2023 Vol. 43, No. 4
Article Contents

XU Weipeng, YI Haisheng, TANG Wenqiang, CHEN Yun, CHEN Xiaodong, XING Haoting, SONG Wei, CUI Ronglong, QIAO Fuhai. 2023. Characteristics of the Milankovitch cycles and lake-level changes in the Ganchaigou Formation of the Kaitemirike area, western Qaidam.. Sedimentary Geology and Tethyan Geology, 43(4): 712-721. doi: 10.19826/j.cnki.1009-3850.2021.04005
Citation: XU Weipeng, YI Haisheng, TANG Wenqiang, CHEN Yun, CHEN Xiaodong, XING Haoting, SONG Wei, CUI Ronglong, QIAO Fuhai. 2023. Characteristics of the Milankovitch cycles and lake-level changes in the Ganchaigou Formation of the Kaitemirike area, western Qaidam.. Sedimentary Geology and Tethyan Geology, 43(4): 712-721. doi: 10.19826/j.cnki.1009-3850.2021.04005

Characteristics of the Milankovitch cycles and lake-level changes in the Ganchaigou Formation of the Kaitemirike area, western Qaidam.

More Information
  • At present, the research on Milankovitch cycles in the Qaidam Basin is generally based on the discussion of the shallow-water sedimentary facies strata in the piedmont, but it remains to be explored whether the Milankovitch cycle characteristics are recorded in the deep-water facies strata. In this study, the Milankovitch sedimentary cycles of deep lacustrine strata in the Kaitemilik area in the west of the basin have been discussed through spectral analyses and filter analyses of natural gamma logging curves of the upper Ganchaigou Formation (N1)and the upper part of lower Ganchaigou Formation (E32) in Well K2. The results show that the stratigraphic cycles of the upper Ganchaigou Formation (N1) and the upper part of lower Ganchaigou Formation (E32) in this area have a good correlation with the earth's orbital cycle parameters of Milankovitch, indicating that the astronomical orbital cycle had a significant effect on the stratigraphic deposition in this area. On this basis, the Fischer plot and the sedimentary characteristics of the strata indicate that the lake level near the upper and lower boundary of Ganchaigou Formation (~38.1-32.8 Ma) experienced a relatively long period of fluctuation. The upper part of lower Ganchaigou Formation was formed in the rising stage of the lake level, which was mainly controlled by the eccentricity cycle in the Milankovitch cycle, and the climate was relatively warm and humid, corresponding to the high stage of lake level. The upper Ganchaigou Formation was deposited in the falling stage of the lake level, which was mainly controlled by the axial slope cycle in the Milankovitch cycle, and the climate was relatively cold and dry, corresponding to the low stage of lake level.

  • 加载中
  • [1] Abels H A, Aziz H A, Krijgsman W , et al. , 2010. Long-period eccentricity control on sedimentary sequences in the continental Madrid Basin (middle Miocene, Spain)[J]. Earth & Planetary Science Letters, 289(1-2): 220-231.

    Google Scholar

    [2] Berger A, Loutre M F, Dehant V, 1989. Pre-Quaternary Milankovitch frequencies[J]. Nature, 342(6246): 133-133.

    Google Scholar

    [3] Fischer A G, 1964. The lofter cyclothems of the Alpine Triassic[J]. Kansas Geological Survey Bulletin, 169(1): 107-149.

    Google Scholar

    [4] Hinnov L A, Ogg J G, 2007. Cyclostratigraphy and the Astronomical Time Scale[J]. Stratigraphy, 4(2): 239-25.

    Google Scholar

    [5] Hajek E A. and Straub K M, 2017. Autogenic Sedimentation in Clastic Stratigraphy[J]. Annual Review of Earth and Planetary Sciences, 45: 681-709. doi: 10.1146/annurev-earth-063016-015935

    CrossRef Google Scholar

    [6] Iii W, Read J F, 1990. Field and Modelling studies of Cambrian carbonate cycles, Virginia Appalachians; discussion and reply[J]. Journal of Sedimentary Research, 60(5): 654-687.

    Google Scholar

    [7] Idnurm M, Cook P J, 1980. Palaeomagnetism of beach ridges in South Australia and the Milankovitch theory of ice ages[J]. Nature, 286(5774): 699-702. doi: 10.1038/286699a0

    CrossRef Google Scholar

    [8] Li M S, Huang C J, Hinnov L, et al. , 2018. Astrochronology of the Anisian stage (Middle Triassic) at the Guandao reference section, South China[J]. Earth and Planetary Science Letters, 482: 591-606. doi: 10.1016/j.jpgl.2017.11.042

    CrossRef Google Scholar

    [9] Milankovitch M, 1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem [M]. Akademie: Royale Serbe, 133: 1-633.

    Google Scholar

    [10] Montaez I P, Read J F, 1992. Eustatic control on early dolomitization of cyclic peritidal carbonates: Evidence from the Early Ordovician Upper Knox Group, Appalachians[J]. Geological Society of America Bulletin, 104(7): 872-886. doi: 10.1130/0016-7606(1992)104<0872:ECOEDO>2.3.CO;2

    CrossRef Google Scholar

    [11] Osleger J, 1991. Relation of Eustasy to Stacking Patterns of Meter-Scale Carbonate Cycles, Late Cambrian, U. S. A[J]. Journal of Sedimentary Research, Vol. 61(7): 1745-8.

    Google Scholar

    [12] Osleger, David, 1991. Subtidal carbonate cycles: Implications for allocyclic vs. autocyclic controls[J]. Geology, 19(9): 917-920. doi: 10.1130/0091-7613(1991)019<0917:SCCIFA>2.3.CO;2

    CrossRef Google Scholar

    [13] Paul E O, Dennis V K, 1999. Long-Period Milankovitch Cycles from the Late Triassic and Early Jurassic of Eastern North America and Their Implications for the Calibration of the Early Mesozoic Time-Scale and the Long-Term Behaviour of the Planets[J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 357(1757) : 1761-1786. doi: 10.1098/rsta.1999.0400

    CrossRef Google Scholar

    [14] Scholle P A , James N P , Read J F, 1989. Carbonate Sedimentology and Petrology[J]. Short Courses in Geology.

    Google Scholar

    [15] Sadler P M, Strauss D J, 1990. Estimation of the completeness of stratigraphical sections using empirical data and theoretical models[J]. Journal of Geological Society of London, 147(3): 471-485. doi: 10.1144/gsjgs.147.3.0471

    CrossRef Google Scholar

    [16] Sun Z M, Yang Z, Pei J, et al. , 2005. Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China: Implications for tectonic uplift and block rotation in northern Tibetan plateau[J]. Earth & Planetary Science Letters, 237(3-4): 635-646.

    Google Scholar

    [17] Weedon G P. 2003. Time-Series and Cyclostratigraphy[M]. Cambridge: Cambridge University Press, 1-259

    Google Scholar

    [18] Wei X, Yan D, Luo P, et al. , 2020. Astronomically forced climate cooling across the Eocene–Oligocene transition in the Pearl River Mouth Basin, northern South China Sea[J]. Palaeogeography Palaeoclimatology Palaeoecology, 558: 109945. doi: 10.1016/j.palaeo.2020.109945

    CrossRef Google Scholar

    [19] Zhang T, Zhang C, Fan T, et al. , 2019. Cyclostratigraphy of Lower Triassic terrestrial successions in the Junggar Basin, northwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 539: 109493.

    Google Scholar

    [20] Zachos, James C, 2001. Climate Response to Orbital Forcing Across the Oligocene-Miocene Boundary[J]. Science, 292(5515): 274-274. doi: 10.1126/science.1058288

    CrossRef Google Scholar

    [21] Zachos J C, 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present [J]. Science, 292(5517): 686-693. doi: 10.1126/science.1059412

    CrossRef Google Scholar

    [22] 陈茂山, 1999. 测井资料的两种深度域频谱分析方法及在层序地层学研究中的应用[J]. 石油地球物理勘探, 34(1): 57 − 64

    Google Scholar

    Chen M S, 1999. Two novel depth-domain frequency spectrum analysis methods for logging data and their application to sequence stratigraphy research[J]. Oil Geophysical Prpspecting, 34(1): 57 − 64.

    Google Scholar

    [23] 付国民, 李永军, 邓颖, 2001. 柴达木盆地干柴沟地区第三系湖盆边缘斜坡带沉积体系及湖盆充填模式分析[J]. 沉积与特提斯地质, 21(2): 39-47 doi: 10.3969/j.issn.1009-3850.2001.02.005

    CrossRef Google Scholar

    Fu G M, Li Y J, Deng Y, 2001. Depositional systems and filling patterns of the Tertiary Qaidam lake basin in the Ganchaigou region, Qinghai[J]. Sedimentary Geology and Tethyan Geology, 21(2): 39-47. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-3850.2001.02.005

    CrossRef Google Scholar

    [24] 龚大兴, 伊海生, 吴驰华, 等, 2011. 南盘江盆地二叠系高频沉积旋回的测井响应及海平面变化趋势[J]. 地球物理学进展, 26(1): 287-293 doi: 10.3969/j.issn.1004-2903.2011.01.033

    CrossRef Google Scholar

    Gong D X, Yi H S, Wu C H, et al. , 2011. High-frequency carbonate depositional cycles and its response to the gamma ray well logging data and sea-level change in Permian Nanpanjiang Basin[J]. Progress in Geophysics, 26(1): 287-293. doi: 10.3969/j.issn.1004-2903.2011.01.033

    CrossRef Google Scholar

    [25] 黄春菊, 2014. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘, 21(2): 48-66 doi: 10.13745/j.esf.2014.02.005

    CrossRef Google Scholar

    Huang C J, 2014. The current status of cyclostratigraphy and astrochronology in the Mesozoic [J]. Earth Science Frontiers, 21(2): 48-66. doi: 10.13745/j.esf.2014.02.005

    CrossRef Google Scholar

    [26] 李堃宇, 伊海生, 夏国清, 2018. 基于测井曲线频谱分析柴达木盆地西部七个泉地区上、下油砂山组米兰科维奇旋回特征[J]. 地质科技情报, 37(3): 87-91 doi: 10.19509/j.cnki.dzkq.2018.0312

    CrossRef Google Scholar

    Li K Y, Yin H S, Xia G Q, 2018. Characteristics of Milankovitch cycles of Shangyoushashan and Xiayoushashan formations in Qigequan area, western Qaidam Basin based on the spectral analysis of the logging curve[J]. Geological Science and Technology Information, 37(3): 87-91. doi: 10.19509/j.cnki.dzkq.2018.0312

    CrossRef Google Scholar

    [27] 李斌, 孟自芳, 李相博, 等, 2005. 靖安油田延长组米兰柯维奇沉积旋回分析[J]. 地质科技情报, 24(2): 64 − 70

    Google Scholar

    Li B, Meng Z F, Li X B, et al., 2005. Analysis of Milankovitch cycles of Yanchang Formation in Jing'an Oilfield[J]. Geological Science and Technology Information, 24(2): 64 − 70.

    Google Scholar

    [28] 李凤杰, 王多云, 程微, 2004. 应用自然伽马曲线反演陇东地区延安组沉积旋回[J]. 成都理工大学学报(自科版), 31(5): 473 − 477

    Google Scholar

    Li F J, Wang D Y, Cheng W. 2004. Use of natural gamma-ray well log to study sedimentary cycles of Yan'an Formation in Eastern Gansu, Ordos Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 31(5): 473 − 477.

    Google Scholar

    [29] 李军, 胡光明, 李强, 等, 2019. 柴达木盆地扎X井区上新统下油砂山组Ⅳ油层组成岩作用研究[J]. 沉积与特提斯地质, 39(3): 65 − 72

    Google Scholar

    Li J, Hu G M, Li Q, et al., 2019. Diagenesis of the IV oil reservoirs of the Pliocene Xiayoushashan Formation in the Zha-X well area, Qaidam Basin, Qinghai[J]. Sedimentary Geology and Tethyan Geology, 39(3): 65 − 72.

    Google Scholar

    [30] 荣建锋, 2009. 柴达木盆地西部干柴沟地区上、下油砂山组高频沉积旋回及成因机制研究[D]. 成都理工大学.

    Google Scholar

    Rong J F, 2009. High-frequency sedimentary cycles and genetic mechanism of the upper and lower Youshashan Formation in the Ganchaigou area of the western Qaidam Basin[D]. Chengdu University of Technology.

    Google Scholar

    [31] 唐闻强, 伊海生, 伊帆, 等, 2020. 基于测井曲线频谱分析柴西南扎哈泉地区下干柴沟组米兰科维奇旋回特征[A]. 中国石油学会石油物探专业委员会(SPG)、国际勘探地球物理学家学会(SEG). SPG/SEG南京2020年国际地球物理会议论文集(中文)[C]. 中国石油学会石油物探专业委员会(SPG)、国际勘探地球物理学家学会(SEG): 石油地球物理勘探编辑部: 4

    Google Scholar

    Tang W Q, Yi H S, Yi F, et al., 2020. Characteristics of Milankovitch Cycles of Xia Ganchaigou Formations in Zhahaquan Area, Southwest Qaidam Basin, Based on the Spectral Analysis of the Logging Curve[A]. China Petroleum Society Petroleum Geophysical Professional Committee (SPG), International Society of Exploration Geophysicists (SEG). SPG / SEG Nanjing 2020 International Geophysical Conference Proceedings (Chinese) [C]. Petroleum Geophysical Prospecting Committee of China Petroleum Society (SPG), International Society of Exploration Geophysicists (SEG): Editorial Department of Petroleum Geophysical Exploration: 4.

    Google Scholar

    [32] 汤良杰, 金之钧, 张明利, 等, 2000. 柴达木盆地构造古地理分析[J]. 地学前缘, 7(4): 421-429 doi: 10.3321/j.issn:1005-2321.2000.04.009

    CrossRef Google Scholar

    Tang L J, Jin Z J, Zhang M L, et al. , 2000. Structural paleogeographical analysis of Qaidam Basin[J]. Geoscience Frontier, 7(4): 421-429. doi: 10.3321/j.issn:1005-2321.2000.04.009

    CrossRef Google Scholar

    [33] 王永军, 郭泽清, 刘卫红, 等, 2007. 柴达木盆地东部三湖地区四系米兰柯维奇旋回分析[J]. 地球物理学进展, 22(2): 544-551 doi: 10.3969/j.issn.1004-2903.2007.02.029

    CrossRef Google Scholar

    Wang Y J, Guo Z Q, Liu W H, et al. , 2007. Analysis of milankovitch cycles of quaternary in sanhu area, eastern qaidam basin[J]. Progress in Geophysics, 22(2): 544-551. doi: 10.3969/j.issn.1004-2903.2007.02.029

    CrossRef Google Scholar

    [34] 王艳清, 2014. 柴达木盆地西部地区古近-新近系沉积体系与油气分布[M]. 石油工业出版社.

    Google Scholar

    Wang Y Q, 2014. Paleogene-Neogene sedimentary system and oil and gas distribution in western Qaidam Basin[M]. Petroleum Industry Press.

    Google Scholar

    [35] 夏国清, 伊海生, 黄华谷, 等, 2010. 藏北雁石坪地区夏里组米级沉积旋回及成因[J]. 成都理工大学学报(自然科学版), 37(2): 133 − 139

    Google Scholar

    Xia G Q, Yi H S, Huang H G, et al., 2010. Meter-scale sedimentary cycles and their possible genetic mechanism of Middle Jurassic Xiali Formation in Yanshiping area, North Tibet[J].China. Journal of Chengdu University of Technology (Science & Technology Edition), 37(2): 133 − 139.

    Google Scholar

    [36] 尹青, 伊海生, 夏国清, 等, 2015. 基于测井曲线频谱分析在伦坡拉盆地古近系米氏旋回层序及可容空间变化趋势中的研究[J]. 地球物理学进展, 30(3): 1288-1297 doi: 10.6038/pg20150339

    CrossRef Google Scholar

    Yin Q, Yi H S, Xia G Q, et al. , 2015. Accommodation space and Milankovitch orbit cycle sequence of the Paleogene stratigraphic frames in Lunpola basin based on the spectrum snalysis of the logging curve[J]. Progress in Geophysics, 30(3): 1288-1297. doi: 10.6038/pg20150339

    CrossRef Google Scholar

    [37] 伊海生, 2011. 测井曲线旋回分析在碳酸盐岩层序地层研究中的应用[J]. 古地理学报, 13(4): 456-466 doi: 10.7605/gdlxb.2011.04.009

    CrossRef Google Scholar

    Yi H S, 2011. Application of well log cycle analysis in studies of sequence stratigraphy of carbonate rocks[J]. Journal Of Palaeogeography, 13(4): 456-466. doi: 10.7605/gdlxb.2011.04.009

    CrossRef Google Scholar

    [38] 伊海生, 2015. 沉积旋回叠置形式的波形分析及旋回层序划分方法[J]. 沉积学报, 33(5): 855-864 doi: 10.14027/j.cnki.cjxb.2015.05.002

    CrossRef Google Scholar

    YI H S, 2015. The waveform graphic analysis of cyclic stacking patterns in sedimentary successions and detection methods of cyclostratigraphic sequences[J]. Acta Sedimentologica Sinica, 33(5): 855-864. doi: 10.14027/j.cnki.cjxb.2015.05.002

    CrossRef Google Scholar

    [39] 郑兴平, 周进高, 吴兴宁, 2004. 碳酸盐岩高频层序定量分析技术及其应用[J]. 中国石油勘探, 9(5): 26-30+2 doi: 10.3969/j.issn.1672-7703.2004.05.005

    CrossRef Google Scholar

    Zheng X P, Zhou J G, Wu X N, 2004. Quantitative analysis technology of high frequency sequence of carbonate rock and its application[J]. China Petroleum Exploration, 9(5): 26-30+2. doi: 10.3969/j.issn.1672-7703.2004.05.005

    CrossRef Google Scholar

    [40] 张伟林, 2006. 柴达木盆地新生代高精度磁性地层与青藏高原隆升[D]. 兰州大学.

    Google Scholar

    Zhang W L, 2006. Cenozoic Uplift of the Tibetan Plateau:Evidence from High Resolution Magnetostratigraphy of the Qaidam Basin[D]. Lanzhou University.

    Google Scholar

    [41] 郑希民, 杨柳, 易定红, 等, 2019. 柴达木盆地西部古近系石膏及其硫同位素分布特征[J]. 沉积与特提斯地质, 39(4): 65 − 70

    Google Scholar

    Zheng X M, Yang L, Yi D H, et al., 2019. Distrbution of gypsum and sulfur isotopes in the Palaeogene strata, western Qaidam Basin, Qinghai[J]. Sedimentary Geology and Tethyan Geology, 39(4): 65 − 70.

    Google Scholar

    [42] 周斌, 汤军, 廖春, 等, 2013. 柴达木盆地油砂山油田上干柴沟组高分辨率层序地层分析[J]. 沉积与特提斯地质, 33(3): 27-33

    Google Scholar

    Zhou B, Tang J, Liao C, et al. , 2013. High-resolution sequence stratigraphic analysis of the Upper Ganchaigou Formation in the Youshashan Oil Field, Qaidam Basin, Qinghai[J]. Sedimentary Geology and Tethyan Geology, 33(3): 27-33.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(1199) PDF downloads(249) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint