陈均远.奥陶纪头足类壳体的水深学信息及海平面位置年代学的初探[J].古生物学报,1988,27(3):331-345.
Google Scholar
|
CHEN Junyuan. Ordovician Cephalopod bathymetric signals and chronology of sea-level change[J].Acta Palaeontologica Science, 1988, 27(3):331-345.
Google Scholar
|
陈旭,丘金玉.宜昌奥陶纪的古环境演变[J].地层学杂志,1986,(01):1-15.
Google Scholar
|
CHEN Xu, QIU Jinyu. Ordovician palaeoenvironmental evolution in Yichang, Hubei[J]. Journal of Stratigraphy, 1986,(01):1-15.
Google Scholar
|
董瀚, 张海峰, 李鸿睿. 扬子地台西北缘泥盆纪层序地层研究[J]. 西北地质, 2001, 34(04): 61-66.
Google Scholar
|
DONG Han, ZHAN Haifeng, LI Hongrui. On the Devonian sequence stratigraphy of the north-west margin of the Yangtze platform in China[J]. Northwestern Geology, 2001, 34(04): 61-66.
Google Scholar
|
葛祥英,牟传龙,周恳恳,等.湖南地区晚奥陶世桑比期-凯迪期早期沉积特征及沉积模式[J].古地理学报,2013,15(1):59-68.
Google Scholar
|
GE Xiangying, MOU Chuanlong, ZHOU Kenken, et al. Sedimentary characteristics and depositional model in the Sandbian-Early Katian Ages of Late Ordovician in Hunan area[J].Journal of Palaeogeography, 2013, 15(1):59-68.
Google Scholar
|
禚喜准,陈骁帅,张林炎,等.中国南方宝塔组灰岩的岩石学特征及其对“龟裂纹”成因的指示——以贵州桐梓县红花园乡宝塔组灰岩为例[J].地球学报.2017,38(06):872-882.
Google Scholar
|
ZHUO Xizhun, CHEN Xiaoshuai, ZHANG Linyan, et al. Petrology of Limestone of Pagoda Formation in South China and Its Indication to the Genesis of “Turtle Crack”: A Case Study of Baota Formation Limestone at Honghuayuan Township in Tongzi County, Guizhou Province[J].Acta Geoscientica Sinica, 2017, 38(06):872-882.
Google Scholar
|
胡修棉,王成善.白垩纪大洋红层:特征、分布与成因[J].高校地质学报,2007, 13(1):1-13.
Google Scholar
|
HU Xiumian,WANG Chengshan. Cretaceous Oceanic Red Beds: Characters, Occurrences and Origin[J].Geological Journal of China Universities, 2007,13(1):1-13.
Google Scholar
|
李超,樊隽轩,孙宗元.奥陶系无机碳同位素地层学综述[J].地层学杂志, 2018, 42(4):408-428.
Google Scholar
|
LI Chao, FAN Junxuan, SUN Zongyuan. Review of ordovician inorganic carbon isotope stratigraphy[J]. Journal of Stratigraphy, 2018, 42(4):408-428.
Google Scholar
|
李皎,何登发,梅庆华.四川盆地及邻区奥陶纪构造-沉积环境与原型盆地演化[J].石油学报, 2015,36(04):427-445.
Google Scholar
|
LI Jiao, HE Dengfa, MEI Qinghua. Tectonic-depositional environment and proto-type basins evolution of the Ordovician in Sichuan Basin and adjacent areas[J].Acta Petrolei Sinica, 2015,36(04):427-445.
Google Scholar
|
廖纪佳,马思豪,廖明光,等.奥陶系宝塔灰岩网纹构造成因研究进展及新发现[J].沉积学报, 2017,35(02):241-252.
Google Scholar
|
LIAO Jijia, MA Sihao, LIAO Mingguang,et al. Research of the Origin of Network Structure in the Ordovician Pagoda Limestone: advances and new discovery[J].Acta Sedimentologica Sinica, 2017,35(02):241-252.
Google Scholar
|
穆恩之,朱兆玲,陈均远,等.四川长宁双河附近奥陶纪地层[J].地层学杂志.1978, 2(02):105-121.
Google Scholar
|
MU Enzhi, ZHU Zhaoling, CHEN Junyuan, et al. Ordovician strata near Shuanghe, Changning, Sichuan[J]. Journal of Stratigraphy, 1978, 2(02):105-121.
Google Scholar
|
戎嘉余,陈旭.华南晚奥陶世的动物群分异及生物相、岩相分布模式[J].古生物学报, 1987, 26(05):507-535.
Google Scholar
|
RONG Jiayu, CHEN Xu. Faunal differentiation, biofacies and lithofacies pattern of Late Ordovician(Ashgillian) In South China[J]. Acta Palaeontologica Science, 1987, 26(05):507-535.
Google Scholar
|
盛莘夫,姬再良.论宝塔组的时代[D].地层古生物论文集(第十六辑),1986.
Google Scholar
|
盛莘夫,姬再良.论宝塔组的沉积环境及时代[J].中国地质, 1984,(11):31-32.
Google Scholar
|
盛莘夫,姬再良.地史时期“泥裂”构造的成因初探[J].中国区域地质, 1985, 14(04):119-124.
Google Scholar
|
SHENG Shenfu, JI Zailiang. Origin of mud crack in the geologic past[J].Regional Geology of China,1985, 14(04):119-124.
Google Scholar
|
苏文博,何龙清,王永标,等.华南奥陶—志留系五峰组及龙马溪组底部斑脱岩与高分辨综合地层[J].中国科学D辑, 2002, 32(3):207-209.
Google Scholar
|
苏文博,李志明,陈建强,等.海平面变化全球可比性的可靠例证——上扬子地台东南缘奥陶纪层序地层及海平面变化研究[J].沉积学报,1999,17(03):345-353.
Google Scholar
|
SU Wenbo, LI Zhiming, CHEN Jianqiang, et al. Reliable Example for Eustacy Ordovician Sequence Stratigraphy on the Southeastern Margin of the Upper Yangtze Platform[J]. Acta Sedimentologica Sinica, 1999, 17(03):345-353.
Google Scholar
|
汪啸风.中国南方奥陶纪构造古地理及年代与生物地层的划分与对比[J].地学前缘,2016,23(06):253-267.
Google Scholar
|
WANG Xiaofeng. Ordovician tectonic-paleography in South China chrono-and bio-stratigraphic division and correlation[J]. Earth Science Frontiers,2016, 23(06):253-267.
Google Scholar
|
汪啸风,陈孝红.中国各地质时代地层划分与对比[M]北京:地质出版社.2005.
Google Scholar
|
王安东,周瑶琪,仲岩磊,等.陕南奥陶系宝塔组灰岩网状裂缝成因[J].地球科学(中国地质大学学报),2012,37(04):843-850.
Google Scholar
|
WANG Andong, ZHOU Yaoqi, ZHONG Yanlei, et al. Causes of reticular cracks in Ordovician Baota Formation Limestone in Southern Shaanxi. [J].Earth Science-Journal of China University of Geosciences, 2012, 37(04):843-850.
Google Scholar
|
王成善,胡修棉,李祥辉.古海洋溶解氧与缺氧和富氧问题研究[J].海洋地质与第四纪地质, 1999(03):42-50.
Google Scholar
|
WANG Chengshan, HU Xiumian, LI Xianghui. Dissolved oxygen in Palaeo-ocean: anoxic events and high-oxic problems[J]. Marine Geology & Quaternary Geology, 1999,19(03):42-50.
Google Scholar
|
王龙,吴海,张瑞,等.碳酸盐台地的类型、特征和沉积模式——兼论华北地台寒武纪陆表海—淹没台地的沉积样式[J].地质论评, 2018,64(01):62-76.
Google Scholar
|
WANG Long, WU Hai, ZHANG Rui, et al. The Types,Characteristics and Depositional Models of Carbonate Platform:Implications for Cambrian Sedimentary Patterns of Epeiric-drowned Carbonate Platform in North China[J].Geological Review, 2018, 64(01):62-76.
Google Scholar
|
王泽中.宝塔灰岩-中奥陶统密集段[J].岩相古地理,1996,16(05):18-21.
Google Scholar
|
WANG Zezhong. Baota formation:a middle Ordovician condensed section.[J]. Sedimentary Facies and Palaeogeography,1996,16(05):18-21.
Google Scholar
|
吴劲薇,夏树芳.关于“龟裂纹灰岩”成因的探讨[J].南京大学学报(自然科学版),1989,25(01):136-149.
Google Scholar
|
WU Jinwei, XIA Shufang. Notes on the origin of the poiygonal marking limestones[J].Journal of Nanjing University,1989,25(01):136-149.
Google Scholar
|
吴荣昌,詹仁斌,李贵鹏,等.浅论华南扬子区下、中奥陶统紫台组[J].地层学杂志.2007,31(04):325-332.
Google Scholar
|
WU Rongchang, ZHAN Renbin, LI Guipeng, et al. Brief discussion on the lower to middle Ordovician Zitai formation in the Yangtze region, South China[J]. Journal of Stratigraphy, 2007, 31(04):325-332.
Google Scholar
|
肖传桃,龚文平,罗顺社,等.华南地区奥陶纪头足类生物相及其分区[J].沉积学报, 2006(02):242-250.
Google Scholar
|
XIAN Chuantao, GONG Wenping, LUO Shunshe, et al. Ordovician Cephalopoda biofacies and the provincialization in the South China. [J]. Acta Sedimentologica Sinica,2006,24(02):242-250.
Google Scholar
|
许效松,万方,尹福光,等.奥陶系宝塔组灰岩的环境相、生态相与成岩相[J].矿物岩石.2001(03):64-68.
Google Scholar
|
XU Xiaosong, WAN Fang, YIN Fuguang. Environment facies, ecological facies and diagenetic facies of Baota formation, of Late Ordovina[J].Mineralogy and Petrology, 2001(03):64-68.
Google Scholar
|
薛春玲,戴霜,陈中阳,等.亚洲奥陶系牙形刺生物地层研究进展[J].地球科学进展,2021,36(01):29-44.
Google Scholar
|
XUE Chunling, DAI Shuang, CHEN Zhongyang, et al. Research progress of Ordovician conodont biostratigraphy in Asia[J]. Advances in Earth Science, 2021, 36(01):29-44.
Google Scholar
|
詹仁斌,靳吉锁,刘建波.奥陶纪生物大辐射研究:回顾与展望[J].科学通报(中文版), 2013, 58(33):3357-3371.
Google Scholar
|
ZHAN Renbin, JIN Jisuo, LIU Jianbo. Investigation on the great Ordovician biodiversification event(GOBE): Review and prospect(in Chinese)[J]. Chinese Science Bulletin, 2013, 58: 3357-3371.
Google Scholar
|
詹仁斌,张元动,袁文伟.地球生命过程中的一个新概念——奥陶纪生物大辐射[J].自然科学进展,2007(08):8-16.
Google Scholar
|
张鹏飞,陈世悦,杨怀宇,等.中上扬子地区碎屑岩-碳酸盐岩混积相发育特征及组合模式研究[J].天然气地球科学,2013,24(2):365-371.
Google Scholar
|
ZHANG Pengfei, CHEN Shiyue, YANG Huaiyu, et al. Research of the mixed model and developmental characteristic of the clastic-carbonatite diamictite facies in the middle of Yangzi area [J]. Natural Gas Geoscience,2013,2424(2):365-371.
Google Scholar
|
张元动,詹仁斌,甄勇毅,等.中国奥陶纪综合地层和时间框架[J].中国科学:地球科学.2019,49(01):66-92.
Google Scholar
|
ZHANG Yuandong, ZHAN Renbin, ZHEN Yongyi, et al. Ordovician integrative stratigraphy and timescale of China[J]. Science China Earth Sciences, 2019,49(01): 66-92.
Google Scholar
|
张元动, 詹仁斌, 袁文伟,等.中国奥陶纪岩石地层划分和对比[J]. 地层学杂志, 2021,45(3): 250-270.
Google Scholar
|
ZHANG Yuandong, ZHAN Renbin, YUAN Weiwen, et al. Lithostratigraphic subdivision and correlation of the Ordovician in China[J].Journal of Stratigraphy, 2021,45(3): 250-270.
Google Scholar
|
张竹桐,曾敏.重庆綦江中—晚奥陶世稳定碳同位素地层学研究及其意义[J].地层学杂志.2020,44(04):373-385.
Google Scholar
|
ZHANG Zhutong, ZENG Min. 2020. Carbon isotope chemostratigraphy of the Middle-Late Ordovician in Qijiang, Chongqing Municipality, China[J]. Journal of Stratigraphy. 2020,44(04):373-385.
Google Scholar
|
赵兵.米仓山南缘奥陶纪地层新见[J].成都理工学院学报,1999,26(01):89-94.
Google Scholar
|
ZHAO Bing. New view on the Ordovician stratigraphy in the southernMicang mountain[J].Journal of Chengdu University of Technology,1999,26(01):89-94.
Google Scholar
|
周传明,薛耀松.湘鄂西奥陶纪宝塔组灰岩网纹构造成因及沉积环境探讨[J].地层学杂志,2000,24(04):307-309+334-335.
Google Scholar
|
ZHOU Chuanming, XUE Yaosong. On polygonal reticulate structure of the Ordovician Pagoda formation of the western Hunan-Hubei area[J]. Journal of Stratigraphy, 2000,24(04):307-309+334-335.
Google Scholar
|
Ainsaar L, Meidla T, Martma T. The Middle Caradoc facies and faunal turnover in the Late Ordovician Baltoscandian palaeobasin[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2004, 210(2-4): 119-133.
Google Scholar
|
Ainsaar L, Meidla T, Martma T. Evidence for a widespread carbon isotopic event associated with late Middle Ordovician sedimentological and faunal changes in Estonia[J]. Geological Magazine, 1999,136(1): 49-62.
Google Scholar
|
Ainsaar L, Kaljo D, Martma T, et al. Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: a correlation standard and clues to environmental history[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2010, 294(3-4): 189-201.
Google Scholar
|
Algeo T J, Marenco P J, Saltzman M R. Co-evolution of oceans, climate, and the biosphere during the'Ordovician Revolution': A review[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2016, 458: 1-11.
Google Scholar
|
Barnes C R,Fortey R A, Williams S H. The pattern of global bio-events during the Ordovician period[M]. Springer, 1996, 139-172.
Google Scholar
|
Bergström S M, Xu C, Schmitz B, et al. First documentation of the Ordovician Guttenberg δ13 C excursion(GICE) in Asia: chemostratigraphy of the Pagoda and Yanwashan formations in southeastern China[J]. Geological Magazine, 2009, 146(1): 1-11.
Google Scholar
|
Bergström S M. Middle and Upper Ordovician conodonts from the Fågelsång GSSP, Scania, southern Sweden[J]. GFF, 2007, 129(2): 77-82.
Google Scholar
|
Bergström S M, Schmitz B, Saltzman M R, et al. The Upper Ordovician Guttenberg δ13 C excursion(GICE) in North America and Baltoscandia: Occurrence, chronostratigraphic significance, and paleoenvironmental relationships[J]. Geological Society of America Special Papers, 2010a, 466: 37-67.
Google Scholar
|
Bergström S M, Schmitz B, Young S A, et al. The δ13 C chemostratigraphy of the Upper Ordovician Mjøsa Formation at Furuberget near Hamar, southeastern Norway: Baltic, Trans-Atlantic, and Chinese relations[J]. Norwegian Journal of Geology, 2010b, 90:65-78 Bergström S M, Young S, Schmitz B, 2010c. Katian(Upper Ordovician) δ13 C chemostratigraphy and sequence stratigraphy in the United States and Baltoscandia: a regional comparison[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2010c, 296(3-4): 217-234.
Google Scholar
|
Calner M. Silurian global events-at the tipping point of climate change[M]. Springer, 2008, 21-57.
Google Scholar
|
Chen X. Ordovician plate tectonics of China and itsneighbouring regions[J]. Global Perspectives on Ordovician geology, 1992, 277-291.
Google Scholar
|
Cocks L R M,Torsvik T H. Ordovician palaeogeography and climate change[J]. Gondwana Research, 2020.
Google Scholar
|
Dunham R J, 1962. Classification of carbonate rocks according to depositional textures[J]. AAPG Special Volumes, 1962, 108-121.
Google Scholar
|
Embry A F,Klovan J E. A late Devonian reef tract on northeastern Banks Island, NWT[J]. Bulletin of Canadian petroleum geology, 1971, 19(4): 730-781.
Google Scholar
|
Eriksson K A, Simpson E L, Master S, et al.Neoarchaean(c. 2.58 Ga) halite casts: implications for palaeoceanic chemistry[J]. Journal of the Geological Society, 2005, 162(5): 789-799.
Google Scholar
|
Fan R,Bergström S M, Lu Y, et al. Upper Ordovician carbon isotope chemostratigraphy on the Yangtze Platform, Southwestern China: Implications for the correlation of the Guttenberg δ13C excursion(GICE) and paleoceanic change[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2015, 433: 81-90.
Google Scholar
|
Fanton K C, Holmden C. Sea-level forcing of carbon isotope excursions in epeiric seas: implications for chemostratigraphy[J]. Canadian Journal of Earth Sciences, 2007, 44(6): 807-818.
Google Scholar
|
Flügel E. Microfacies of carbonate rocks: analysis, interpretation and application[M].Springer, 2004.
Google Scholar
|
Flügel E. Microfacies of carbonate rocks: analysis, interpretation and application. 2nd edition[M].Springer-Verlag, Berlin Heidelberg, 2010,1-929.
Google Scholar
|
Gong F,Joachimski M M, Yan G, et al. Middle to Late Ordovician carbon isotope chemostratigraphy of the Lower Yangtze Platform: Implications for global correlation[J]. Geological Journal, 2021, 56(5): 2772-2784.
Google Scholar
|
Haq B U, Schutter S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68.
Google Scholar
|
Harper D A T. The Ordovician biodiversification: Setting an agenda for marine life[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2-4): 148-166.
Google Scholar
|
Hatch J R, Jacobson S R,Witzke B J, et al. Possible late Middle Ordovician organic carbon isotope excursion: evidence from Ordovician oils and hydrocarbon source rocks, mid-continent and east-central United States[J]. AAPG bulletin, 1987, 71(11): 1342-1354.
Google Scholar
|
Herrmann A D,Patzkowsky M E, Pollard D. Obliquity forcing with 8-12 times preindustrial levels of atmospheric pCO2 during the Late Ordovician glaciation[J]. Geology, 2003, 31(6): 485-488.
Google Scholar
|
Immenhauser A, Kenter J A, Ganssen G, et al. Origin and significance of isotope shifts in Pennsylvanian carbonates(Asturias, NW Spain) [J]. Journal of Sedimentary Research, 2002, 72(1): 82-94.
Google Scholar
|
Laporte D F,Holmden C, Patterson W P, et al. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2009, 276(1-4): 182-195.
Google Scholar
|
Li N, Li C,Algeo T J, et al. Redox changes in the outer Yangtze Sea(South China) through the Hirnantian Glaciation and their implications for the end-Ordovician biocrisis[J]. Earth-Science Reviews, 2020, 212:103443.
Google Scholar
|
Liu C, Li G, Wang D, et al. Middle-Upper Ordovician(Darriwilian-Early Katian) positive carbon isotope excursions in the northern Tarim Basin, northwest China: Implications for stratigraphic correlation and paleoclimate[J]. Journal of Earth Science, 2016, 27(2): 317-328.
Google Scholar
|
Luan X, Zhang X, Wu R, et al. Environmental changes revealed by Lower-Middle Ordovician deeper-water marine red beds from the marginal Yangtze Platform, South China: Links to biodiversification[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2021, 562: 110116.
Google Scholar
|
Metzger J G,Ramezani J, Bowring S A, et al. New age constraints on the duration and origin of the Late Ordovician Guttenberg δ13 C carb excursion from high-precision U-Pb geochronology of K-bentonites[J]. Bulletin, 2021, 133(3-4): 580-590.
Google Scholar
|
Munnecke A, Calner M, Harper D A T, et al. Ordovician and Silurian sea-water chemistry, sea level, and climate: A synopsis[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2010, 296(3-4): 389-413.
Google Scholar
|
Munnecke A, Zhang Y, Liu X, et al. Stable carbon isotope stratigraphy in the Ordovician of South China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2021, 307(1-4): 17-43.
Google Scholar
|
Nichols G. Sedimentology and stratigraphy[M]. John Wiley & Sons. 2009.
Google Scholar
|
Rong J, Wang Y, Zhang X. Tracking shallow marine red beds through geological time as exemplified by the lower Telychian(Silurian) in the Upper Yangtze Region, South China[J]. Science China Earth Sciences, 2012, 55(5): 699-713.
Google Scholar
|
Saltzman M R, Young S A, 2005. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia[J]. Geology(Boulder), 2005, 33(2): 109-112.
Google Scholar
|
Servais T, Owen A W, Harper D A T, et al. The Great Ordovician Biodiversification Event(GOBE): Thepalaeoecological dimension[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2010, 294(3-4): 99-119.
Google Scholar
|
Servais T, Lehnert O, Li J, et al. The Ordovician Biodiversification: revolution in the oceanic trophic chain[J]. Lethaia, 2008, 41(2): 99-109.
Google Scholar
|
Su W. Ordovician sea-level changes: Evidence from the Yangtze Platform[J]. Acta Palaeontologica Sinica, 2007, 46: 471.
Google Scholar
|
Taylor A M, Goldring R. Description and analysis of bioturbation andichnofabric[J]. Journal of the Geological Society, 1993, 150(1): 141-148.
Google Scholar
|
Tobin K J,Bergström S M, De La Garza P. A mid-Caradocian(453 Ma) drawdown in atmospheric pCO2 without ice sheet development[J]? Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 226(3-4): 187-204.
Google Scholar
|
Tolmacheva T Y, Degtyarev K E, Ryazantsev A V, et al. Conodonts from the upper Ordovician siliceous rocks of Central Kazakhstan[J]. Paleontological Journal, 2009, 43(11): 1498-1512.
Google Scholar
|
Torsvik T H, Trench A. Ordovician magnetostratigraphy: Llanvirn-Caradoc limestones of the Baltic platform[J]. Geophysical journal international, 1991, 107(1): 171-184.
Google Scholar
|
Torsvik T H, Cocks L R M. Earth history and palaeogeography[M]. Cambridge University Press, 2016.
Google Scholar
|
Torsvik T H, Cocks L R M. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation[J]. Geological Society, London, Memoirs, 2013, 38(1): 5-24.
Google Scholar
|
Wang C S, Hu X M, Huang Y J, et al. Overview of Cretaceous Oceanic Red Beds(CORBs): a window on global oceanic and climate change[M]. Cretaceous Oceanic Red Beds: Stratigraphy, Composition, Origins and Paleoceanographic and Paleoclimatic Significance: SEPM Special Publication, 2009, 91: 13-33.
Google Scholar
|
Wang Z H, Bergstrom S M. Conodont-graptolitebiostratigraphic relations across the base of the Darriwillian stage(Middle Ordovician) in the Yangtze Platform and the JCY area in Zhejiang, China[J]. Bollettino-Societa Paleontologica Italiana, 1998, 37(2-3): 187-198.
Google Scholar
|
Webby B D, Paris F,Droser M L, et al. The great Ordovician biodiversification event[M]. Columbia University Press New York, 2004.
Google Scholar
|
Webby B D, Laurie J R. Global perspectives on Ordovician geology: proceedings of the sixth International Symposium on the Ordovician System[M]. AABalkema. 1992.
Google Scholar
|
Wright D F,Stigall A L. Geologic drivers of Late Ordovician faunal change in Laurentia: investigating links between tectonics, speciation, and biotic invasions[J]. PLoS One, 2013, 8(7): e68353.
Google Scholar
|
Xiu-mian H U. Distribution, types and origins of Phanerozoic marine red beds[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(3): 342-355.
Google Scholar
|
Xu C,Bergström S M, Yuandong Z, et al. Upper Ordovician(Sandbian-Katian) graptolite and conodont zonation in the Yangtze region, China[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2010, 101(2): 111-134.
Google Scholar
|
Young S A, Saltzman M R,Bergström S M, et al. Paired δ13 C carb and δ13 C org records of Upper Ordovician(Sandbian-Katian) carbonates in North America and China: Implications for paleoceanographic change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 270(1-2): 166-178.
Google Scholar
|
Young S A, Saltzman M R,Bergström S M. Upper Ordovician(Mohawkian) carbon isotope(δ13 C) stratigraphy in eastern and central North America: Regional expression of a perturbation of the global carbon cycle[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2005, 222(1-2): 53-76.
Google Scholar
|
Young S A, Saltzman M R,Ausich W I, et al. Did changes in atmospheric CO2 coincide with latest Ordovician glacial-interglacial cycles Did changes in atmospheric CO2 coincide with latest Ordovician glacial-interglacial cycles[J]? Palaeogeography Palaeoclimatology Palaeoecology, 2010, 296(3-4): 376-388.
Google Scholar
|
Zeng M,Ettensohn F R, Wilhelm W B. Upper Mississippian(Lower Carboniferous) carbonate stratigraphy and syndepositional faulting reveal likely Ouachita flexural forebulge effects, eastern Kentucky, USA[J]. Sedimentary Geology, 2013, 289: 99-114.
Google Scholar
|
Zhan R,Jin J, Liu J, et al. Meganodular limestone of the Pagoda Formation: A time-specific carbonate facies in the Upper Ordovician of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 349-362.
Google Scholar
|
Zhang K, Yuan A, Feng Q. The Upper Ordovician Microfossil Assemblages from the Pagoda Formation inZigui, Hubei Province[J]. Journal of Earth Science, 2018, 29(4): 900-911.
Google Scholar
|
Zhang Y, Tang P,Jin J, et al. Climate change in the subtropical Paleo-Tethys before the late Ordovician glaciation[J]. Global and Planetary Change, 2021, 199: 103432.
Google Scholar
|
Zhang Y,Zhang Y D, Cheng J, et al. Carbon isotope development in the Ordovician of the Yangtze Gorges region(South China) and its implication for stratigraphic correlation and paleoenvironmental change[J]. Journal of Earth Science(Wuhan, China), 2010, 21(S1): 70-74.
Google Scholar
|