2022 Vol. 55, No. 2
Article Contents

LIU Liang, SHI Wei, ZHANG Xiaoping, HAN Bing, DONG Xin, YUAN Lin. 2022. Research on Spatial Distribution of Artificial Fill in Xi'an Based on Gaussian Mixture Clustering Algorithm. Northwestern Geology, 55(2): 298-304. doi: 10.19751/j.cnki.61-1149/p.2022.02.027
Citation: LIU Liang, SHI Wei, ZHANG Xiaoping, HAN Bing, DONG Xin, YUAN Lin. 2022. Research on Spatial Distribution of Artificial Fill in Xi'an Based on Gaussian Mixture Clustering Algorithm. Northwestern Geology, 55(2): 298-304. doi: 10.19751/j.cnki.61-1149/p.2022.02.027

Research on Spatial Distribution of Artificial Fill in Xi'an Based on Gaussian Mixture Clustering Algorithm

  • By sorting out the engineering geological data of 400km2 area in the main urban area of Xi'an, about 20793 engineering geological drillings are selected to be used in spatial distribution researching of miscellaneous fill and plain fill. Gaussian mixture clustering algorithm in Machine learning is used for learning unlabeled drilling data samples, Akaike Information Criterion and Bayesian Information Criterion are used for testing Gaussian Mixture Clustering Algorithm, and n=140 is the bottom of cluster number of miscellaneous fill and plain fill are determined by trial calculation, and then spatial distribution map of miscellaneous fill and plain fill are drawn. The research shows that artificial fill of Xi'an is widely distributed, its thickness is mostly between 3 to 10 meters, maximum thickness in local areas can reach more than 10 meters. The occurrence and thickness of soil layers change rapidly in plane and their properties are complicated. Miscellaneous fill and plain fill are widely distributed in urban areas,depth of embedment is mostly within 3 meters, some areas can reach 3 to 10 meters, and very few areas can reach more than 10 meters.
  • 加载中
  • 西安市城市规划管理局.西安城市工程地质图集[M].西安:西安地图出版社, 1998.

    Google Scholar

    李豪.成都市中心城区砂卵石层空间分布规律研究[D].成都:西南交通大学, 2018.

    Google Scholar

    LI Hao. Research On The Spatial Distribution of Sand-cobble Stratum in the Chengdu central city[D]. Chengdu:Southwest Jiaotong University, 2018.

    Google Scholar

    郭培虹, 牛瑞卿.基于遥感的三峡库区库岸岩土体类型及空间分布研究[J].长江科学院院报, 2010, 27(4):70-73.

    Google Scholar

    GUO Peihong, NIU Ruiqing. Study on Classification of Rock-Soil Bank Slope and Its Spatial Distribution in Three Gorges Reservoir Area Based on Remote Sensing[J]. Journal of Yangtze River Scientific Research Institute, 2010, 27(4):70-73.

    Google Scholar

    周志华.机器学习[M].北京:清华大学出版社, 2016.

    Google Scholar

    邱维蓉, 吴帮玉, 潘学树, 等.几种聚类优化的机器学习方法在灵台县滑坡易发性评价中的应用[J].西北地质, 2020, 01:222-233.

    Google Scholar

    QIU Weirong, WU Bangyu, PAN Xueshu, et al. Application of Several Cluster-optimization-based Machine Learning Methods in Evaluation of Landslide Susceptibility in Lingtai County[J].Northwestern Geology, 2020, 53(1):222-233.

    Google Scholar

    张茂省, 王化齐, 王尧, 等.中国城市地质调查进展与展望[J].西北地质, 2018, 51(4):1-9.

    Google Scholar

    ZHANG Maosheng, WANG Huaqi, WANG Yao, et al. Progress and Prospect of Urban Geological Survey in China[J].Northwestern Geology, 2018, 51(4):1-9.

    Google Scholar

    张茂省, 王尧, 薛强.资源环境承载力评价理论方法与实践[J].西北地质, 2019, 52(2):1-11.

    Google Scholar

    ZHANG Maosheng, WANG Yao, XUE Qiang.Evaluation of Resource Environment Carrying Capacity:Theoretical Method and Practice[J].Northwestern Geology, 2019, 52(2):1-11.

    Google Scholar

    董英, 宋友桂, 张茂省, 等.关中盆地城市群发展中几个关键基础地质问题[J].西北地质, 2019, 52(2):12-26.

    Google Scholar

    DONG Ying, SONG Yougui, ZHANG Maosheng, et al. Several Key Basic Geological Problems on the Development of the Guanzhong Urban Agglomeration[J].Northwestern Geology, 2019, 52(2):12-26.

    Google Scholar

    王化齐, 董英, 张茂省.西安市地下空间开发利用现状与对策建议[J].西北地质, 2019, 52(2):46-52.

    Google Scholar

    WANG Huaqi, DONG Ying, ZHANG Maosheng. Present Situation and Countermeasures for the Underground Space Utilization in Xi'an City[J].Northwestern Geology, 2019, 52(2):46-52.

    Google Scholar

    洪增林.城市地质调查标准化建设系统[J].西北地质, 2019, 52(2):53-62.

    Google Scholar

    HONG Zenglin. Multi-factor Urban Geological Survey Standardization Construction System[J].Northwestern Geology, 2019, 52(2):53-62.

    Google Scholar

    Park Inhye, Lee Saro. Spatial prediction of landslide susceptibility using a decision tree approach:a case study of the Pyeongchang area, Korea[J].International Journal of Remote Sensing, 2014, 35(16):6089-6112.

    Google Scholar

    Moller Anders Bjorn, Iversen Bo V., Beucher Amelie, et al. Prediction of soil drainage classes in Denmark by means of decision tree classification[J]. Geoderma, 2019, 352:314-329.

    Google Scholar

    Zhou Chaofan, Gong Huili, Chen Beibei, et al. Quantifying the contribution ofmultiple factors to land subsidence in the Beijing Plain, China with machine learning technology[J].Geomorphology, 2019, 335:48-61.

    Google Scholar

    Lee Saro, Lee Chang-Wook. Application of Decision-Tree Model to Groundwater Productivity-Potential Mapping[J].Sustainability, 2015, 7(10):13416-13432.

    Google Scholar

    Jain A K, R CDubes. Algorithms for Clustering Data[M].NJ:Prentice Hall, Upper Saddle River, 1988.

    Google Scholar

    Jain A K. Data clustering:50 years beyond k-means[J].Pattern Recognition Letters, 2009, 31(8):651-666.

    Google Scholar

    Kohonen T. Self-Organizing Maps, 3rd edition[M].Berlin:Springer, 2001.

    Google Scholar

    McLachlan G, D Peel. Finite MixtureModels[M].NY:John Wiley & Sons, New York, 2000.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(767) PDF downloads(67) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint