2023 Vol. 43, No. 4
Article Contents

LI Tong, LIU Xiaonian, LIU Hong, ZHANG Tengjiao, LI Youguo, LI Suimin, WANG Xin, OUYANG Yuan, ZHANG Jinghua. 2023. Geochemistry of rare earth elements of purple soil layers in the Middle-Lower Cretaceous Xiaoba Formation, Pushi area, Xichang. Sedimentary Geology and Tethyan Geology, 43(4): 829-843. doi: 10.19826/j.cnki.1009-3850.2021.06002
Citation: LI Tong, LIU Xiaonian, LIU Hong, ZHANG Tengjiao, LI Youguo, LI Suimin, WANG Xin, OUYANG Yuan, ZHANG Jinghua. 2023. Geochemistry of rare earth elements of purple soil layers in the Middle-Lower Cretaceous Xiaoba Formation, Pushi area, Xichang. Sedimentary Geology and Tethyan Geology, 43(4): 829-843. doi: 10.19826/j.cnki.1009-3850.2021.06002

Geochemistry of rare earth elements of purple soil layers in the Middle-Lower Cretaceous Xiaoba Formation, Pushi area, Xichang

More Information
  • Geochemical characteristics of rare earth elements (REEs) in medium-alpine areas are of great significance to understanding regional ecological environment. In this paper, four typical soil profiles of the Middle-Lower Cretaceous Xiaoba Formation in Pushi area of Xichang City are systematically sampled and analyzed, and the characteristics of geochemical distribution, migration and enrichment of 14 kinds of rare earth elements such as La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu are studied detailedly. The results show that the contents of rare earth elements in the same kind of soils formed by different types of parent rocks are different under similar environments. The contents of rare earth elements in representative profiles of mudstone-purple soil profile (PM0909), sandstone-purple soil profile (PM03-3), silty mudstone-purple soil profile (PM04-4) and argillaceous siltstone-purple soil profile (PM0924) are 126.870 mg/kg, 116.472 mg/kg, 163.926 mg/kg and 175.231 mg/kg, respectively. The differences of rare earth element contents in each profile are closely relate to the lithology of soil parent rocks and the contents of clay minerals. Clay minerals have a certain adsorption effect on rare earth elements. The Chondrite-normalized distribution patterns of rare earth elements of 4 rock-soil profiles in Pushi area show an obvious "V" right-tilted model, with an obvious negative Eu anomaly and relatively flat curve of heavy rare earth elements. The Chondrite-normalized distribution patterns of rare earth elements of 4 rock-soil profiles in Pushi area belong to the light rare earth enrichment type, which is related to the difference of chemical properties of REEs leaching and parent rocks during the formation of soils. The migration coefficients of different parent rocks are various, and the high values of migration coefficient mainly distribute in the bottom of the sedimentary layer (B) and the parent layer(C) of in each profile, indicating the results of the leaching and deposition of REEs and the adsorption and desorption of clay minerals. The results of this study can provide a theoretical support for the large-scale eco-geological research in Daliangshan area.

  • 加载中
  • [1] Aysha M K, Shima B, Ismail Y, et al, 2017. Geochemical characteristics of rare earth elements in different types of soil: A chemometric approach[J]. Chemosphere, 184(10): 673-678.

    Google Scholar

    [2] 卞凯, 于瑞莲, 胡恭任, 等, 2017. 安溪铁观音茶园垂直剖面土壤中稀土元素的地球化学特征[J]. 地球与环境, 45(2): 145-150

    Google Scholar

    Bian K, Yu R L, Hu G R, et al. , 2017. Geochemical Characteristics ofRare Earth Elements in the Vertical Profile of Soil of the Tea Garden in Anxi Area, China[J]. Earth and Environment, 45(2): 145-150.

    Google Scholar

    [3] Brantley S L, Goldhaber M B, Ragnarsdottir K V, 2007. Crossing disciplines and scales to understand the Critical Zone[J]. Elements, 3(5): 307-314. doi: 10.2113/gselements.3.5.307

    CrossRef Google Scholar

    [4] Braun, J J, Pagel, M, Herbilln, A, et al., 1993. Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: A mass balance study[J]. Geochimica et Cosmochimica Acta, 57(18), 4419 − 4434.

    Google Scholar

    [5] 蔡海生, 陈艺, 张学玲, 2020. 基于生态位理论的富硒土壤资源开发利用适宜性评价及分区方法[J]. 生态学报, 40(24): 9208-9219

    Google Scholar

    Cai H S, Chen Y, Zhang X L, 2020. Suitability evaluation and zoning method research on development and utilization of selenium-rich soil resources based on niche theory. [J]. Acta Ecologica Sinica, 2020, 40(24): 9208-9219.

    Google Scholar

    [6] Cao X X, Wu P, Cao Z N, 2016. Element geochemical characteristics of a soil profile developed on dolostone in central Guizhou, southern China: Impications for parent materials[J]. Acta Geochemica, 5(4): 445-462.

    Google Scholar

    [7] 戴凤岩, 张翊钧, 1987. 稀土元素中某些元素异常值在岩石成因研究中的意义[J]. 地质科技情报, 6(2): 57-61

    Google Scholar

    Dai F Y, Zhang Y J, 1987. The Significance of Abnormal Values of Some Rare Earth Elements in the Study of Petrogenesis[J]. Geological Science and Technology Information, 6(2): 57-61.

    Google Scholar

    [8] 丁友超, 刘国庆, 王晓蓉, 2002. 稀土元素在土壤中的环境化学行为及其生物效应[J]. 农业环境科学学报, 21(6): 567-569+576

    Google Scholar

    Ding Y C, Liu G Q, Wang X R, 2002. Ding Y C, Liu G Q, Wang X R, 2002. Environmental Chemical Behaviors of Rare - Earth Elements in soil and Their Biological Effects[J]. Agro-environmental Protection, 21(6): 567-569+576.

    Google Scholar

    [9] 中国环境监测总站, 1994. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社.

    Google Scholar

    Environmental Monitoring of China, 1994. Background values of soil elements in China[M]. China Environmental Science Press.

    Google Scholar

    [10] 桂和荣, 陈松, 2016. 宿南矿区地下水同位素地球化学特征及地质意义[J]. 地学前缘, 23(3): 133-139

    Google Scholar

    Gui H R, Chen S, 2016. Isotopic geochemical characteristics of groundwater and its geological significance in Sunan mining area[J]. EarthScience Frontiers, 2016, 23(3): 133-139.

    Google Scholar

    [11] 郭庆军, 杨卫东, 赵元龙, 等, 2001. 贵州中、下寒武统界线层型候选剖面地球化学特征研究[J]. 地球化学, 30(4): 383-389

    Google Scholar

    Guo Q J, Yang W D, Zhao Y L, et al. , 2001. Geochemical characteristics of the stratotype candidate boundary section of the Middle-Iower Cambrian, Guizhou[J]. Geochimica, 30(4): 383-389.

    Google Scholar

    [12] 郝春明, 陈有鑑, 李瑞敏, 等, 2009. 基于地球化学标准化方法的平湖市农田土壤重金属污染评价[J]. 环境污染与防治, 31(2): 96-99

    Google Scholar

    Hao C M, Chen Y J, Li R M, et al. , 2009. Assessment of heavy metal pollution in farmland soils in Pinghu City based on geochemical standardization methods[J]. Environmental pollution and prevention, 31(2): 96-99.

    Google Scholar

    [13] 何旺, 罗先熔, 高文, 等, 2019. 青海省都兰县五龙沟-高地地区水系沉积物地球化学特征及找矿远景[J]. 矿物岩石地球化学通报, 38(5): 1017-1023

    Google Scholar

    He W, Luo X R, Gao W, et al. , 2019. Geochemical Characteristics of Stream Sediments in the Wulonggou-Gaodi area, Dulan County, Qinghai Province and Their Exploration Prospective[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 38(5): 1017-1023.

    Google Scholar

    [14] Hewawasam T, Blanckenburg F V, Bouchez J, 2013. Slow advance of the weathering front during deep, supply-limited saprolite formation in the tropical Highlands of SriLanka[J]. Geochimica et Cosmochimica Acta, 118: 202-230. doi: 10.1016/j.gca.2013.05.006

    CrossRef Google Scholar

    [15] 洪涛, 谢运球, 覃星铭, 等, 2018. 黔西北土壤-植被系统元素地球化学特征及其生态关系[J]. 生态与农村环境学报, 34(10): 890-896

    Google Scholar

    Hong T, Xie Y Q, Qin X M, et al. , 2018. Geochemical Characteristics and Ecological Interaction of Earth Elements in the Soil-Plant System in Northwest Guizhou Province[J]. Journal of Ecology and Rural Environment, 2018, 34(10): 890-896.

    Google Scholar

    [16] 黄成敏, 龚子同, 2002. 表生作用下稀土元素地球化学特征——以海南岛北部玄武岩分布区为例[J]. 山地学报, 20(1): 70 − 74.

    Google Scholar

    Huang C M, Gong Z T, 2002. REE Geochemistry of Hypergenesis in Basalt-the Take Distributing Region of Northern Hainan Island as the Example[J]. Journal of Mountain Science, 20(1): 70 − 74.

    Google Scholar

    [17] 黄成敏, 王成善, 2002. 风化成土过程中稀土元素地球化学特征[J]. 稀土, 23(5): 46-49

    Google Scholar

    Huang C M, Wang C S, 2002. Geochemical Features of Rare Earth Elements in Process of Rock Weathering and Soil Formation[J]. Chinese Rare Earths, 23(5): 46-49.

    Google Scholar

    [18] 黄华斌, 于瑞莲, 卞凯, 等, 2018. 铁观音茶园土壤-茶叶中稀土元素的地球化学特征[J]. 稀土, 39(2): 141-147

    Google Scholar

    Huang H B, Yu R L, Bian K, et al. , 2018. Geochemical Characteristics of Rare Earth Elements in the Soil-Tea System in Tieguanyin Tea Gardens[J]. Chinese Rare Earths, 39(2): 141-147.

    Google Scholar

    [19] Humphris S E, 1984. The Mobility of the Rare Earth Elements in the Crust[J]. Developments in Geochemistry, 317 − 342.

    Google Scholar

    [20] 贾晗, 刘军省, 王春光, 等, 2019. 基于铜陵地区地球化学基线的土壤重金属污染评价及分析[J]. 环境工程, 37(5): 50 − 55

    Google Scholar

    Jia H, Liu J S, Wang C G, et al. 2019. Evaluation and Analysis of Heavy Metal Pollution in Soil Based on Geochemical Baseline in Tongling Area[J]. Environmental Engineering, 37(5): 50 − 55.

    Google Scholar

    [21] Köhler S J, Harouiya N, Chaïrat C, et al. , 2005. Experimental studies of REE fractionation during waterâ mineral interactions: REE release rates during apatite dissolution from pH 2.8 to 9.2[J]. Chemical Geology, 222(3-4): 168-182. doi: 10.1016/j.chemgeo.2005.07.011

    CrossRef Google Scholar

    [22] 李超, 罗先熔, 汤国栋, 等, 2020. 内蒙古额济纳旗标山北土壤地球化学异常特征及找矿前景[J]. 地质与勘探, 56(6): 1170-1182 doi: 10.12134/j.dzykt.2020.06.006

    CrossRef Google Scholar

    Li C, Luo X R, Tang G D, et al. , 2020. Characteristics of soil geochemical anomalies and ore-search prospect in the north of Biaoshan, Ejinaqi, Inner Mongolia[J]. Geology and Exploration, 2020, 56(6): 1170-1182. doi: 10.12134/j.dzykt.2020.06.006

    CrossRef Google Scholar

    [23] 李富, 欧阳渊, 刘洪, 等, 2021. 高密度电阻率法与地质雷达法在土壤厚度调查中应用效果——以西昌市土壤厚度调查为例[J]. 华北地质, 44(1): 27 − 32

    Google Scholar

    Li F, Ouyang Y, Liu H, et al., Characteristics of linear structure and ring structure and its relationship with oil and gas discuss in the western part of the Xuefeng Mountains[J]. North China Geology, 44(1): 27 − 32.

    Google Scholar

    [24] Li M Y H, Zhou M F, 2020a. The role of clay minerals in formation of the regolith-hosted heavyrare earth element deposits[J]. Amercian Minneralogist, 105: 92-108. doi: 10.2138/am-2020-7061

    CrossRef Google Scholar

    [25] Li M Y H, Zhou M F, Williams-Jones A E, 2020b. Controls On the Dynamics of Rare Earth Elements During Subtropical Hillslope Processes and Formation of Regolith-hosted Deposits[J]. Economic Geology, 115(5): 1097-118. doi: 10.5382/econgeo.4727

    CrossRef Google Scholar

    [26] 李随民, 栾文楼, 宋泽峰, 等, 2011. 京东板栗生态地球化学环境比配模型与适应性区划[J]. 中国地质, 38(6): 1614-1619

    Google Scholar

    Li S M, Luan W L, Song Z F, et al. , 2011. Ecogeochemical dosing model and adaptability regionalization of Jingdong chestnut[J]. Geology in China, 38(6): 1614-1619.

