2022 Vol. 55, No. 2
Article Contents

ZHANG Linfan, WANG Jiayun, ZHANG Maosheng, CHEN Shebin, WANG Tao. 2022. Evaluation of Regional Landslide Susceptibility Assessment Based on BP Neural Network. Northwestern Geology, 55(2): 260-270. doi: 10.19751/j.cnki.61-1149/p.2022.02.023
Citation: ZHANG Linfan, WANG Jiayun, ZHANG Maosheng, CHEN Shebin, WANG Tao. 2022. Evaluation of Regional Landslide Susceptibility Assessment Based on BP Neural Network. Northwestern Geology, 55(2): 260-270. doi: 10.19751/j.cnki.61-1149/p.2022.02.023

Evaluation of Regional Landslide Susceptibility Assessment Based on BP Neural Network

More Information
  • The evaluation of regional landslide susceptibility is the basis of regional landslide hazard assessment and regional landslide risk assessment. Combined with the field geological survey data of Yining County in Xinjiang, the controlling factors of landslide in the study area are analyzed by using data mining technology, which can be used as the criteria for selecting disaster causing factors. The BP neural network model is used to build the prediction model of regional landslide susceptibility. The trained BP neural network model is combined with the DEM data and remote sensing interpretation data of the whole study area to obtain the landslide hazard susceptibility zoning map of the study area, which provides a certain reference for the local regional landslide prevention and governance decision-making.
  • 加载中
  • 林金煌, 张岸, 邓超, 等.闽三角城市群地质灾害敏感性评价[J].地球信息科学学报, 2018, 20(09):1286-1297.

    Google Scholar

    LIN Jinhuang, ZHANG An, DENG Chao, et al. Geological Hazard Sensitivity Evaluation of Urban Agglomeration in Fujian Delta[J]. Journal of Geo-Information Science, 2018, 20(09):1286-1297.

    Google Scholar

    陶舒, 胡德勇, 赵文吉, 等.基于信息量与逻辑回归模型的次生滑坡灾害敏感性评价——以汶川县北部为例[J].地理研究, 2010, 29(09):1594-1605.

    Google Scholar

    TAO Shu, HU Deyong, ZHAO Wenji, et al. Sensitivity Evaluation of Secondary Landslide Disaster Based on Information and Logistic Regression Model-Taking the North of Wenchuan County as an Example[J].Geographical Research, 2010, 29(09):1594-1605.

    Google Scholar

    兰恒星, 王苓涓, 周成虎.地理信息系统支持下的滑坡灾害分析模型研究[J].工程地质学报, 2002, (04):421-427.

    Google Scholar

    LAN Hengxing, WANG Lingjuan, ZHOU Chenghu. Study on Landslide Disaster Analysis Model Supported by GIS[J].Journal of Engineering Geology, 2002(04):421-427.

    Google Scholar

    黄发明, 殷坤龙, 蒋水华, 等.基于聚类分析和支持向量机的滑坡易发性评价[J].岩石力学与工程学报, 2018, 37(01):156-167.

    Google Scholar

    HUANG Faming, YIN Kunlong, JIANG Shuihua, et al. Landslide Susceptibility Evaluation Based on Cluster Analysis and Support Vector Machine[J].Journal of Rock Mechanics and Engineering, 2018, 37(01):156-167.

    Google Scholar

    王倩, 薛云, 张维, 等.基于支持向量机的滑坡易发性评价[J].湖南城市学院学报(自然科学版), 2021, 30(01):22-28.

    Google Scholar

    WANG Qian, XUE Yun, ZHANG Wei, et al. Landslide Susceptibility Evaluation Based on Support Vector Machine[J]. Journal of Hunan City University (Natural Science Edition), 2021, 30(01):22-28.

    Google Scholar

    胡涛, 樊鑫, 王硕, 等.基于逻辑回归模型和3S技术的思南县滑坡易发性评价[J].地质科技通报, 2020, 39(02):113-121.

    Google Scholar

    HU Tao, FAN Xin, WANG Shuo, et al. Evaluation of Landslide Susceptibility in Sinan County Based on Logistic Regression Model and 3S Technology[J]. Geological Science and Technology Bulletin, 2020, 39(02):113-121.

    Google Scholar

    唐睿旋, 晏鄂川, 唐薇.基于粗糙集和BP神经网络的滑坡易发性评价[J].煤田地质与勘探, 2017, 45(06):129-138.

    Google Scholar

    TANG Ruixuan, YAN Echuan, TANG Wei.Landslide Susceptibility Evaluation Based on Rough Set and BP Neural Network[J].Coalfield Geology and Exploration, 2017, 45(06):129-138.

    Google Scholar

    杨永刚, 殷坤龙, 赵海燕, 等.基于C5.0决策树-快速聚类模型的万州区库岸段乡镇滑坡易发性区划[J].地质科技情报, 2019, 38(06):189-197.

    Google Scholar

    YANG Yonggang, YIN Kunlong, ZHAO Haiyan, et al. Zoning of Township Landslide Susceptibility in Kuan Section of Wanzhou District Based on C5.0 Decision Tree Fast Clustering Model[J].Geological Science and Technology Information, 2019, 38(06):189-197.

    Google Scholar

    王佳运, 石小亚, 武立, 等."8.12"山阳滑坡视向滑动成因机理[J].西北地质, 2018, 51(3):232-239.

    Google Scholar

    WANG Jiayun, SHI Xiaoya, WU Li, et al. Formation Mechanism of Apparent Dip Slide in the Shanyang "8.12" Landslide[J].Northwestern Geology, 2018, 51(3):232-239.

    Google Scholar

    曹小红, 孟和, 尚彦军, 等.伊犁谷地黄土滑坡发育分布规律及成因[J].新疆地质, 2020, 38(03):405-411.

    Google Scholar

    CAO Xiaohong, MENG He, SHANG Yanjun, et al. Development, Distribution and Causes of Loess Landslides in Yili Valley[J].Xinjiang Geology, 2020, 38(03):405-411.

    Google Scholar

    朱立峰.黑方台滑坡群控制因素与外动力条件分析[J].西北地质, 2019, 52(3):217-222.

    Google Scholar

    ZHU Lifeng. Analysis of Control Factors and External Force for the Landslides in Heifangtai Area[J].Northwestern Geology, 2019, 52(3):217-222.

    Google Scholar

    唐亚明, 张茂省, 李林, 等.滑坡易发性危险性风险评价例析[J].水文地质工程地质, 2011, 38(02):125-129.

    Google Scholar

    TANG Yaming, ZHANG Maosheng, LI Lin, et al. Case Analysis of Landslide Susceptibility Risk Assessment[J].Hydrogeology and Engineering Geology, 2011, 38 (02):125-129.

    Google Scholar

    安海堂, 刘平.新疆伊犁地区黄土滑坡成因及影响因素分析[J].地质灾害与环境保护, 2010, 21(03):22-25.

    Google Scholar

    AN Haitang, LIU Ping. Analysis on Causes and Influencing Factors of Loess Landslide in Yili Area, Xinjiang[J].Geological Hazards and Environmental Protection, 2010, 21 (03):22-25.

    Google Scholar

    赵尚毅, 郑颖人, 时卫民, 等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报, 2002(03):343-346.

    Google Scholar

    ZHAO Shangyi, ZHENG Yingren, SHI Weimin, et al. Calculation of Slope Stability Safety Factor by Finite Element Strength Reduction Method[J].Journal of Geotechnical Engineering, 2002, (03):343-346.

    Google Scholar

    徐张建, 林在贯, 张茂省.中国黄土与黄土滑坡[J].岩石力学与工程学报, 2007(07):1297-1312.

    Google Scholar

    XU Zhangjian, LIN Zaiguan, ZHANG Maosheng. Loess and Loess Landslide in China[J]. Journal of Rock Mechanics and Engineering, 2007, (07):1297-1312.

    Google Scholar

    庄茂国, 魏云杰, 邵海, 等.新疆伊犁皮里青河黄土滑坡类型及其发育特征[J].中国地质灾害与防治学报, 2018, 29(01):54-59.

    Google Scholar

    ZHUANG Maoguo, WEI Yunjie, SHAO Hai, et al. Types and Development Characteristics of Piliqing River Loess Landslide in Yili, Xinjiang[J].Chinese Journal of Geological Hazards and Prevention, 2018, 29(01):54-59.

    Google Scholar

    武雪玲, 任福, 牛瑞卿.多源数据支持下的三峡库区滑坡灾害空间智能预测[J].武汉大学学报(信息科学版), 2013, 38(08):963-968.

    Google Scholar

    WU Xueling, REN Fu, NIU Ruiqing. Spatial Intelligent Prediction of Landslide Disaster in the Three Gorges Reservoir Area Supported by Multi-source Data[J].Journal of Wuhan University(Information Science Edition), 2013, 38(08):963-968.

    Google Scholar

    厍向阳, 薛惠锋, 雷学武, 等.基于分类规则挖掘的遥感影像分类研究[J].遥感学报, 2006(03):332-338.

    Google Scholar

    SHE Xiangyang, XUE Huifeng, LEI Xuewu, et al.Research on Remote Sensing Image Classification Based on Classification Rule Mining[J]. Journal of Remote Sensing, 2006(03):332-338.

    Google Scholar

    邱维蓉, 吴帮玉, 潘学树, 等.几种聚类优化的机器学习方法在灵台县滑坡易发性评价中的应用[J].西北地质, 2020, 53(01):222-233.

    Google Scholar

    QIU Weirong, WU Bangyu, PAN Xueshu, et al.Application of Several Clustering Optimization Machine Learning Methods in Landslide Susceptibility Evaluation in Lingtai County[J].Northwestern Geology, 2020, 53(01):222-233.

    Google Scholar

    李利峰, 杨华, 张娟, 等.基于人工神经网络的区域滑坡预测研究[J].气象与环境科学, 2020, 43(03):65-70.

    Google Scholar

    LI Lifeng, YANG Hua, ZHANG Juan, et al. Study on Regional Landslide Prediction Based on Artificial Neural Network[J].Meteorological and Environmental Science, 2020, 43 (03):65-70.

    Google Scholar

    Corominas J, Westen C V, Frattini P, et al. Recommendations for the quantitative analysis of landslide risk[J]. Bulletin of Engineering Geology and the Environment, 2014, 73(2):209-63.

    Google Scholar

    Langping L, Hengxing L, Changbaog, et al.A modified frequency ratio method for landslide susceptibility assessment[J].Landslides, 2016, 14(2):1-15.

    Google Scholar

    Caniani D, Pascale S, Sdao F, et al. Neural networks and landslide susceptibility:a case study of the urban area of Potenza[J]. Natural Hazards, 2008, 45(1):55-72.

    Google Scholar

    Yeon Y K, Han J G, Ryu K H. Landslide susceptibility mapping in Injae, Korea, using a decision tree[J]. Engineering Geology, 2010, 116(3):274-83.

    Google Scholar

    Yilmaz I. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey:conditional probability, logistic regression, artificial neural networks, and support vector machine[J].Environmental Earth Sciences, 2010, 61(4):821-36.

    Google Scholar

    Nourani V, Pradhan B, Ghaffari H, et al. Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models[J]. Natural Hazards, 2014, 71(1):523-47.

    Google Scholar

    Park S, Choi C, Kim B, et al. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea[J]. Environmental Earth ences, 2013, 68(5):1443-64.

    Google Scholar

    Xin Y. Evolving artificial neural networks[J]. Proceedings of the IEEE, 1999, 87(9):1423-47.

    Google Scholar

    Zhang M, Jie L. Controlling factors of loess landslides in western China[J]. Environmental Earth Sciences, 2010, 59(8):1671-80.

    Google Scholar

    Duan Z, He Z G, Lin H Z. Stability Analysis of Loess Landslides Induced by Irrigation[J]. Applied Mechanics & Materials, 2015, 716-717, 395-9.

    Google Scholar

    Meng X Z, Liu H L, Hou Z S. Multi-Sensor Data Fusion Technology Based on BP Neural Network Application in the Coal Mine Equipment Fault Diagnosis[J]. AppliedMECHANICS & Materials, 2014, 678, 238-41.

    Google Scholar

    Li C Z. Convergence analysis of online gradient method for BP neural networks[J]. Neural Networks, 2011.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1607) PDF downloads(191) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint