2022 Vol. 55, No. 4
Article Contents

JIN Xiaoyu, ZENG Min, CHEN Si, YANG Xueqing, SHEN Ting. 2022. Microfacies and Paleoenvironmental Significance of Upper Ordovician Carbonate Rocks in Northern Margin of the Upper Yangtze Platform. Northwestern Geology, 55(4): 158-174. doi: 10.19751/j.cnki.61-1149/p.2022.04.014
Citation: JIN Xiaoyu, ZENG Min, CHEN Si, YANG Xueqing, SHEN Ting. 2022. Microfacies and Paleoenvironmental Significance of Upper Ordovician Carbonate Rocks in Northern Margin of the Upper Yangtze Platform. Northwestern Geology, 55(4): 158-174. doi: 10.19751/j.cnki.61-1149/p.2022.04.014

Microfacies and Paleoenvironmental Significance of Upper Ordovician Carbonate Rocks in Northern Margin of the Upper Yangtze Platform

More Information
  • The Late Sandbian to the Early Katian of the Late Ordovician, as a key period before the end-Ordovician mass extinction event, records paleo-marine and paleo-environments information related to the mass extinction. Based on section measurement, sample collection and thin-section preparation and microfacies analysis, a total of eight carbonate microfacies are identified through system analysis in the Xixiang Formation to Pagoda Formation of the Upper Ordovician(Sandbian-Kadian stage) in Qiaoting section(Nanjiang, Sichuan), which are purplish-red thin laminated dolomite, gray laminated dolomite, gray-black laminated dolomite with black shale, laminated dolomite without bioturbation, calcisilicarenite, peloids bond limestone, bioclastic packstone, and bioclastic wackestone. According to the characteristics of each microfacies and combining with the field observation, we classify these samples into three sedimentary facies types, namely, epicontinental sea carbonate tidal flat, clastic-carbonatite diamictite, and carbonate ramp. The results indicate that most of the Xixiang Formation are tidal flat deposits with shallow water, which began to be transgressive at the top and then rapidly changed to carbonate ramp deposits in the Pagoda Formation. The obvious sea level rise corresponds to the global transgression in the early Katian period, and the global GICE event may be related to this transgression.
  • 加载中
  • 陈均远.奥陶纪头足类壳体的水深学信息及海平面位置年代学的初探[J].古生物学报,1988,27(3):331-345.

    Google Scholar

    CHEN Junyuan. Ordovician Cephalopod bathymetric signals and chronology of sea-level change[J].Acta Palaeontologica Science, 1988, 27(3):331-345.

    Google Scholar

    陈旭,丘金玉.宜昌奥陶纪的古环境演变[J].地层学杂志,1986,(01):1-15.

    Google Scholar

    CHEN Xu, QIU Jinyu. Ordovician palaeoenvironmental evolution in Yichang, Hubei[J]. Journal of Stratigraphy, 1986,(01):1-15.

    Google Scholar

    董瀚, 张海峰, 李鸿睿. 扬子地台西北缘泥盆纪层序地层研究[J]. 西北地质, 2001, 34(04): 61-66.

    Google Scholar

    DONG Han, ZHAN Haifeng, LI Hongrui. On the Devonian sequence stratigraphy of the north-west margin of the Yangtze platform in China[J]. Northwestern Geology, 2001, 34(04): 61-66.

    Google Scholar

    葛祥英,牟传龙,周恳恳,等.湖南地区晚奥陶世桑比期-凯迪期早期沉积特征及沉积模式[J].古地理学报,2013,15(1):59-68.

    Google Scholar

    GE Xiangying, MOU Chuanlong, ZHOU Kenken, et al. Sedimentary characteristics and depositional model in the Sandbian-Early Katian Ages of Late Ordovician in Hunan area[J].Journal of Palaeogeography, 2013, 15(1):59-68.

    Google Scholar

    禚喜准,陈骁帅,张林炎,等.中国南方宝塔组灰岩的岩石学特征及其对“龟裂纹”成因的指示——以贵州桐梓县红花园乡宝塔组灰岩为例[J].地球学报.2017,38(06):872-882.

    Google Scholar

    ZHUO Xizhun, CHEN Xiaoshuai, ZHANG Linyan, et al. Petrology of Limestone of Pagoda Formation in South China and Its Indication to the Genesis of “Turtle Crack”: A Case Study of Baota Formation Limestone at Honghuayuan Township in Tongzi County, Guizhou Province[J].Acta Geoscientica Sinica, 2017, 38(06):872-882.

    Google Scholar

    胡修棉,王成善.白垩纪大洋红层:特征、分布与成因[J].高校地质学报,2007, 13(1):1-13.

    Google Scholar

    HU Xiumian,WANG Chengshan. Cretaceous Oceanic Red Beds: Characters, Occurrences and Origin[J].Geological Journal of China Universities, 2007,13(1):1-13.

    Google Scholar

    李超,樊隽轩,孙宗元.奥陶系无机碳同位素地层学综述[J].地层学杂志, 2018, 42(4):408-428.

    Google Scholar

    LI Chao, FAN Junxuan, SUN Zongyuan. Review of ordovician inorganic carbon isotope stratigraphy[J]. Journal of Stratigraphy, 2018, 42(4):408-428.

    Google Scholar

    李皎,何登发,梅庆华.四川盆地及邻区奥陶纪构造-沉积环境与原型盆地演化[J].石油学报, 2015,36(04):427-445.

    Google Scholar

    LI Jiao, HE Dengfa, MEI Qinghua. Tectonic-depositional environment and proto-type basins evolution of the Ordovician in Sichuan Basin and adjacent areas[J].Acta Petrolei Sinica, 2015,36(04):427-445.

    Google Scholar

    廖纪佳,马思豪,廖明光,等.奥陶系宝塔灰岩网纹构造成因研究进展及新发现[J].沉积学报, 2017,35(02):241-252.

    Google Scholar

    LIAO Jijia, MA Sihao, LIAO Mingguang,et al. Research of the Origin of Network Structure in the Ordovician Pagoda Limestone: advances and new discovery[J].Acta Sedimentologica Sinica, 2017,35(02):241-252.

    Google Scholar

    穆恩之,朱兆玲,陈均远,等.四川长宁双河附近奥陶纪地层[J].地层学杂志.1978, 2(02):105-121.

    Google Scholar

    MU Enzhi, ZHU Zhaoling, CHEN Junyuan, et al. Ordovician strata near Shuanghe, Changning, Sichuan[J]. Journal of Stratigraphy, 1978, 2(02):105-121.

    Google Scholar

    戎嘉余,陈旭.华南晚奥陶世的动物群分异及生物相、岩相分布模式[J].古生物学报, 1987, 26(05):507-535.

    Google Scholar

    RONG Jiayu, CHEN Xu. Faunal differentiation, biofacies and lithofacies pattern of Late Ordovician(Ashgillian) In South China[J]. Acta Palaeontologica Science, 1987, 26(05):507-535.

    Google Scholar

    盛莘夫,姬再良.论宝塔组的时代[D].地层古生物论文集(第十六辑),1986.

    Google Scholar

    盛莘夫,姬再良.论宝塔组的沉积环境及时代[J].中国地质, 1984,(11):31-32.

    Google Scholar

    盛莘夫,姬再良.地史时期“泥裂”构造的成因初探[J].中国区域地质, 1985, 14(04):119-124.

    Google Scholar

    SHENG Shenfu, JI Zailiang. Origin of mud crack in the geologic past[J].Regional Geology of China,1985, 14(04):119-124.

    Google Scholar

    苏文博,何龙清,王永标,等.华南奥陶—志留系五峰组及龙马溪组底部斑脱岩与高分辨综合地层[J].中国科学D辑, 2002, 32(3):207-209.

    Google Scholar

    苏文博,李志明,陈建强,等.海平面变化全球可比性的可靠例证——上扬子地台东南缘奥陶纪层序地层及海平面变化研究[J].沉积学报,1999,17(03):345-353.

    Google Scholar

    SU Wenbo, LI Zhiming, CHEN Jianqiang, et al. Reliable Example for Eustacy Ordovician Sequence Stratigraphy on the Southeastern Margin of the Upper Yangtze Platform[J]. Acta Sedimentologica Sinica, 1999, 17(03):345-353.

    Google Scholar

    汪啸风.中国南方奥陶纪构造古地理及年代与生物地层的划分与对比[J].地学前缘,2016,23(06):253-267.

    Google Scholar

    WANG Xiaofeng. Ordovician tectonic-paleography in South China chrono-and bio-stratigraphic division and correlation[J]. Earth Science Frontiers,2016, 23(06):253-267.

    Google Scholar

    汪啸风,陈孝红.中国各地质时代地层划分与对比[M]北京:地质出版社.2005.

    Google Scholar

    王安东,周瑶琪,仲岩磊,等.陕南奥陶系宝塔组灰岩网状裂缝成因[J].地球科学(中国地质大学学报),2012,37(04):843-850.

    Google Scholar

    WANG Andong, ZHOU Yaoqi, ZHONG Yanlei, et al. Causes of reticular cracks in Ordovician Baota Formation Limestone in Southern Shaanxi. [J].Earth Science-Journal of China University of Geosciences, 2012, 37(04):843-850.

    Google Scholar

    王成善,胡修棉,李祥辉.古海洋溶解氧与缺氧和富氧问题研究[J].海洋地质与第四纪地质, 1999(03):42-50.

    Google Scholar

    WANG Chengshan, HU Xiumian, LI Xianghui. Dissolved oxygen in Palaeo-ocean: anoxic events and high-oxic problems[J]. Marine Geology & Quaternary Geology, 1999,19(03):42-50.

    Google Scholar

    王龙,吴海,张瑞,等.碳酸盐台地的类型、特征和沉积模式——兼论华北地台寒武纪陆表海—淹没台地的沉积样式[J].地质论评, 2018,64(01):62-76.

    Google Scholar

    WANG Long, WU Hai, ZHANG Rui, et al. The Types,Characteristics and Depositional Models of Carbonate Platform:Implications for Cambrian Sedimentary Patterns of Epeiric-drowned Carbonate Platform in North China[J].Geological Review, 2018, 64(01):62-76.

    Google Scholar

    王泽中.宝塔灰岩-中奥陶统密集段[J].岩相古地理,1996,16(05):18-21.

    Google Scholar

    WANG Zezhong. Baota formation:a middle Ordovician condensed section.[J]. Sedimentary Facies and Palaeogeography,1996,16(05):18-21.

    Google Scholar

    吴劲薇,夏树芳.关于“龟裂纹灰岩”成因的探讨[J].南京大学学报(自然科学版),1989,25(01):136-149.

    Google Scholar

    WU Jinwei, XIA Shufang. Notes on the origin of the poiygonal marking limestones[J].Journal of Nanjing University,1989,25(01):136-149.

    Google Scholar

    吴荣昌,詹仁斌,李贵鹏,等.浅论华南扬子区下、中奥陶统紫台组[J].地层学杂志.2007,31(04):325-332.

    Google Scholar

    WU Rongchang, ZHAN Renbin, LI Guipeng, et al. Brief discussion on the lower to middle Ordovician Zitai formation in the Yangtze region, South China[J]. Journal of Stratigraphy, 2007, 31(04):325-332.

    Google Scholar

    肖传桃,龚文平,罗顺社,等.华南地区奥陶纪头足类生物相及其分区[J].沉积学报, 2006(02):242-250.

    Google Scholar

    XIAN Chuantao, GONG Wenping, LUO Shunshe, et al. Ordovician Cephalopoda biofacies and the provincialization in the South China. [J]. Acta Sedimentologica Sinica,2006,24(02):242-250.

    Google Scholar

    许效松,万方,尹福光,等.奥陶系宝塔组灰岩的环境相、生态相与成岩相[J].矿物岩石.2001(03):64-68.

    Google Scholar

    XU Xiaosong, WAN Fang, YIN Fuguang. Environment facies, ecological facies and diagenetic facies of Baota formation, of Late Ordovina[J].Mineralogy and Petrology, 2001(03):64-68.

    Google Scholar

    薛春玲,戴霜,陈中阳,等.亚洲奥陶系牙形刺生物地层研究进展[J].地球科学进展,2021,36(01):29-44.

    Google Scholar

    XUE Chunling, DAI Shuang, CHEN Zhongyang, et al. Research progress of Ordovician conodont biostratigraphy in Asia[J]. Advances in Earth Science, 2021, 36(01):29-44.

    Google Scholar

    詹仁斌,靳吉锁,刘建波.奥陶纪生物大辐射研究:回顾与展望[J].科学通报(中文版), 2013, 58(33):3357-3371.

    Google Scholar

    ZHAN Renbin, JIN Jisuo, LIU Jianbo. Investigation on the great Ordovician biodiversification event(GOBE): Review and prospect(in Chinese)[J]. Chinese Science Bulletin, 2013, 58: 3357-3371.

    Google Scholar

    詹仁斌,张元动,袁文伟.地球生命过程中的一个新概念——奥陶纪生物大辐射[J].自然科学进展,2007(08):8-16.

    Google Scholar

    张鹏飞,陈世悦,杨怀宇,等.中上扬子地区碎屑岩-碳酸盐岩混积相发育特征及组合模式研究[J].天然气地球科学,2013,24(2):365-371.

    Google Scholar

    ZHANG Pengfei, CHEN Shiyue, YANG Huaiyu, et al. Research of the mixed model and developmental characteristic of the clastic-carbonatite diamictite facies in the middle of Yangzi area [J]. Natural Gas Geoscience,2013,2424(2):365-371.

    Google Scholar

    张元动,詹仁斌,甄勇毅,等.中国奥陶纪综合地层和时间框架[J].中国科学:地球科学.2019,49(01):66-92.

    Google Scholar

    ZHANG Yuandong, ZHAN Renbin, ZHEN Yongyi, et al. Ordovician integrative stratigraphy and timescale of China[J]. Science China Earth Sciences, 2019,49(01): 66-92.

    Google Scholar

    张元动, 詹仁斌, 袁文伟,等.中国奥陶纪岩石地层划分和对比[J]. 地层学杂志, 2021,45(3): 250-270.

    Google Scholar

    ZHANG Yuandong, ZHAN Renbin, YUAN Weiwen, et al. Lithostratigraphic subdivision and correlation of the Ordovician in China[J].Journal of Stratigraphy, 2021,45(3): 250-270.

    Google Scholar

    张竹桐,曾敏.重庆綦江中—晚奥陶世稳定碳同位素地层学研究及其意义[J].地层学杂志.2020,44(04):373-385.

    Google Scholar

    ZHANG Zhutong, ZENG Min. 2020. Carbon isotope chemostratigraphy of the Middle-Late Ordovician in Qijiang, Chongqing Municipality, China[J]. Journal of Stratigraphy. 2020,44(04):373-385.

    Google Scholar

    赵兵.米仓山南缘奥陶纪地层新见[J].成都理工学院学报,1999,26(01):89-94.

    Google Scholar

    ZHAO Bing. New view on the Ordovician stratigraphy in the southernMicang mountain[J].Journal of Chengdu University of Technology,1999,26(01):89-94.

    Google Scholar

    周传明,薛耀松.湘鄂西奥陶纪宝塔组灰岩网纹构造成因及沉积环境探讨[J].地层学杂志,2000,24(04):307-309+334-335.

    Google Scholar

    ZHOU Chuanming, XUE Yaosong. On polygonal reticulate structure of the Ordovician Pagoda formation of the western Hunan-Hubei area[J]. Journal of Stratigraphy, 2000,24(04):307-309+334-335.

    Google Scholar

    Ainsaar L, Meidla T, Martma T. The Middle Caradoc facies and faunal turnover in the Late Ordovician Baltoscandian palaeobasin[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2004, 210(2-4): 119-133.

    Google Scholar

    Ainsaar L, Meidla T, Martma T. Evidence for a widespread carbon isotopic event associated with late Middle Ordovician sedimentological and faunal changes in Estonia[J]. Geological Magazine, 1999,136(1): 49-62.

    Google Scholar

    Ainsaar L, Kaljo D, Martma T, et al. Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: a correlation standard and clues to environmental history[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2010, 294(3-4): 189-201.

    Google Scholar

    Algeo T J, Marenco P J, Saltzman M R. Co-evolution of oceans, climate, and the biosphere during the'Ordovician Revolution': A review[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2016, 458: 1-11.

    Google Scholar

    Barnes C R,Fortey R A, Williams S H. The pattern of global bio-events during the Ordovician period[M]. Springer, 1996, 139-172.

    Google Scholar

    Bergström S M, Xu C, Schmitz B, et al. First documentation of the Ordovician Guttenberg δ13 C excursion(GICE) in Asia: chemostratigraphy of the Pagoda and Yanwashan formations in southeastern China[J]. Geological Magazine, 2009, 146(1): 1-11.

    Google Scholar

    Bergström S M. Middle and Upper Ordovician conodonts from the Fågelsång GSSP, Scania, southern Sweden[J]. GFF, 2007, 129(2): 77-82.

    Google Scholar

    Bergström S M, Schmitz B, Saltzman M R, et al. The Upper Ordovician Guttenberg δ13 C excursion(GICE) in North America and Baltoscandia: Occurrence, chronostratigraphic significance, and paleoenvironmental relationships[J]. Geological Society of America Special Papers, 2010a, 466: 37-67.

    Google Scholar

    Bergström S M, Schmitz B, Young S A, et al. The δ13 C chemostratigraphy of the Upper Ordovician Mjøsa Formation at Furuberget near Hamar, southeastern Norway: Baltic, Trans-Atlantic, and Chinese relations[J]. Norwegian Journal of Geology, 2010b, 90:65-78 Bergström S M, Young S, Schmitz B, 2010c. Katian(Upper Ordovician) δ13 C chemostratigraphy and sequence stratigraphy in the United States and Baltoscandia: a regional comparison[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2010c, 296(3-4): 217-234.

    Google Scholar

    Calner M. Silurian global events-at the tipping point of climate change[M]. Springer, 2008, 21-57.

    Google Scholar

    Chen X. Ordovician plate tectonics of China and itsneighbouring regions[J]. Global Perspectives on Ordovician geology, 1992, 277-291.

    Google Scholar

    Cocks L R M,Torsvik T H. Ordovician palaeogeography and climate change[J]. Gondwana Research, 2020.

    Google Scholar

    Dunham R J, 1962. Classification of carbonate rocks according to depositional textures[J]. AAPG Special Volumes, 1962, 108-121.

    Google Scholar

    Embry A F,Klovan J E. A late Devonian reef tract on northeastern Banks Island, NWT[J]. Bulletin of Canadian petroleum geology, 1971, 19(4): 730-781.

    Google Scholar

    Eriksson K A, Simpson E L, Master S, et al.Neoarchaean(c. 2.58 Ga) halite casts: implications for palaeoceanic chemistry[J]. Journal of the Geological Society, 2005, 162(5): 789-799.

    Google Scholar

    Fan R,Bergström S M, Lu Y, et al. Upper Ordovician carbon isotope chemostratigraphy on the Yangtze Platform, Southwestern China: Implications for the correlation of the Guttenberg δ13C excursion(GICE) and paleoceanic change[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2015, 433: 81-90.

    Google Scholar

    Fanton K C, Holmden C. Sea-level forcing of carbon isotope excursions in epeiric seas: implications for chemostratigraphy[J]. Canadian Journal of Earth Sciences, 2007, 44(6): 807-818.

    Google Scholar

    Flügel E. Microfacies of carbonate rocks: analysis, interpretation and application[M].Springer, 2004.

    Google Scholar

    Flügel E. Microfacies of carbonate rocks: analysis, interpretation and application. 2nd edition[M].Springer-Verlag, Berlin Heidelberg, 2010,1-929.

    Google Scholar

    Gong F,Joachimski M M, Yan G, et al. Middle to Late Ordovician carbon isotope chemostratigraphy of the Lower Yangtze Platform: Implications for global correlation[J]. Geological Journal, 2021, 56(5): 2772-2784.

    Google Scholar

    Haq B U, Schutter S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68.

    Google Scholar

    Harper D A T. The Ordovician biodiversification: Setting an agenda for marine life[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2-4): 148-166.

    Google Scholar

    Hatch J R, Jacobson S R,Witzke B J, et al. Possible late Middle Ordovician organic carbon isotope excursion: evidence from Ordovician oils and hydrocarbon source rocks, mid-continent and east-central United States[J]. AAPG bulletin, 1987, 71(11): 1342-1354.

    Google Scholar

    Herrmann A D,Patzkowsky M E, Pollard D. Obliquity forcing with 8-12 times preindustrial levels of atmospheric pCO2 during the Late Ordovician glaciation[J]. Geology, 2003, 31(6): 485-488.

    Google Scholar

    Immenhauser A, Kenter J A, Ganssen G, et al. Origin and significance of isotope shifts in Pennsylvanian carbonates(Asturias, NW Spain) [J]. Journal of Sedimentary Research, 2002, 72(1): 82-94.

    Google Scholar

    Laporte D F,Holmden C, Patterson W P, et al. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2009, 276(1-4): 182-195.

    Google Scholar

    Li N, Li C,Algeo T J, et al. Redox changes in the outer Yangtze Sea(South China) through the Hirnantian Glaciation and their implications for the end-Ordovician biocrisis[J]. Earth-Science Reviews, 2020, 212:103443.

    Google Scholar

    Liu C, Li G, Wang D, et al. Middle-Upper Ordovician(Darriwilian-Early Katian) positive carbon isotope excursions in the northern Tarim Basin, northwest China: Implications for stratigraphic correlation and paleoclimate[J]. Journal of Earth Science, 2016, 27(2): 317-328.

    Google Scholar

    Luan X, Zhang X, Wu R, et al. Environmental changes revealed by Lower-Middle Ordovician deeper-water marine red beds from the marginal Yangtze Platform, South China: Links to biodiversification[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2021, 562: 110116.

    Google Scholar

    Metzger J G,Ramezani J, Bowring S A, et al. New age constraints on the duration and origin of the Late Ordovician Guttenberg δ13 C carb excursion from high-precision U-Pb geochronology of K-bentonites[J]. Bulletin, 2021, 133(3-4): 580-590.

    Google Scholar

    Munnecke A, Calner M, Harper D A T, et al. Ordovician and Silurian sea-water chemistry, sea level, and climate: A synopsis[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2010, 296(3-4): 389-413.

    Google Scholar

    Munnecke A, Zhang Y, Liu X, et al. Stable carbon isotope stratigraphy in the Ordovician of South China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2021, 307(1-4): 17-43.

    Google Scholar

    Nichols G. Sedimentology and stratigraphy[M]. John Wiley & Sons. 2009.

    Google Scholar

    Rong J, Wang Y, Zhang X. Tracking shallow marine red beds through geological time as exemplified by the lower Telychian(Silurian) in the Upper Yangtze Region, South China[J]. Science China Earth Sciences, 2012, 55(5): 699-713.

    Google Scholar

    Saltzman M R, Young S A, 2005. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia[J]. Geology(Boulder), 2005, 33(2): 109-112.

    Google Scholar

    Servais T, Owen A W, Harper D A T, et al. The Great Ordovician Biodiversification Event(GOBE): Thepalaeoecological dimension[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2010, 294(3-4): 99-119.

    Google Scholar

    Servais T, Lehnert O, Li J, et al. The Ordovician Biodiversification: revolution in the oceanic trophic chain[J]. Lethaia, 2008, 41(2): 99-109.

    Google Scholar

    Su W. Ordovician sea-level changes: Evidence from the Yangtze Platform[J]. Acta Palaeontologica Sinica, 2007, 46: 471.

    Google Scholar

    Taylor A M, Goldring R. Description and analysis of bioturbation andichnofabric[J]. Journal of the Geological Society, 1993, 150(1): 141-148.

    Google Scholar

    Tobin K J,Bergström S M, De La Garza P. A mid-Caradocian(453 Ma) drawdown in atmospheric pCO2 without ice sheet development[J]? Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 226(3-4): 187-204.

    Google Scholar

    Tolmacheva T Y, Degtyarev K E, Ryazantsev A V, et al. Conodonts from the upper Ordovician siliceous rocks of Central Kazakhstan[J]. Paleontological Journal, 2009, 43(11): 1498-1512.

    Google Scholar

    Torsvik T H, Trench A. Ordovician magnetostratigraphy: Llanvirn-Caradoc limestones of the Baltic platform[J]. Geophysical journal international, 1991, 107(1): 171-184.

    Google Scholar

    Torsvik T H, Cocks L R M. Earth history and palaeogeography[M]. Cambridge University Press, 2016.

    Google Scholar

    Torsvik T H, Cocks L R M. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation[J]. Geological Society, London, Memoirs, 2013, 38(1): 5-24.

    Google Scholar

    Wang C S, Hu X M, Huang Y J, et al. Overview of Cretaceous Oceanic Red Beds(CORBs): a window on global oceanic and climate change[M]. Cretaceous Oceanic Red Beds: Stratigraphy, Composition, Origins and Paleoceanographic and Paleoclimatic Significance: SEPM Special Publication, 2009, 91: 13-33.

    Google Scholar

    Wang Z H, Bergstrom S M. Conodont-graptolitebiostratigraphic relations across the base of the Darriwillian stage(Middle Ordovician) in the Yangtze Platform and the JCY area in Zhejiang, China[J]. Bollettino-Societa Paleontologica Italiana, 1998, 37(2-3): 187-198.

    Google Scholar

    Webby B D, Paris F,Droser M L, et al. The great Ordovician biodiversification event[M]. Columbia University Press New York, 2004.

    Google Scholar

    Webby B D, Laurie J R. Global perspectives on Ordovician geology: proceedings of the sixth International Symposium on the Ordovician System[M]. AABalkema. 1992.

    Google Scholar

    Wright D F,Stigall A L. Geologic drivers of Late Ordovician faunal change in Laurentia: investigating links between tectonics, speciation, and biotic invasions[J]. PLoS One, 2013, 8(7): e68353.

    Google Scholar

    Xiu-mian H U. Distribution, types and origins of Phanerozoic marine red beds[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(3): 342-355.

    Google Scholar

    Xu C,Bergström S M, Yuandong Z, et al. Upper Ordovician(Sandbian-Katian) graptolite and conodont zonation in the Yangtze region, China[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2010, 101(2): 111-134.

    Google Scholar

    Young S A, Saltzman M R,Bergström S M, et al. Paired δ13 C carb and δ13 C org records of Upper Ordovician(Sandbian-Katian) carbonates in North America and China: Implications for paleoceanographic change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 270(1-2): 166-178.

    Google Scholar

    Young S A, Saltzman M R,Bergström S M. Upper Ordovician(Mohawkian) carbon isotope(δ13 C) stratigraphy in eastern and central North America: Regional expression of a perturbation of the global carbon cycle[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2005, 222(1-2): 53-76.

    Google Scholar

    Young S A, Saltzman M R,Ausich W I, et al. Did changes in atmospheric CO2 coincide with latest Ordovician glacial-interglacial cycles Did changes in atmospheric CO2 coincide with latest Ordovician glacial-interglacial cycles[J]? Palaeogeography Palaeoclimatology Palaeoecology, 2010, 296(3-4): 376-388.

    Google Scholar

    Zeng M,Ettensohn F R, Wilhelm W B. Upper Mississippian(Lower Carboniferous) carbonate stratigraphy and syndepositional faulting reveal likely Ouachita flexural forebulge effects, eastern Kentucky, USA[J]. Sedimentary Geology, 2013, 289: 99-114.

    Google Scholar

    Zhan R,Jin J, Liu J, et al. Meganodular limestone of the Pagoda Formation: A time-specific carbonate facies in the Upper Ordovician of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 349-362.

    Google Scholar

    Zhang K, Yuan A, Feng Q. The Upper Ordovician Microfossil Assemblages from the Pagoda Formation inZigui, Hubei Province[J]. Journal of Earth Science, 2018, 29(4): 900-911.

    Google Scholar

    Zhang Y, Tang P,Jin J, et al. Climate change in the subtropical Paleo-Tethys before the late Ordovician glaciation[J]. Global and Planetary Change, 2021, 199: 103432.

    Google Scholar

    Zhang Y,Zhang Y D, Cheng J, et al. Carbon isotope development in the Ordovician of the Yangtze Gorges region(South China) and its implication for stratigraphic correlation and paleoenvironmental change[J]. Journal of Earth Science(Wuhan, China), 2010, 21(S1): 70-74.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(779) PDF downloads(45) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint