矿产局, 1993. 西藏自治区区域地质志[M]. 北京: 地质出版社.

    Google Scholar

    Tibet autonomous region geological and mineral exploration and Development Bureau, 1993. Regional geology of Xizang(Tibet) Autonomous Region [M]. Beijing: Geological Publishing House.

    Google Scholar

    [41] 夏代祥, 刘世坤, 滕云, 等, 1997. 西藏自治区岩石地层[M]. 北京: 中国地质大学出版社.

    Google Scholar

    Xia D X, Liu S K, Teng Y, et al. , 1997. Stratigraphy lithostratigraphy of Xizang (Tibet) Autonomous Region [M]. Beijing: China University of Geosciences Press.

    Google Scholar

    [42] 薛光琦, 钱辉, 姜枚, 2005. 青藏高原西缘上地幔构造特征-穿越西昆仑造山带的接收函数反演[J]. 地质论评, 51(6): 708-712 doi: 10.3321/j.issn:0371-5736.2005.06.013

    CrossRef Google Scholar

    Xue G Q, Qian H, Jiang M, 2005. Tectonic Characteristic of Mantle on the West Edge of Qinghai-Xizang Plateau-Receiver Function Inversion through West Kunlun Orogenic Belt[J]. Geological Review, 51(6): 708-712. doi: 10.3321/j.issn:0371-5736.2005.06.013

    CrossRef Google Scholar

    [43] 尹青, 伊海生, 夏国清, 等, 2015. 基于测井曲线频谱分析在伦坡拉盆地古近系米氏旋回层序及可容空间变化趋势中的研究[J]. 地球物理学进展, 30(3): 1288-1297 doi: 10.6038/pg20150339

    CrossRef Google Scholar

    Yin Q, Yi H S, Xia G Q, et al, 2015. Accommodation space and Milankovitch orbit cycle sequence of the Paleogene stratigraphic frames in Lunpola basin based on the spectrum snalysis of the logging curve[J]. Progress in Geophysics, 30(3): 1288-1297. doi: 10.6038/pg20150339

    CrossRef Google Scholar

    [44] Zachos J C, 2001. Climate Response to Orbital Forcing Across the Oligocene-Miocene Boundary [J]. Science, 292(5515): 274-278. doi: 10.1126/science.1058288

    CrossRef Google Scholar

    [45] Zhang R, Jin Z, Liu Q, et al. , 2019. Astronomical constraints on deposition of the Middle Triassic Chang 7 lacustrine shales in the Ordos Basin, Central China [J]. Palaeogeography Palaeoclimatology Palaeoecology, 528, 87-98.

    Google Scholar

    [46] 张大伟, 2011. 西藏地区油气资源潜力与战略选区[J]. 中国矿业, 20(3): 1-5 doi: 10.3969/j.issn.1004-4051.2011.03.001

    CrossRef Google Scholar

    Zhang D W, 2011. Potential of hydrocarbon resources and strategic research in Tibet area[J]. China Mining Magazine, 20(3): 1-5. doi: 10.3969/j.issn.1004-4051.2011.03.001

    CrossRef Google Scholar

    [47] 赵帅, 解习农, 刘中戎, 等, 2019. 古地貌对断陷盆地沉积体系的控制作用: 以青藏高原伦坡拉盆地始新统牛堡组为例[J]. 地质科技情报, 38(2): 59-70 doi: 10.19509/j.cnki.dzkq.2019.0207

    CrossRef Google Scholar

    Zhao S, Xie X N, Liu Z R, et al, 2019. Control of Tectonic-Paleogeomorphology on Deposition System of Faulting-Subsiding Basin: A Case from the Eocene Niubao Formation in Lunpola Basin, Central Tibet[J]. Geological Science and Technology Information, 38(2): 59-70. doi: 10.19509/j.cnki.dzkq.2019.0207

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(647) PDF downloads(105) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint