2023 Vol. 43, No. 4
Article Contents

ZHOU Yu, YANG Wenguang, ZHU Lidong, MI Wentian, XIE Long, ZHONG Yao, MAI Yuanjun, ZHANG Hongliang, LI Nan. 2023. Detrital zircon U-Pb chronology and geological significance of the Middle Jurassic Quesang Hot Spring Formation in Linzhou Basin, Tibet. Sedimentary Geology and Tethyan Geology, 43(4): 747-758. doi: 10.19826/j.cnki.1009-3850.2021.06001
Citation: ZHOU Yu, YANG Wenguang, ZHU Lidong, MI Wentian, XIE Long, ZHONG Yao, MAI Yuanjun, ZHANG Hongliang, LI Nan. 2023. Detrital zircon U-Pb chronology and geological significance of the Middle Jurassic Quesang Hot Spring Formation in Linzhou Basin, Tibet. Sedimentary Geology and Tethyan Geology, 43(4): 747-758. doi: 10.19826/j.cnki.1009-3850.2021.06001

Detrital zircon U-Pb chronology and geological significance of the Middle Jurassic Quesang Hot Spring Formation in Linzhou Basin, Tibet

More Information
  • The Linzhou Basin is located in the middle of the Gangdese Plate. Basin analysis of the Linzhou Basin will provide important sedimentological evidence for understanding the tectonic evolution process of the Gangdese Plate. This paper takes the Middle Jurassic Quesang Hot Spring Formation in the Linzhou Basin as the research object, and conducted petrology and detrital zircon U-Pb chronology. The results show that the youngest detrital zircon age of the lithic quartz sandstone of the Quesang Hot Spring Formation is 169 Ma, with age peaks such as 170-200 Ma, 540-620 Ma, and 1055-1220 Ma. The youngest detrital zircon age is the response to a magmatic event triggered by the subduction of the Tethys oceanic crust. Regional comparative studies of detrital zircons show that the source of the Quesang Hot Spring Formation is mainly from the Tanga-Songduo orogenic belt in central Gangdese, which is a sedimentary record of the northward subduction and southward accretion of the Tethys Ocean.

  • 加载中
  • [1] Cai F, Ding L, Laskowski A K, et al. , 2016. Late Triassic paleogeographic reconstruction along the Neo–Tethyan Ocean margins, southern Tibet[J]. Earth and Planetary Science Letters. 435: 105-114.

    Google Scholar

    [2] Cheng H, Liu Y, Vervoort J D, et al. , 2015. Combined U-Pb, Lu-Hf, Sm-Nd and Ar-Ar multichronometric dating on the Bailang eclogite constrains the closure timing of the Paleo-Tethys Ocean in the Lhasa terrane, Tibet[J]. Gondwana Research. 28(4): 1482-1499.

    Google Scholar

    [3] Cheng H, Zhang C, Vervoort J D, et al. , 2012. Zircon U–Pb and garnet Lu–Hf geochronology of eclogites from the Lhasa Block, Tibet[J]. Lithos. 155: 341-359.

    Google Scholar

    [4] Corfu F, Hanchar J M, Hoskin P W O, et al. , 2003. Atlas of Zircon Textures[J]. Reviews in Mineralogy and Geochemistry. 53(1): 469-500.

    Google Scholar

    [5] Fan S, Ding L, Murphy M A, et al. , 2017. Late Paleozoic and Mesozoic evolution of the Lhasa Terrane in the Xainza area of southern Tibet[J]. Tectonophysics. 721: 415-434.

    Google Scholar

    [6] Gehrels G, Kapp P, Decelles P, et al. , 2011. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen[J]. Tectonics. 30(5): TC5016.

    Google Scholar

    [7] Guo L, Zhang H, Harris N, et al. , 2016. Late Devonian-Early Carboniferous magmatism in the Lhasa terrane and its tectonic implications: Evidences from detrital zircons in the Nyingchi Complex[J]. Lithos. 245: 47-59.

    Google Scholar

    [8] Hu Z, Liu Y, Gao S, et al. , 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of analytical atomic spectrometry. 27(9): 1391-1399.

    Google Scholar

    [9] Huang Y, Ren M, Jowitt S M, et al. , 2021. Middle Triassic arc magmatism in the southern Lhasa terrane: Geochronology, petrogenesis and tectonic setting[J]. Lithos. 380-381: 105857.

    Google Scholar

    [10] Kang Z, Xu J, Wilde S A, et al. , 2014. Geochronology and geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane: Implications for the early subduction history of the Neo-Tethys and Gangdese Magmatic Arc[J]. Lithos. 200-201: 157-168.

    Google Scholar

    [11] Kapp P, Decelles P G, Leier A L, et al. , 2007. The Gangdese retroarc thrust belt revealed[J]. GSA Today. 17(7): 4.

    Google Scholar

    [12] Lai W, Hu X, Garzanti E, et al. , 2019. Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma)[J]. GSA Bulletin. 131(11-12): 1823-1836.

    Google Scholar

    [13] Leier A L, Decelles P G, Kapp P, et al. , 2007. The Takena Formation of the Lhasa Terrane, southern Tibet; the record of a Late Cretaceous retroarc foreland basin[J]. Geological Society of America bulletin. 119(1-2): 31-48.

    Google Scholar

    [14] Li G, Sandiford M, Liu X, et al. , 2014. Provenance of Late Triassic sediments in central Lhasa terrane, Tibet and its implication[J]. Gondwana Research. 25(4): 1680-1689.

    Google Scholar

    [15] Li X, Mattern F, Zhang C, et al. , 2016. Multiple sources of the Upper Triassic flysch in the eastern Himalaya Orogen, Tibet, China: Implications to palaeogeography and palaeotectonic evolution[J]. Tectonophysics. 666: 12-22.

    Google Scholar

    [16] Meng Y, Mooney W D, Ma Y, et al. , 2019. Back-arc basin evolution in the southern Lhasa sub-terrane, southern Tibet: Constraints from U-Pb ages and in-situ Lu-Hf isotopes of detrital zircons[J]. Journal of Asian Earth Sciences. 185: 104026.

    Google Scholar

    [17] Murphy M A, Yin A, Harrison T M, et al. , 1997. Did the Indo-Asian collision alone create the Tibetan plateau?[J]. Geology. 25(8): 719-722.

    Google Scholar

    [18] Paton C, Woodhead J D, Hellstrom J C, et al. , 2010. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction[J]. Geochemistry, Geophysics, Geosystems. 11(3): Q0AA06

    Google Scholar

    [19] Pullen A, Kapp P, Gehrels G E, et al. , 2008. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean[J]. Geology. 36(5): 351-354.

    Google Scholar

    [20] Wang C, Ding L, Zhang L, et al. , 2016. Petrogenesis of Middle–Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere[J]. Lithos. 262: 320-333.

    Google Scholar

    [21] Wang C, Ding L, Zhang L, et al. , 2019. Early Jurassic highly fractioned rhyolites and associated sedimentary rocks in southern Tibet: constraints on the early evolution of the Neo-Tethyan Ocean[J]. International Journal of Earth Sciences. 108(1): 137-154.

    Google Scholar

    [22] Wang J, Hu X, Garzanti E, et al. , 2020. From extension to tectonic inversion: Mid-Cretaceous onset of Andean-type orogeny in the Lhasa block and early topographic growth of Tibet[J]. GSA Bulletin. 132(11-12): 2432-2454.

    Google Scholar

    [23] Wang J, Wu F, Garzanti E, et al. , 2016. Upper Triassic turbidites of the northern Tethyan Himalaya (Langjiexue Group): The terminal of a sediment-routing system sourced in the Gondwanide Orogen[J]. Gondwana Research. 34: 84-98.

    Google Scholar

    [24] Wei Y, Zhao Z, Niu Y, et al. , 2020. Geochemistry, detrital zircon geochronology and Hf isotope of the clastic rocks in southern Tibet: Implications for the Jurassic-Cretaceous tectonic evolution of the Lhasa terrane[J]. Gondwana Research. 78: 41-57.

    Google Scholar

    [25] Yu Y, Xie C, Fan J, et al. , 2018. Zircon U–Pb geochronology and geochemistry of Early Jurassic granodiorites in Sumdo area, Tibet: Constraints on petrogenesis and the evolution of the Neo-Tethyan Ocean[J]. Lithos. 320-321: 134-143.

    Google Scholar

    [26] Yuan H, Gao S, Liu X, et al. , 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards and Geoanalytical Research. 28(3): 353-370.

    Google Scholar

    [27] Zhu D, Zhao Z, Niu Y, et al. , 2011. Lhasa terrane in southern Tibet came from Australia[J]. Geology. 39(8): 727-730.

    Google Scholar

    [28] 纪占胜, 姚建新, 武桂春, 等, 2018. 西藏措勤盆地的地层学研究进展及上二叠统—侏罗系地层序列的厘定[J]. 地球学报, 39(4): 401-407 doi: 10.3975/cagsb.2018.071701

    CrossRef Google Scholar

    JI Z S, YAO J X, WU G C, et al. , 2018. Stratigraphic Progress of the Coqen Basin and Redefinition of the Upper Permian-Jurassic Stratigraphic Sequence[J]. Acta Geoscientica Sinica, 39(4): 401-407. doi: 10.3975/cagsb.2018.071701

    CrossRef Google Scholar

    [29] 解超明, 李才, 李光明, 等, 2020. 西藏松多古特提斯洋研究进展与存在问题[J]. 沉积与特提斯地质, 40(2): 1 − 13

    Google Scholar

    Xie C M, Li C, Li G M, et al., 2020. The research progress and problem of the Sumdo Paleo-Tethys Ocean, Tibet[J]. Sedimentary Geology and Tethyan Geology, 40(2): 1 − 13.

    Google Scholar

    [30] 解超明, 宋宇航, 王明, 等, 2019. 冈底斯中部松多岩组形成时代及物源: 来自碎屑锆石U-Pb年代学证据[J]. 地球科学, 44(7): 2224 − 2236.

    Google Scholar

    Xie C M, Song Y H, Wang M, et al., 2019. Age and Provenance of Sumdo Formation in Central Gangdese, Tibetan Plateau: Detrital Zircon U-Pb Geochronological Evidence[J].Earth Science, 44(7): 2224 − 2233.

    Google Scholar

    [31] 李成志, 2020. 西藏南冈底斯白垩纪盆地林布宗组物源特征与盆地构造演化[D]. 成都: 成都理工大学.

    Google Scholar

    Li C Z, 2020. Provenance characteristics and structural evolution of the Linbuzong Formation in the Cretaceous Basin, south Gangdese, Tibet[D].Chengdu: Chengdu University of Technology..

    Google Scholar

    [32] 李光明, 张林奎, 吴建阳, 等, 2020. 青藏高原南部洋板块地质重建及科学意义[J]. 沉积与特提斯地质, 40(01): 1 − 14

    Google Scholar

    Li G M, Zhang L K, Wu J Y, et al., 2020. Reestablishment and scientific significance of the Ocean plate geology in the Southern Tibet Plateau, China[J]. Sedimentary Geology and Tethyan Geology, 40(1): 1 − 14.

    Google Scholar

    [33] 李化启, 许志琴, 杨经绥, 等, 2011. 拉萨地体内松多榴辉岩的同碰撞折返: 来自构造变形和40Ar-39Ar年代学的证据[J]. 地学前缘, 18(3): 66 − 78.

    Google Scholar

    Li H Q, Xu Z Q, Yang J S, et al., 2011. Sys-collisional exhumation of Sumdo eclogite in the Lhasa Terrane, Tibet : Evidences from structural deformation and 40 Ar/39 Ar geochronology[J]. Earth Science Frontiers, 18(3): 66 − 78.

    Google Scholar

    [34] 李楠, 朱利东, 杨文光, 等, 2020. 西藏冲尼中二叠世岛弧玄武岩的发现及意义[J]. 地质与勘探, 56(04): 722 − 731

    Google Scholar

    Li N, Zhu L D, Yang W G, et al., 2020. Discovery of the Middle Permian Island Arc Basalt in the Chongni Area, Tibet and Its Tectonic Implication[J]. Geology and Exploration, 56(4): 722 − 731.

    Google Scholar

    [35] 李晓雄, 江万, 梁锦海, 等, 2015. 西藏林周盆地设兴组玄武岩地球化学特征及意义[J]. 岩石学报, 31(5): 1285-1297

    Google Scholar

    LI X X, JIANG W, LIANG J H, et al. , 2015. The geochemical characteristics and significance of the basalt from Shexing Formation in Linzhou basin, southern Tibet[J]. Acta Petrologica Sinica, 31(5): 1285-1297.

    Google Scholar

    [36] 林方成, 李生, 曾琴琴, 等, 2022. 中国西南地区地质调查工作十年(2011-2020)进展综述[J]. 沉积与特提斯地质, 42(4): 507-528.

    Google Scholar

    Lin F C, Li S, Zeng Q Q, et al., 2022. Review on the progress of geological survey works in Southwest China in the past ten years (2011-2020) [J]. Sedimentary Geology and Tethyan Geology, 42(4): 507-528.

    Google Scholar

    [37] 麦源君, 朱利东, 杨文光, 等, 2020. 西藏东南缘早二叠世长英质凝灰岩锆石U-Pb年龄和Hf同位素特征[J]. 地球科学, 46(11): 3880 − 3891

    Google Scholar

    Mai Y J, Zhu L D, Yang W G, et al., 2021. Zircon U-Pb and Hf Isotopic Composition of Permian Felsic Tuffs in Southeastern Margin of Lhasa, Tibet[J]. Earth Science, 46(11): 3880 − 3891.

    Google Scholar

    [38] 潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 22(3): 521-533 doi: 10.3321/j.issn:1000-0569.2006.03.001

    CrossRef Google Scholar

    PAN G T, MO X X, HOU Z Q, et al. , 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution[J]. Acta Petrologica Sinica, 22(3): 521-533. doi: 10.3321/j.issn:1000-0569.2006.03.001

    CrossRef Google Scholar

    [39] 潘桂棠, 王立全, 尹福光, 等, 2022. 青藏高原形成演化研究回顾、进展与展望[J]. 沉积与特提斯地质, 42(2): 151-175.

    Google Scholar

    Pan G T, Wang L Q, Yin F G, et al., 2022. Researches on geological-tectonic evolution of Tibetan Plateau: A review, recent advances, and directions in the future[J]. Sedimentary Geology and Tethyan Geology, 42(2): 151-175.

    Google Scholar

    [40] 苏鑫, 2020. 西藏林周盆地下白垩统楚木龙组物源分析及构造意义[D]. 成都: 成都理工大学.

    Google Scholar

    Su X, 2020. Provenance analysis and tectonic significance of Lower cretaceous ChuMulong Formation in Linzhou basin, Tibet[D]. Chengdu: Chengdu University of Technology.

    Google Scholar

    [41] 孙倩, 纪占胜, 廖卫华, 等, 2018. 西藏措勤盆地上侏罗统萨波直不勒组的发现及其烃源岩[J]. 地球学报, 39(4): 432-444 doi: 10.3975/cagsb.2018.062201

    CrossRef Google Scholar

    SUN Q, JI Z S, LIAO W H, et al. , 2018. The Discovery of the Upper Jurassic Sabozhibule Formation in Coqen Basin, Tibet, and Its Source Rock[J]. Acta Geoscientica Sinica, 39(4): 432-444. doi: 10.3975/cagsb.2018.062201

    CrossRef Google Scholar

    [42] 王乃文, 王思恩, 刘桂芳, 等, 1983. 西藏拉萨地区的海陆交互相侏罗系与白垩系[J]. 地质学报, 57(1): 83 − 95

    Google Scholar

    Wang N W, Wang S N, Liu G F, et al., 1983. The Juro-Cretaceous marine-terrestrial alternating formations in Lhasa area, Xizang(Tebit)[J]. Acta Geologica Sinica, 57(1): 83 − 95.

    Google Scholar

    [43] 魏友卿, 2017. 西藏拉萨地体南缘中生代火山岩与碎屑沉积岩的年代学、地球化学及构造意义[D]. 北京: 中国地质大学.

    Google Scholar

    Wei Y Q, 2017. Mesozoic volcanic and sedimentary rocks on the southern margin of Lhasa Terrane, southern Tibet: geochronology, geochemistry and tectonic implications[D]. Beijing: China University of Geosciences(Beijing).

    Google Scholar

    [44] 许志琴, 赵中宝, 彭淼, 等, 2016. 论“造山的高原”[J]. 岩石学报, 32(12): 3557-3571

    Google Scholar

    XU Z Q, ZHAO Z B, PENG M, et al. , 2016. Review of “orogenic plateau”[J]. Acta Petrologica Sinica, 32(12): 3557-3571.

    Google Scholar

    [45] 杨洋, 2019. 西藏尼雄地区晚古生代沉积背景分析及地质意义[D]. 成都: 成都理工大学.

    Google Scholar

    Yang Y, 2019. Analysis of the sedimentary back ground and geological significance of late Paleozoic in nixiong region, Tibet[D]. Chengdu: Chengdu University of Technology.

    Google Scholar

    [46] 张成圆, 张泽明, 丁慧霞, 等, 2020. 冈底斯岩浆弧东段沉积岩的早新生代变质作用及构造意义[J]. 地质学报, 94(5): 1413-1430 doi: 10.3969/j.issn.0001-5717.2020.05.006

    CrossRef Google Scholar

    ZHANG C Y, ZHANG Z M, DING H X, et al. , 2020. Early Cenozoic metamorphism of the sedimentary rocks from the eastern Gangdese magmatic arc and its tectonic implications[J]. Acta Geologica Sinica, 94(5): 1413-1430. doi: 10.3969/j.issn.0001-5717.2020.05.006

    CrossRef Google Scholar

    [47] 张佳伟, 2018. 西藏中生代羌塘及马乡—林周盆地形成演化与剥露过程[D]. 中国地质大学(北京).

    Google Scholar

    Zhang J W, 2018. Evolution and exhumation of the Mesozoic Qiangtang and Maqu-Linzhou basins, Tibet[D]. Beijing: China University of Geosciences(Beijing).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(843) PDF downloads(181) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint