林金煌, 张岸, 邓超, 等.闽三角城市群地质灾害敏感性评价[J].地球信息科学学报, 2018, 20(09):1286-1297.
Google Scholar
|
LIN Jinhuang, ZHANG An, DENG Chao, et al. Geological Hazard Sensitivity Evaluation of Urban Agglomeration in Fujian Delta[J]. Journal of Geo-Information Science, 2018, 20(09):1286-1297.
Google Scholar
|
陶舒, 胡德勇, 赵文吉, 等.基于信息量与逻辑回归模型的次生滑坡灾害敏感性评价——以汶川县北部为例[J].地理研究, 2010, 29(09):1594-1605.
Google Scholar
|
TAO Shu, HU Deyong, ZHAO Wenji, et al. Sensitivity Evaluation of Secondary Landslide Disaster Based on Information and Logistic Regression Model-Taking the North of Wenchuan County as an Example[J].Geographical Research, 2010, 29(09):1594-1605.
Google Scholar
|
兰恒星, 王苓涓, 周成虎.地理信息系统支持下的滑坡灾害分析模型研究[J].工程地质学报, 2002, (04):421-427.
Google Scholar
|
LAN Hengxing, WANG Lingjuan, ZHOU Chenghu. Study on Landslide Disaster Analysis Model Supported by GIS[J].Journal of Engineering Geology, 2002(04):421-427.
Google Scholar
|
黄发明, 殷坤龙, 蒋水华, 等.基于聚类分析和支持向量机的滑坡易发性评价[J].岩石力学与工程学报, 2018, 37(01):156-167.
Google Scholar
|
HUANG Faming, YIN Kunlong, JIANG Shuihua, et al. Landslide Susceptibility Evaluation Based on Cluster Analysis and Support Vector Machine[J].Journal of Rock Mechanics and Engineering, 2018, 37(01):156-167.
Google Scholar
|
王倩, 薛云, 张维, 等.基于支持向量机的滑坡易发性评价[J].湖南城市学院学报(自然科学版), 2021, 30(01):22-28.
Google Scholar
|
WANG Qian, XUE Yun, ZHANG Wei, et al. Landslide Susceptibility Evaluation Based on Support Vector Machine[J]. Journal of Hunan City University (Natural Science Edition), 2021, 30(01):22-28.
Google Scholar
|
胡涛, 樊鑫, 王硕, 等.基于逻辑回归模型和3S技术的思南县滑坡易发性评价[J].地质科技通报, 2020, 39(02):113-121.
Google Scholar
|
HU Tao, FAN Xin, WANG Shuo, et al. Evaluation of Landslide Susceptibility in Sinan County Based on Logistic Regression Model and 3S Technology[J]. Geological Science and Technology Bulletin, 2020, 39(02):113-121.
Google Scholar
|
唐睿旋, 晏鄂川, 唐薇.基于粗糙集和BP神经网络的滑坡易发性评价[J].煤田地质与勘探, 2017, 45(06):129-138.
Google Scholar
|
TANG Ruixuan, YAN Echuan, TANG Wei.Landslide Susceptibility Evaluation Based on Rough Set and BP Neural Network[J].Coalfield Geology and Exploration, 2017, 45(06):129-138.
Google Scholar
|
杨永刚, 殷坤龙, 赵海燕, 等.基于C5.0决策树-快速聚类模型的万州区库岸段乡镇滑坡易发性区划[J].地质科技情报, 2019, 38(06):189-197.
Google Scholar
|
YANG Yonggang, YIN Kunlong, ZHAO Haiyan, et al. Zoning of Township Landslide Susceptibility in Kuan Section of Wanzhou District Based on C5.0 Decision Tree Fast Clustering Model[J].Geological Science and Technology Information, 2019, 38(06):189-197.
Google Scholar
|
王佳运, 石小亚, 武立, 等."8.12"山阳滑坡视向滑动成因机理[J].西北地质, 2018, 51(3):232-239.
Google Scholar
|
WANG Jiayun, SHI Xiaoya, WU Li, et al. Formation Mechanism of Apparent Dip Slide in the Shanyang "8.12" Landslide[J].Northwestern Geology, 2018, 51(3):232-239.
Google Scholar
|
曹小红, 孟和, 尚彦军, 等.伊犁谷地黄土滑坡发育分布规律及成因[J].新疆地质, 2020, 38(03):405-411.
Google Scholar
|
CAO Xiaohong, MENG He, SHANG Yanjun, et al. Development, Distribution and Causes of Loess Landslides in Yili Valley[J].Xinjiang Geology, 2020, 38(03):405-411.
Google Scholar
|
朱立峰.黑方台滑坡群控制因素与外动力条件分析[J].西北地质, 2019, 52(3):217-222.
Google Scholar
|
ZHU Lifeng. Analysis of Control Factors and External Force for the Landslides in Heifangtai Area[J].Northwestern Geology, 2019, 52(3):217-222.
Google Scholar
|
唐亚明, 张茂省, 李林, 等.滑坡易发性危险性风险评价例析[J].水文地质工程地质, 2011, 38(02):125-129.
Google Scholar
|
TANG Yaming, ZHANG Maosheng, LI Lin, et al. Case Analysis of Landslide Susceptibility Risk Assessment[J].Hydrogeology and Engineering Geology, 2011, 38 (02):125-129.
Google Scholar
|
安海堂, 刘平.新疆伊犁地区黄土滑坡成因及影响因素分析[J].地质灾害与环境保护, 2010, 21(03):22-25.
Google Scholar
|
AN Haitang, LIU Ping. Analysis on Causes and Influencing Factors of Loess Landslide in Yili Area, Xinjiang[J].Geological Hazards and Environmental Protection, 2010, 21 (03):22-25.
Google Scholar
|
赵尚毅, 郑颖人, 时卫民, 等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报, 2002(03):343-346.
Google Scholar
|
ZHAO Shangyi, ZHENG Yingren, SHI Weimin, et al. Calculation of Slope Stability Safety Factor by Finite Element Strength Reduction Method[J].Journal of Geotechnical Engineering, 2002, (03):343-346.
Google Scholar
|
徐张建, 林在贯, 张茂省.中国黄土与黄土滑坡[J].岩石力学与工程学报, 2007(07):1297-1312.
Google Scholar
|
XU Zhangjian, LIN Zaiguan, ZHANG Maosheng. Loess and Loess Landslide in China[J]. Journal of Rock Mechanics and Engineering, 2007, (07):1297-1312.
Google Scholar
|
庄茂国, 魏云杰, 邵海, 等.新疆伊犁皮里青河黄土滑坡类型及其发育特征[J].中国地质灾害与防治学报, 2018, 29(01):54-59.
Google Scholar
|
ZHUANG Maoguo, WEI Yunjie, SHAO Hai, et al. Types and Development Characteristics of Piliqing River Loess Landslide in Yili, Xinjiang[J].Chinese Journal of Geological Hazards and Prevention, 2018, 29(01):54-59.
Google Scholar
|
武雪玲, 任福, 牛瑞卿.多源数据支持下的三峡库区滑坡灾害空间智能预测[J].武汉大学学报(信息科学版), 2013, 38(08):963-968.
Google Scholar
|
WU Xueling, REN Fu, NIU Ruiqing. Spatial Intelligent Prediction of Landslide Disaster in the Three Gorges Reservoir Area Supported by Multi-source Data[J].Journal of Wuhan University(Information Science Edition), 2013, 38(08):963-968.
Google Scholar
|
厍向阳, 薛惠锋, 雷学武, 等.基于分类规则挖掘的遥感影像分类研究[J].遥感学报, 2006(03):332-338.
Google Scholar
|
SHE Xiangyang, XUE Huifeng, LEI Xuewu, et al.Research on Remote Sensing Image Classification Based on Classification Rule Mining[J]. Journal of Remote Sensing, 2006(03):332-338.
Google Scholar
|
邱维蓉, 吴帮玉, 潘学树, 等.几种聚类优化的机器学习方法在灵台县滑坡易发性评价中的应用[J].西北地质, 2020, 53(01):222-233.
Google Scholar
|
QIU Weirong, WU Bangyu, PAN Xueshu, et al.Application of Several Clustering Optimization Machine Learning Methods in Landslide Susceptibility Evaluation in Lingtai County[J].Northwestern Geology, 2020, 53(01):222-233.
Google Scholar
|
李利峰, 杨华, 张娟, 等.基于人工神经网络的区域滑坡预测研究[J].气象与环境科学, 2020, 43(03):65-70.
Google Scholar
|
LI Lifeng, YANG Hua, ZHANG Juan, et al. Study on Regional Landslide Prediction Based on Artificial Neural Network[J].Meteorological and Environmental Science, 2020, 43 (03):65-70.
Google Scholar
|
Corominas J, Westen C V, Frattini P, et al. Recommendations for the quantitative analysis of landslide risk[J]. Bulletin of Engineering Geology and the Environment, 2014, 73(2):209-63.
Google Scholar
|
Langping L, Hengxing L, Changbaog, et al.A modified frequency ratio method for landslide susceptibility assessment[J].Landslides, 2016, 14(2):1-15.
Google Scholar
|
Caniani D, Pascale S, Sdao F, et al. Neural networks and landslide susceptibility:a case study of the urban area of Potenza[J]. Natural Hazards, 2008, 45(1):55-72.
Google Scholar
|
Yeon Y K, Han J G, Ryu K H. Landslide susceptibility mapping in Injae, Korea, using a decision tree[J]. Engineering Geology, 2010, 116(3):274-83.
Google Scholar
|
Yilmaz I. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey:conditional probability, logistic regression, artificial neural networks, and support vector machine[J].Environmental Earth Sciences, 2010, 61(4):821-36.
Google Scholar
|
Nourani V, Pradhan B, Ghaffari H, et al. Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models[J]. Natural Hazards, 2014, 71(1):523-47.
Google Scholar
|
Park S, Choi C, Kim B, et al. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea[J]. Environmental Earth ences, 2013, 68(5):1443-64.
Google Scholar
|
Xin Y. Evolving artificial neural networks[J]. Proceedings of the IEEE, 1999, 87(9):1423-47.
Google Scholar
|
Zhang M, Jie L. Controlling factors of loess landslides in western China[J]. Environmental Earth Sciences, 2010, 59(8):1671-80.
Google Scholar
|
Duan Z, He Z G, Lin H Z. Stability Analysis of Loess Landslides Induced by Irrigation[J]. Applied Mechanics & Materials, 2015, 716-717, 395-9.
Google Scholar
|
Meng X Z, Liu H L, Hou Z S. Multi-Sensor Data Fusion Technology Based on BP Neural Network Application in the Coal Mine Equipment Fault Diagnosis[J]. AppliedMECHANICS & Materials, 2014, 678, 238-41.
Google Scholar
|
Li C Z. Convergence analysis of online gradient method for BP neural networks[J]. Neural Networks, 2011.
Google Scholar
|