    Google Scholar

    [27] 李随民, 栾文楼, 魏明辉, 等, 2009. 河北省唐—秦地区表层土壤地球化学质量评价[J]. 中国地质, 36(4): 932-939 doi: 10.3969/j.issn.1000-3657.2009.04.023

    CrossRef Google Scholar

    Li S M, Luan W L, Wei M H, et al. , 2009. The evaluation of the present situation of the heavy metal pollution in the top soil of Qinghangdao-Tangshan area, Hebei Province[J]. Geology in China, 36(4): 932-939. doi: 10.3969/j.issn.1000-3657.2009.04.023

    CrossRef Google Scholar

    [28] 李善平, 谢智勇, 李小雪, 等, 2013. 青海大风山天青石矿稀土元素地球化学特征及物源分析[J]. 稀土, 34(1): 41-48

    Google Scholar

    Li S P, Xie Z Y, Li X X, et al. , 2013. REE Geochemical Characteristics and Provenance Analysis of Dafengshan Celestite Deposit, Qinghai Province[J]. Chinese Rare Earths, 34(1): 41-48.

    Google Scholar

    [29] 李胜荣, 高振敏, 1995. 湘黔地区牛蹄塘组黑色岩系稀土特征—兼论海相热水沉积岩稀土模式[J]. 矿物学报, 15(2): 225-229

    Google Scholar

    Li S R, Gao Z M, 1995. REE Characteristics of Black Rock Series of the Lower Cambrian Niutitang Formation in Hunan-Guizhou Provinces, China, With a Discussion on The REE Patterns in Marine Hydrothermal Sediments[J]. Acta Mineralogica Sinica, 15(2): 225-229.

    Google Scholar

    [30] Li T, Li Y G, Liu H, et al., 2022. Chemical weathering intensity and geochemical characteristics of Cretaceous terrigenous clastic rock-purple soil profiles in the Pushi area, Xichang[J]. Geological Journal,57(9),3587 − 3600.

    Google Scholar

    [31] 李樋, 2019. 内蒙古东来地区土壤地球化学调查及评价[D]. 河北: 石家庄, 河北地质大学.

    Google Scholar

    Li T, 2019. Soil Geochemical Survey and Evaluation in Donglai Area, Inner Mongolia[D]. Hebei: Shijiazhuang, Hebei GEO university.

    Google Scholar

    [32] 李樋, 李随民, 王轶, 等, 2020. 基于地球化学基线的内蒙古东来地区土壤重金属污染评价[J]. 土壤通报, 51(2): 462-472

    Google Scholar

    Li T, Li S M, Wang Y, et al. , 2020. Assessment of Soil Heavy Metal Pollution in Donglai area of Inner Mongolia Based on Geochemical Baseline[J]. Chinese Journal of Soil Science, 51(2): 462-472.

    Google Scholar

    [33] 李小雁, 马育军, 2016. 地球关键带科学与水文土壤学研究进展[J]. 北京师范大学学报(自然科学版), 52(6): 731-737

    Google Scholar

    Li X Y, Ma Y J, 2016. Advances in Earth, s Critical Zone science and hydropedology[J]. Journal of Beijing Normal University (Natural Science), 52(6): 731-737.

    Google Scholar

    [34] 李正积, 1996. 时代前缘的全息探索-岩土植物大系统研究[J]. 地质论评, 42(4): 369-37 doi: 10.3321/j.issn:0371-5736.1996.04.015

    CrossRef Google Scholar

    Li Z J, 1996. Large-Scale System of Rock-Soil-Plant[J]. Geological Review, 42(4): 369-37. doi: 10.3321/j.issn:0371-5736.1996.04.015

    CrossRef Google Scholar

    [35] 廖蕾, 刘还林, 苏美霞, 等, 2012. 内蒙古自治区包头市土壤地球化学特征与环境评价[J]. 地质与勘探, 48(4): 799-806

    Google Scholar

    Liao L, Liu H L, Su M X, et al. , 2012. Geochemical characteristics of the soil from Baotou city, Inner Mongolia and its environmental assessment[J]. Geology and Exploration, 48(4): 799-806.

    Google Scholar

    [36] 刘洪, 黄瀚霄, 欧阳渊, 等, 2020. 基于地质建造的土壤地质调查及应用前景分析——以大凉山区西昌市为例[J]. 沉积与特提斯地质, 40(1): 91-105

    Google Scholar

    Liu H, Huang H X, Ouyang Y, et al. , 2020. Soil’s geologic investigation in Daliangshan, Xichang, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 40(1): 91-105.

    Google Scholar

    [37] 卢新哲, 谷安庆, 张言午, 等, 2019. 基于环境地球化学基线的农用地重金属累积特征及其潜在生态危害风险研究[J]. 土壤学报, 56(2): 408-419

    Google Scholar

    Lu X Z, Gu A Q, Zhang Y W, et al. , 2019. Sources and Risk Assessment of Heavy Metal in Agricultural Soils Based on the Environmental Geochemical Baselines[J]. Acta Pedologica Snica, 56(2): 408-419.

    Google Scholar

    [38] 罗泰义, 宁兴贤, 罗远良, 等, 2005. 贵州遵义早寒武黑色岩系底部Se的超常富集[J]. 矿物学报, 25(3): 275-282

    Google Scholar

    Luo T Y, Ning X X, Luo Y L, et al. , 2005. Super-Enrichment of Se in the Bottom Black Shales Lower Cambrian at Zunyi, Guizhou Province, China[J]. Acta Mineralogica Sinica, 25(3): 275-282.

    Google Scholar

    [39] Marker A, De Oliveira J J, 1990. The formation of rare earth elements scavenger minerals in weathering products derived from alkaline rocks of Se-bahia, Brasil[J]. Chem. Geol, 84: 373-374. doi: 10.1016/0009-2541(90)90271-8

    CrossRef Google Scholar

    [40] 苗莉, 徐瑞松, 徐金鸿, 2007. 粤西地区土壤-植物系统中稀土元素地球化学特征[J]. 土壤学报, 44(1): 54-62

    Google Scholar

    Miao L, Xu R S, Xu J H, 2007. Geochemical Characteristics of Rare Earth Elements(REEs) in the Soil-Plant system in west Guangdong Province[J]. Acta Pedologica Snica, 44(1): 54-62.

    Google Scholar

    [41] 聂洪峰, 肖春蕾, 郭兆成, 2019. 探寻生态系统运行与演化的秘密—生态地质调查思路及方法解读[J]. 国土资源科普与文化, (4): 4-13

    Google Scholar

    Nie H F, Xiao C L, Guo Z C, 2019. Exploring the Secret of Ecosystem Operation and Evolution: Interpretation of Ecological Geological Survey Ideas and Methods[J]. Popular Science and Culture of Land and Resources, (4): 4-13.

    Google Scholar

    [42] 聂洪峰, 肖春蕾, 戴蒙, 2021. 生态地质调查工程进展与主要成果[J]. 中国地质调查, 8(1): 1-12

    Google Scholar

    Nie H F, Xiao C L, Dai M, 2021. Progresses and main achievements of ecogeological survey project[J]. Geological Survey of China, 2021, 8(1): 1-12.

    Google Scholar

    [43] 宁晓波, 项文化, 方晰, 等, 2009. 贵阳花溪石灰岩、石灰土与定居植物化学元素含量特征[J]. 林业科学, 45(5): 34-41

    Google Scholar

    Ning X B, Xiang W H, Fang X, 2009. Chemical Element Concentration in Calcite, Calcareous Soil and Plants on the Rocky Desertification Area in Huaxi, Guiyang[J]. Scientia Silvae Sinicae, 45(5): 34-41.

    Google Scholar

    [44] 宋云华, 沈丽璞, 王贤觉, 1987. 某些岩石风化壳中稀土元素的初步研究[J]. 科学通报, 32(9): 695-698

    Google Scholar

    Song Y H, Shen L P, Wang X J, 1987. A preliminary study on rare earth elements in weathering crust of some rocks[J]. Scientific Bulletin, 32(9): 695-698.

    Google Scholar

    [45] 宋照亮, 张浩, 罗维均, 等, 2020. 关键带土壤演化及其控制机制研究[J]. 矿物岩石地球化学通报39(1): 31 − 36

    Google Scholar

    Song Z L, Zhang H, Luo W J, et al., 2020. Soil Evolution and Its Controlling Mechanisms in A Critical Zone[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 39(1): 31 − 36.

    Google Scholar

    [46] Sun L H, Gui H R, Chen S, 2011. Rare earth element geochemistry of groundwaters from coal bearing aquifer in Renlou coal mine, northern Anhui Province, China[J]. Journal of Rare Earths, 29 (2): 185-192. doi: 10.1016/S1002-0721(10)60428-0

    CrossRef Google Scholar

    [47] Sun S, McDonough, W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1), 313 − 345.

    Google Scholar

    [48] 孙厚云, 孙晓明, 贾凤超, 等, 2020. 河北承德锗元素生态地球化学特征及其与道地药材黄芩适生关系[J]. 中国地质, 47(6): 1646-1667 doi: 10.12029/gc20200604

    CrossRef Google Scholar

    Sun H Y, Sun X M, Jia F C, et al. , 2020. The eco- geochemical characteristics of germanium and its relationship with the genuine medicinal material Scutellaria baicalensis in Chengde, Hebei Province[J]. Geology in China, 47(6): 1646-1667. doi: 10.12029/gc20200604

    CrossRef Google Scholar

    [49] 汤之铭, 姜春露, 安士凯, 等, 2021. 潘谢矿区地下水稀土元素地球化学特征及控制因素[J]. 中国稀土学报, 39(6): 962-972

    Google Scholar

    Tang Z M, Jiang C L, An S K, et al. , 2021. Geochemical Characteristics and Controlling Factors of Rare Earth Elements of Groundwater in the Panxie Mining Area[J]. Journal of the Chinese Society of Rare Earths, 39(6): 962-972.

    Google Scholar

    [50] 王京彬, 卫晓锋, 张会琼, 等, 2020. 基于地质建造的生态地质调查方法——以河北省承德市国家生态文明示范区综合地质调查为例[J]. 中国地质, 47(6): 1611-1624

    Google Scholar

    Wang J B, Wei X F, Zhang H Q, et al. , 2020. The eco-geological survey based on geological formation, exemplified by integrated geological survey of National Ecological Civilization Demonstration Area in Chengde City, Hebei Province[J]. Geology in China, 47(6): 1611-1624.

    Google Scholar

    [51] 王景华, 1987. 海南岛土壤和植物中的化学元素[M]. 北京: 科学出版社.

    Google Scholar

    Wang J H, 1987. Chemical Elements in Soil and Plants of Hainan Island[M]. Beijing: Science Press.

    Google Scholar

    [52] 王焰新, 2020. “同一健康”视角下医学地质学的创新发展[J]. 地球科学, 45(4): 1093-1102

    Google Scholar

    Wang Y X, 2020. Innovative Development of Medical Geology: A One Health Perspective[J]. Earth Science, 45(4): 1093-1102.

    Google Scholar

    [53] 王中刚, 于学元, 赵振华, 1989. 稀土元素地球化学[M]. 北京: 科学出版社.

    Google Scholar

    Wang Z G, Yu Y X, Zhao Z H, 1989. Geochemistry of rare earth elements[M]. Beijing: Science Press.

    Google Scholar

    [54] 汪振立, 魏正贵, 陶冶, 等, 2002. 岩石-土壤-铁芒萁系统中稀土元素的分布、迁移和累积[J]. 地质通报, 21(12): 881 − 889

    Google Scholar

    Wang Z L, Wei Z G, Tao Y, et al., 2002. Distribution, migration and accumulation of rare earth elements(REE) in the rock-soil-Dicranopteris dichotoma (R-S-D) system, Geological Bulletin of China, 21(12): 881 − 889.

    Google Scholar

    [55] 卫晓锋, 孙厚云, 张竞, 等, 2020. 承德特色林果资源的生态地球化学过程及其品质提升意义[J]. 水文地质工程地质, 47(6): 105-114

    Google Scholar

    Wei X F, Sun H Y, Zhang J, et al. , 2020. Eco-geochemical process of characteristic forest fruit resources and its significance of quality improvement in Chengde City[J]. Hydrogeology & Engineering Geology, 47(6): 105-114.

    Google Scholar

    [56] 温守钦, 朱恩静, 金成洙, 等, 2007. 南果梨生长体系中的稀土元素地球化学特征[J]. 地球与环境, 35(1): 57-60

    Google Scholar

    Wen S Q, Zhu E J, Jin C Z, et al. , 2007. Geochemical Characteristics of REEs During Nanguo Pear Growth[J]. Earth and Environment, 35(1): 57-60.

    Google Scholar

    [57] 严洪泽, 周国华, 孙彬彬, 等, 2018. 福建龙海杨梅产地元素地球化学特征[J]. 中国地质, 45(6): 1155-1166

    Google Scholar

    Yan H Z, Zhou G H, Sun B B, et al. , 2018. Geochemical characteristics of the bayberry producing area in Longhai, Fujian[J]. Geology in China, 45(6): 1155-1166.

    Google Scholar

    [58] 杨守业, 李从先, 1999. REE示踪沉积物物源研究进展[J]. 地球科学进展, 14(2): 63-66

    Google Scholar

    Yan S Y, Li C X, 1999. Research Progress in REE Tracing For Sediment Sources[J]. Advance in Earth Science, 14(2): 63-66.

    Google Scholar

    [59] 杨剑, 易发成, 侯兰杰, 1999. 四川江油龙潭子下-中三叠统界线剖面的稀土元素地球化学特征[J]. 西南工学院学报, 14(1): 39-41

    Google Scholar

    Yang J, Yi F C, Hou L J, 1999. REE Geochemical Characteristics in the Lower-Middle Triassic Boundary Section in Longtanzi, Jiangyou, Sichuan[J]. Journal of Southwest Institute of Technology, 14(1): 39-41.

    Google Scholar

    [60] 杨兴莲, 朱茂炎, 赵云龙, 等, 2008. 黔东震旦系−下寒武统黑色岩系稀土元素地球化学特征[J]. 地质论评, 54(1): 3-15

    Google Scholar

    Yang X L, Zhu M Y, Zhao Y L, et al. , 2008. REE Geoche mical Characteristics of the Ediacaran-Lower Cambrian Black Rock Series in Eastern Guizhou[J]. Geological Review, 54(1): 3-15.

    Google Scholar

    [61] 杨元根, 刘丛强, 袁可能, 等, 2000. 南方红土形成过程及其稀土元素地球化学[J]. 第四纪研究, 20(5): 469-480

    Google Scholar

    Yang Y G, Liu C Q, Yuan K K, et al. , 2000. Laterite Formation Process in Southern China and It’s Rare Earth Element (REE) Geochemistry[J]. Quaternaty Science, 20(5): 469-480.

    Google Scholar

    [62] 袁和, 罗先熔, 李武毅, 等, 2017. 西藏邦卓玛地区土壤地球化学特征及找矿预测[J]. 地质与勘探, 53(3): 472-481

    Google Scholar

    Yuan H, Luo X R, Li W Y, et al. , 2017. Geochemical characteristics of soil and prospec ting prediction of the Bangzhuoma region, Tibet[J]. Geological and Exploration, 53(3): 472-481.

    Google Scholar

    [63] 张慈, 赵银兵, 欧阳渊, 等, 2023. 青藏高原东缘地质环境对植被覆盖度的影响研究: 以冕宁县为例[J]. 沉积与特提斯地质, 43(3): 604−614.

    Google Scholar

    Zhang C, Zhao Y B, Ouyang Y, et al., 2023. Influence of Geological Environment on Vegetation Coverage in the Eastern Edge of Qinghai-Tibet Plateau: A case study of Mianning[J]. Sedimentary Geology and Tethyan Geology, 43(3): 604−614.

    Google Scholar

    [64] 张风雷, 季宏兵, 魏晓, 等, 2014. 黔中白云岩风化剖面微量元素的地球化学特征[J]. 地球与环境, 42(5): 611-619

    Google Scholar

    Zhang F L, Ji H B, Wei X, et al. , 2014. Geochemical Characteristics of Trace Elements in a Dolomite Weathering Profile in Central Guizhou Province[J]. Earth and Environment, 42(5): 611-619.

    Google Scholar

    [65] 张景华, 欧阳渊, 陈远智, 等, 2021. 基于无人机遥感的四川省昭觉县农业产业园土地适宜性评价[J]. 中国地质, 2021, 48(6): 1710-1719

    Google Scholar

    Zhang J H, Ouyang Y, Chen Y Z, et al. , 2021. Land suitability evaluation of agricultural industrial park based on UAV remote sensing in Zhaojue County of Sichuan Province[J]. Geology in China, 48(6): 1710-1719.

    Google Scholar

    [66] 张景华, 欧阳渊, 刘洪, 等, 2020. 西昌市生态地质特征与脆弱性评价[M]. 武汉: 中国地质大学出版社.

    Google Scholar

    Zhang J H, Ouyang Y, Liu H, et al., 2020. Ecological Geological Characteristics and Vulnerability Assessment of Xichang City[M]. Wuhan: China University of Geosciences Press.

    Google Scholar

    [67] 孙林华, 桂和荣, 贺振宇, 2010. 皖北灵璧地区新元古代灰岩的稀土元素特征[J]. 稀土, 31(6): 32-40

    Google Scholar

    Zhang L H, Lin H R, He Z Y, 2010. Rare Earth Element Characteristics of the Neoproterozoic Limestones in Lingbi District, Northern Anhui Povince[J]. Chinese Rare Earths, 31(6): 32-40.

    Google Scholar

    [68] 张腾蛟, 刘洪, 欧阳渊, 等, 2020. 中高山区土壤成土母质理化特征及主控因素初探—以西昌市为例[J]. 沉积与特提斯地质, 40(1): 106-114

    Google Scholar

    Zhang T J, Liu H, Ouyang Y, et al. , 2020. A preliminary discussion on the physical and chemical characteristics and main controlling factors of soil and parent material in the middle and high mountain area—Take Xichang as an example[J]. Sedimentary Geology and Tethyan Geology, 40(1): 106-114.

    Google Scholar

    [69] 赵欣怡, 罗先熔, 杨笑笑, 等, 2020. 河南洛宁石龙山金多金属矿预查区土壤地球化学特征及找矿远景分析[J]. 矿物岩石地球化学通报, 39(4): 768-778

    Google Scholar

    Zhao X Y, Luo X R, Yang X X, et al. , 2020. Soil Geochemical Characteristics and Prospecting Potential Analysis of the Shilongshan Au-polymetallic Prospecting Area, Luoning County, Henan Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 39(4): 768-778.

    Google Scholar

    [70] 赵志忠, 毕华, 刘强, 2005. 海南岛西部地区砖红壤中稀土元素含量的空间分异特征[J]. 土壤, 37(5): 506-511

    Google Scholar

    Zhao Z Z, Bi H, Liu Q, 2005. Spatial Distribution of REE Elements contents in Latosol in the Western Part of the Hainan Island[J]. Soils, 37(5): 506-511.

    Google Scholar

    [71] 周美夫, 李欣禧, 王振朝, 等, 2020. 风化壳型稀土和钪矿床成矿过程的研究进展和展望[J]. 科学通报, 65(33): 3809 − 3824

    Google Scholar

    Zhou M F, Li X X, Wang Z C, et al., 2020. The genesis of regolith-hosted rare earth element and scandium deposits: Current understanding and outlook to future prospecting (in Chinese with English abstract). Chin. Sci. Bull., 2020, 65(33): 3809 − 3824.

    Google Scholar

    [72] 周妍姿, 王钧, 曾辉, 等, 2015. 内蒙古土壤重金属的空间异质性及污染特征[J]. 生态环境学报, 24(8): 1381-1387

    Google Scholar

    Zhou Y Z, Wang J, Zeng H, et al. , 2015. Spatial Characteristics of Soil Heavy Metal Pollution in Inner Mongolia, China [J]. Ecology and Environmental Sciences, 24(8): 1381-1387.

    Google Scholar

    [73] 朱维晃, 杨元根, 毕华, 等, 2004. 海南土壤中稀土元素含量及分布特征[J]. 地球与环境, 32(2): 20-25

    Google Scholar

    Zhu W H, Yang Y G, Bi H, et al. , 2004. The Content and Distribution Characteristics of The Rare Earth Elements (REEs) in soil of Hainan Province[J]. Earth and Environment, 32(2): 20-25.

    Google Scholar

    [74] 朱维晃, 杨元根, 毕华, 等, 2003. 土壤中稀土元素地球化学研究进展[J]. 矿物岩石地球化学通报, 22(3): 259-264

    Google Scholar

    Zhu W H, Yang Y G, Bi H, et al. , 2003. Progress in Geochemical Research of Rare Earth Element in Soils[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 22(3): 259-264.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(1491) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint