2022 Vol. 55, No. 3
Article Contents

ZHOU Aorigele, WANG Ying, TANG Juxing, WANG Xiaonan, ZHANG Guan, TIAN Bin, LIN Wenhai. 2022. Early Miocene Exhumation History in the Eastern Gangdese Porphyry Copper Belt and Its Influence on the Spatiotemporal Distribution of Oligocene-Miocene Porphyry Deposits. Northwestern Geology, 55(3): 286-296. doi: 10.19751/j.cnki.61-1149/p.2022.03.023
Citation: ZHOU Aorigele, WANG Ying, TANG Juxing, WANG Xiaonan, ZHANG Guan, TIAN Bin, LIN Wenhai. 2022. Early Miocene Exhumation History in the Eastern Gangdese Porphyry Copper Belt and Its Influence on the Spatiotemporal Distribution of Oligocene-Miocene Porphyry Deposits. Northwestern Geology, 55(3): 286-296. doi: 10.19751/j.cnki.61-1149/p.2022.03.023

Early Miocene Exhumation History in the Eastern Gangdese Porphyry Copper Belt and Its Influence on the Spatiotemporal Distribution of Oligocene-Miocene Porphyry Deposits

More Information
  • Gangdese Oligocene-Miocene porphyry copper belt is the important component of Tethys metallogenic domain, where numerous giant and large porphyry-skarn Cu-Mo-Au deposits have been discovered. However, the Tibetan Plateau that hosts this copper belt has suffered intense and rapid uplifting and erosion since Oligocene. How these Oligocene-Miocene deposits preserved in that environment suffering rapid uplifting and erosion remains as mystery and how the temporal and spatial distribution of erosion dominate the Oligocene-Miocene deposits in the belt remains unsettled. Basing on the zircon and apatite (U-Th)/He dating on the vertical section inner Gangdese arc 40km north of Zedong area, the author discovered an early Miocene (17.3~15.1 Ma) intense and rapid erosion event in the Gangdese porphyry Cu belt, during which the average erosion rate was >1.82 km/Ma, the erosion amount was 4 km. And then the erosion rate decreased to 0.14~0.19 km/Ma with the erosion amount from 15.1 Ma to present of ~2.5 km. Integrating the previous thermo-chronological data, the author reveals that the early Miocene intense erosion zone in the Gangdese porphyry Cu belt was E-W trending and controlled by the southward thrusting of Xietongmen-Oiga shear zone. Even though the contemporaneous erosional event was also developed on the southern and northern sides, the intensities were significantly lower than the shear zone area, indicating that the uplifting and erosion in the plateau has varied temporally and spatially since Miocene. Besides, the Oligocene and Miocene porphyry deposits are distributed in the weak erosion zones on the southern and northern sides of the early Miocene E-W trending intense erosional belt respectively, indicating that the differential erosion is one of the restrictive factors for the temporal and spatial distribution of Oligocene-Miocene deposits in the belt.
  • 加载中
  • 董国臣, 莫宣学, 赵志丹, 等. 拉萨北部林周盆地林子宗火山岩层序新议[J]. 地质通报, 2005, 24(6):549-557.

    Google Scholar

    DONG Guochen, MO Xuanxue, ZHAO Zhidan, et al. A new understanding of the stratigraphic successions of the Linzizong volcanic rocks in the Lhunzhub basin, northern Lhasa, Tibet, China. Geological Bulletin of China[J], 2005, 24(6):549-557.

    Google Scholar

    吕鹏瑞, 姚文光, 张辉善, 等. 特提斯成矿域中新世斑岩铜矿岩石成因、源区、构造演化及其成矿作用过程[J]. 地质学报, 2020, 94(08):2291-2310.

    Google Scholar

    LÜ Pengrui, YAO Wenguang, ZHANG Huishan, et al. Petrogenesis, source, tectonic evolution and mineralization process of the Miocene porphyry Cu deposits in the Tethyan metallogenic domain[J]. Acta Geologica Sinica. 2020, 94(08):2291-2310.

    Google Scholar

    马元, 许志琴, 李广伟, 等. 藏南冈底斯白垩纪弧后盆地的地壳变形及初始高原的形成[J]. 岩石学报, 2017, 33(12):3861-3872.

    Google Scholar

    MA Yuan, XU Zhiqin, LI Guangwei, et al. Crustal deformation of the Gangdese Cretaceous back-arc basin and formation of Proto-plateau, South Tibet[J]. Acta Petrologica Sinica, 2017, 33(12):3861-3872.

    Google Scholar

    孟元库, 徐志琴, 马士委, 等. 藏南冈底斯地体谢通门-曲水韧性剪切带40Ar/39Ar年代学约束[J]. 地质论评, 2016a, 62(4):795-806.

    Google Scholar

    MENG Yuanku, XU Zhiqin, MA Shiwei, et al. The 40Ar/39Ar Geochronological Constraints on the Xaitongmoin-Quxu Ductile Shear Zone in the Gangdese Batholith, Southern Xizang(Tibet)[J]. Geological Review, 2016a, 62(4):795-806.

    Google Scholar

    孟元库, 许志琴, 马士委, 等. 藏南冈底斯岩浆带中段曲水韧性剪切带的变形特征及其年代学约束[J]. 地球科学, 2016b, 41(7):1081-1098.

    Google Scholar

    MENG Yuanku, XU Zhiqin, MA Shiwei, et al. Deformational characteristics and geochronological constraints of Quxu ductile shear zone in Middle Gangdese magmatic belt, South Tibet[J]. Earth Science, 2016b, 41(7):1081-1098.

    Google Scholar

    王根厚, 曾庆高, 普布次仁. 西藏谢通门-乌郁斜滑韧性剪切带研究[J]. 西藏地质, 1995, (1):93-98.

    Google Scholar

    WANG Genhou, ZENG Qinggao, PUBU Ciren. A study of Xietongmen-Wuyu Oblique-Sliding Ductile Shear Zone in Tibet[J]. Tibet Geology, 1995, (1):93-98.

    Google Scholar

    王英, 郑德文, 李又娟, 等. 国际标样Fish Canyon Tuff锆石的(U-Th)/He年龄测定[J]. 地震地质, 2019, 41(5):1302-1315.

    Google Scholar

    WANG Ying, ZHENG Dewen, LI Youjuan, et al. (U-TH)/He Dating of International standard Fish Canyon Tuff Zircon[J]. Seismology and Egology, 2019, 41(5):1302-1315.

    Google Scholar

    王英, 郑德文, 武颖, 等. 磷灰石单颗粒(U-Th)/He测年实验流程的建立及验证[J]. 地震地质, 2017, 39(06):1143-1157.

    Google Scholar

    WANG Ying, ZHENG Dewen, WU Ying, et al. Measurement procedure of single-grain apatite (U-Th)/He dating and its validation by Durango apatite standard[J]. Seismology and Egology, 2017, 39(06):1143-1157.

    Google Scholar

    袁万明, 侯增谦, 李胜荣, 等. 西藏甲马多金属矿区热历史的裂变径迹证据[J]. 中国科学:D 辑, 2001a, 31(B12):117-121.

    Google Scholar

    YUAN Wanming, HOU Zengqian, LI Shengrong, et al. Fission track evidence for thermal history of the Jiama polymetallic mining area, Tibet[J]. Scientia Sinica Terrae, 2001, 31(B12):117-121.

    Google Scholar

    袁万明, 王世成, 李胜荣, 等. 西藏冈底斯带构造活动的裂变径迹证据[J]. 科学通报(中文版), 2001b, 46(20):1739-1742.

    Google Scholar

    YUAN Wanming, WANG Shicheng, LI Shengrong, et al. Fission track evidence of tectonic activity in the Gangdise belt, Tibet[J]. Chinese Science Bulletin, 2001b, 46(20):1739-1742.

    Google Scholar

    赵珍, 陆露, 吴珍汉, 等. 西藏冈底斯新生代以来的抬升过程——磷灰石裂变径迹热史模拟的证据[J]. 地质通报, 2017, 36(9):1553-1561.

    Google Scholar

    ZHAO Zhen, LU Lu, WU Zhenhan, et al. Cenozoic uplift process in Gangdise, Tibet:Evidence from thermal history modeling of apatite fission track[J]. Geological Bulletin of China, 2017, 36(9):1553-1561.

    Google Scholar

    Chu Meifei, Chung Sunlin, Song Biao, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet[J]. Geology, 2006, 34(9):745-748.

    Google Scholar

    Chung S L, Chu M F, Zhang Y Q, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 2005, 68(3-4):173-196.

    Google Scholar

    Cooke D R. Porphyry Cu-Au-Mo deposits, FUTORES II Conference-Future Understanding of Tectonics, Ores, Resources, Environment and Sustainability, James Cook University, Townsville, QLD, 2017:25.

    Google Scholar

    Cooke D R, Hollings P, Walshe J L. Giant porphyry deposits:characteristics, distribution, and tectonic controls[J]. Economic geology, 2005, 100(5):801-818.

    Google Scholar

    Copeland P, Harrison T M, Pan Y, et al. Thermal evolution of the Gangdese batholith, southern Tibet:a history of episodic unroofing[J]. Tectonics, 1995, 14(2):223-236.

    Google Scholar

    Dai Jingen, Wang Chengshan, Hourigan Jeremy, et al. Exhumation History of the Gangdese Batholith, Southern Tibetan Plateau:Evidence from Apatite and Zircon (U-Th)/He Thermochronology[J]. Journal of Geology, 2013, 121(2):155-172.

    Google Scholar

    Farley K A, Wolf R A, Silver L T. The effects of long alpha-stopping distances on (U-Th)/He ages[J]. Geochimica Et Cosmochimica Acta, 1996, 60(21):4223-4229.

    Google Scholar

    Ge Yukui, Li Yalin, Wang Xiaonan, et al. Oligocene-Miocene burial and exhumation of the southernmost Gangdese mountains from sedimentary and thermochronological evidence[J]. Tectonophysics, 2018, 723:68-80.

    Google Scholar

    Harrison T M, Yin A, Grove M, et al. The Zedong Window:A record of superposed Tertiary convergence in southeastern Tibet[J]. Journal of Geophysical Research-Solid Earth, 2000, 105(B8):19211-19230.

    Google Scholar

    Ji Weiqiang, Wu Fuyuan, Liu Chuanzhou, et al. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet[J]. Science in China Series D-Earth Sciences, 2009, 52(9):1240-1261.

    Google Scholar

    Kesler Stephen E, Wilkinson Bruce H. The role of exhumation in the temporal distribution of ore deposits[J]. Economic Geology, 2006, 101(5):919-922.

    Google Scholar

    Li Guangwei, Tian Yuntao, Kohn Barry P, et al. Cenozoic low temperature cooling history of the Northern Tethyan Himalaya in Zedang, SE Tibet and its implications[J]. Tectonophysics, 2015a, 643:80-93.

    Google Scholar

    Li Guangwei, Kohn Barry, Sandiford Mike, et al. Synorogenic morphotectonic evolution of the Gangdese batholith, South Tibet:Insights from low-temperature thermochronology[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(1):101-112.

    Google Scholar

    Li Y L, Wang C S, Dai J G, et al. Propagation of the deformation and growth of the Tibetan-Himalayan orogen:A review[J]. Earth-Science Reviews, 2015b, 143:36-61.

    Google Scholar

    Mo Xuanxue, Niu Yaoling, Dong Guochen, et al. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic Succession in southern Tibet[J]. Chemical Geology, 2008, 250(1-4):49-67.

    Google Scholar

    Sillitoe Richard H. Porphyry Copper Systems[J]. Economic Geology, 2010, 105(1):3-41.

    Google Scholar

    Tremblay M M, Fox M, Schmidt J L. Erosion in southern Tibet shut down at~10 Ma due to enhanced rock uplift within the Himalaya[J]. Proceedings of the National Academy of Sciences, 2015, 112(39):12030-12035.

    Google Scholar

    Wen Daren, Liu Dunyi, Chung Sunlin, et al. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet[J]. Chemical Geology, 2008, 252(3-4):191-201.

    Google Scholar

    Williams H, Turner S, Kelley S, et al. Age and composition of dikes in Southern Tibet:New constraints on the timing of east-west extension and its relationship to postcollisional volcanism[J]. Geology, 2001, 29(4):339-342.

    Google Scholar

    Yang Zhiming, Goldfarb Richard, Chang Zhaoshan. Generation of postcollisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate[J]. Society of Economic Geologists, 2016, 19:279-300.

    Google Scholar

    Yanites B J, Kesler S E. A climate signal in exhumation patterns revealed by porphyry copper deposits[J]. Nature Geoscience, 2015, 8(6):462.

    Google Scholar

    Yin A, Harrison T M, Ryerson F J, et al. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet[J]. Journal of Geophysical Research, 1994, 99(B9):18175-18201.

    Google Scholar

    Yin A, Harrison T M, Murphy M A, et al. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision[J]. Geological Society of America Bulletin, 1999, 111(11):1644-1664.

    Google Scholar

    Zhao Junxing, Qin Kezhang, Xiao Bo, et al. Thermal history of the giant Qulong Cu-Mo deposit, Gangdese metallogenic belt, Tibet:Constraints on magmatic-hydrothermal evolution and exhumation[J]. Gondwana Research, 2016, 36:390-409.

    Google Scholar

    Zhou Aorigele, Dai Jingen, Li Yalin, et al. Differential exhumation histories between Qulong and Xiongcun porphyry copper deposits in the Gangdese copper metallogenic Belt:Insights from low temperature thermochronology[J]. Ore Geology Reviews, 2019, 107:801-819.

    Google Scholar

    Zhou Aorigele, Tang Juxing, Zheng Ming. Eocene uplift and exhumation in Gangdese area:Evidence from zircon U-Pb ages and Al-in-biotite geobarometer[J]. China Geology, 2020, 3(4):652-655.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(839) PDF downloads(94) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint