2022 Vol. 55, No. 2
Article Contents

LIU Chunlei, YANG Huifeng, CAO Wengeng. 2022. Identify Groundwater Recharge Characteristics and Environmental Implications in Gonghe Basin Using Environmental Isotopes in Gonghe Basin. Northwestern Geology, 55(2): 227-236. doi: 10.19751/j.cnki.61-1149/p.2022.02.020
Citation: LIU Chunlei, YANG Huifeng, CAO Wengeng. 2022. Identify Groundwater Recharge Characteristics and Environmental Implications in Gonghe Basin Using Environmental Isotopes in Gonghe Basin. Northwestern Geology, 55(2): 227-236. doi: 10.19751/j.cnki.61-1149/p.2022.02.020

Identify Groundwater Recharge Characteristics and Environmental Implications in Gonghe Basin Using Environmental Isotopes in Gonghe Basin

More Information
  • Gonghe basin is located in the soil and water conservation zone of the Yellow river basin ecological reserve. Groundwater is the main water supply source and also the key factor for maintaining the fragile ecosystem in this basin. However, the path of regional groundwater recharge and the mechanism of deep and shallow groundwater interaction are still unclear. Using hydrogen, oxygen and 14C isotopes, the mechanism of regional groundwater recharge and its indicative effect on ecological environment are discussed in this paper. Results show that lateral infiltration recharge of rivers from Wahong Mountain and Qinghai South Mountain is the main groundwater recharge. The recharge of unconfined groundwater is mainly from infiltration of rainfall after the year 1952 with rapid cyclic alternation and the 14C age of the confined groundwater is up to 19384.7a.The groundwater characteristics of δ18O, δD and the 14C age are similar both in the western boundary of the basin and the eastern drainage area, and its recharge source is mainly from ancient water formed during the ice age of 10 000-60 000a ago, which reflecting that there is no obvious hydraulic connection between the Gonghe Basin and the western Chaka Basin. The age of the confined groundwater in the middle of the basin is younger than that in the western boundary and the eastern drainage area. For the middle part of the basin, rainfall and Shazhuyu river infiltration are the main recharge. This study reveals the mutual transformation of recharge-discharge among surface water, unconfined groundwater and confined groundwater in Gonghe basin and is of significance for developing and managing groundwater in this area.
  • 加载中
  • 崔亚莉, 邵景力, 韩双平.西北地区地下水的地质生态环境调节作用研究[J].地学前缘, 2001, 8(1):191-196.

    Google Scholar

    CUI Yali, SHAO Jingli, HAN Shuangping. Ecological environment adjustment by groundwater in Northwest China[J]. Earth Science Frontiers, 2001, 8(1):191-196.

    Google Scholar

    汤奇成, 张捷斌.西北干旱地区水资源与生态环境保护[J].地理科学进展, 2001, 20(3):227-233.

    Google Scholar

    TANG Qicheng, ZHANG Jiebin. Water Resources and Eco-environment Protection in the Arid Regions in Northwest of China[J]. Progress in Geography, 2001, 20(3):227-233.

    Google Scholar

    王晓玮, 邵景力, 王卓然, 等.西北地区地下水水量-水位双控指标确定研究——以民勤盆地为例[J].水文地质工程地质, 2020, 47(2):17-24.

    Google Scholar

    WANG Xiaowei, SHAO Jingli, WANG Zhuoran, et al. A study of the determination of indicators of dual control of groundwater abstraction amount and water table in northwest China:a case study of the Minqin Basin[J]. Hydrogeology and Engineering Geology, 2020, 47(2):17-24.

    Google Scholar

    沈振荣.水资源科学实验与研究——大气水、地表水、土壤水、地下水相互转化关系[M].北京:中国科学科技出版社, 1992.

    Google Scholar

    SHEN Zhenrong. Water resources scientific experiment and research:Atmospheric, surface, soil and ground water interactions[M]. Beijing:Science and Technology of China Press, 1992.

    Google Scholar

    权国苍.青海省共和盆地南缘山前平原地下水资源研究[D].北京:中国地质大学(北京), 2015.

    Google Scholar

    QUAN Guocang.Groundwater Resources Study at the southern margin in the piedmont of Gonghe west basin Qinghai province[D]. Beijing:China University of Geosciences, Beijing, 2015.

    Google Scholar

    侯兆云.基于流体渗流-化学(同位素)耦合模拟的共和-贵德地热储层特征分析[D].吉林:吉林大学, 2019.

    Google Scholar

    HOU Zhaoyun.Characterizing the geothermal system in the Gonghe Guide Basin by coupled fluid-heat-chemical (isotope) transport modeling[D].Jinlin:Jilin University, 2019.

    Google Scholar

    马月花, 唐保春, 苏生云, 等.青海共和盆地地热流体地球化学特征及热储水-岩相互作用过程[J].地学前缘, 2020, 27(1):123-133.

    Google Scholar

    MA Yuehua, TANG Baochun, SU Shengyun, et al. Geochemical characteristics of geothermal fluids and water-rock interaction in geothermal reservoirs in and around the Gonghe Basin, Qinghai Province[J]. Earth Science Frontiers, 2020, 27(1):123-133.

    Google Scholar

    李永革.青海省共和盆地恰卜恰地区地下热水水文地球化学特征及成因分析[D].抚州:东华理工大学, 2016.

    Google Scholar

    LI Yongge. Hydrogeochemical Characteristics and its Origin Analysis of Geothermal water in the Qiabuqia Area, Gonghe Basin, Qinghai Province[D].Fuzhou:East China University of Technology, 2016.

    Google Scholar

    朱贵麟, 张林友, 李旭峰, 等.青海共和盆地地下水演化特征及成因机制[J].人民黄河, 2021, 51(S2):36-39+75.

    Google Scholar

    ZHU Guilin, ZHANG Linyou, LI Xufeng, et al. Evolution characteristics and genetic mechanism of groundwater in Gonghe basin, Qinghai Province[J].Yellow River, 2021, 51(S2):36-39+75.

    Google Scholar

    黄小琴, 柳青, 薛忠岐.宁夏固原地区地下水同位素特征研究[J].干旱区资源与环境, 2014, 28(2):143-148.

    Google Scholar

    HUANG Xiaoqin, LIU Qing, XUE Zhongqi. The characteristics of groundwater isotopes in upper reach plain of Qingshui River, Ningxia[J].Journal of Arid Land Resources and Environment, 2014, 28(2):143-148.

    Google Scholar

    张宗祜, 沈照理, 薛禹群, 等.华北平原地下水环境演化[M].北京:地质出版社, 2000.

    Google Scholar

    ZHANG Zonghu, SHEN Zhaoli, XUE Yuqun, et al. Evolution of groundwater environment of the Northern China Great Plain[M]. Beijing:Geological Publishing House, 2000.

    Google Scholar

    甄志磊, 李畅游, 李文宝, 等.内蒙古达里诺尔湖流域地表水和地下水环境同位素特征及补给关系[J].湖泊科学, 2014, 26(6):916-922.

    Google Scholar

    ZHEN Zhilei, LI Changyou, LI Wenbao, et al. Characteristics of environmental isotopes of surface water and groundwater and their recharge relationships in Lake Dali basin[J]. Journal of Lake Sciences, 2014, 26(6):916-922.

    Google Scholar

    马洪云, 李成柱, 王化齐, 等.银川盆地水体氢氧稳定同位素特征分析[J].西北地质, 2019, 52(2):218-226.

    Google Scholar

    MA Hongyun, LI Chengzhu, WANG Huaqi, et al. Hydrogen and Oxygen Isotopic Compositions of Water Bodies at Yinchuan Basin, China[J]. Northwestern Geology, 2019, 52(2):218-226.

    Google Scholar

    文冬光.用环境同位素论区域地下水资源属性[J].地球科学:中国地质大学学报, 2002, 27(2):141-147.

    Google Scholar

    WEN Dongguang. Groundwater Resources Attribute Based on Environmental Isotopes[J].Journal of Earth Science, 2002, 27(2):141-147.

    Google Scholar

    卫文, 陈宗宇, 赵红梅, 等.河北平原第四系承压水4He与14C测年对比[J].吉林大学学报:地球科学版, 2011, 41(4):1144-1150.

    Google Scholar

    WEI Wen, CHEN Congyu, ZHAO Hongmei, et al. Comparison of 4He and 14C Dating of Groundwater from Quaternary Confined Aquifers in Hebei Plain[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(4):1144-1150.

    Google Scholar

    顾慰祖, 庞忠和, 王全九, 等.同位素水文学[M].北京:科学出版社, 2001.

    Google Scholar

    GU Weizu, PANG Zhonghe, WANG Quanjiu, et al. Isotope Hydrology[M].Beijing:Science Press, 2001.

    Google Scholar

    吴华武, 李小雁, 赵国琴, 等.青海湖流域降水和河水中δ18O和δD变化特征[J].自然资源学报, 2014, 29(9):1552-1564.

    Google Scholar

    WU Huanwu, LI Xiaoyan, ZHAO Guoqin, et al. The Variation Characteristics of δ18O and δD in Precipitation and River Water, Qinghai Lake Basin[J].Journal of Natural Resources, 2014, 29(9):1552-1564.

    Google Scholar

    黄麒, 梁青生.青海湖地区氚的分布特征[J].核技术, 1989, 12(11):679-683.

    Google Scholar

    HUANG Qi, LIANG Qingsheng. Distribution Characteristics of Tritium in Qinghai Lake[J].Nuclear Technique, 1989, 12(11):679-683.

    Google Scholar

    崔亚莉, 刘峰, 郝奇琛, 等.诺木洪冲洪积扇地下水氢氧同位素特征及更新能力研究[J].水文地质工程地质, 2015, 42(6):1-7.

    Google Scholar

    CUI Yali, LIU Feng, HAO Qichen, et al. Characteristics of hydrogen and oxygen isotopes and renewability of groundwater in the Nuomuhong alluvial fan[J].Hydrogeology and Engineering Geology, 2015, 42(6):1-7.

    Google Scholar

    Mahlknecht J, Schneider J F, Merkel B J, et al. Groundwater recharge in a sedimentary basin in semi-arid Mexico[J]. Hydrogeology Journal, 2004, 12:511-530.

    Google Scholar

    Duzgoren Aydin N S, Aydin A, Malpas J.Re-assessment of chemical weathering indices:case study on pyroclastic rocks of Hong Kong[J]. Engineering Geology, 2002, 63:99-119.

    Google Scholar

    RMokrik J, Maeika A, Baublyt, et al.The groundwater age in the Middle-Upper Devonian aquifer system. Lithuania[J]. Hydrogeology Journal, 2009, 17:871-889.

    Google Scholar

    Gillon M, Barbecot F, Gibert E, et al.Open to closed system transition traced through the TDIC isotopic signature at the aquifer recharge stage, implications for groundwater 14C dating[J].Geochimica et Cosmochimica Acta, 2009, 73:6488-6501.

    Google Scholar

    Craig H.Isotopic variations with meteoric water[J].Science, 1961, 133:1702-1703.

    Google Scholar

    Tamers MA.Validity of radiocarbon dates on groundwater[J].Geophysical Survey, 1975, 2(2):217-239.

    Google Scholar

    Ozanski K.Deuterium and oxygen-18 in European ground-water-links to atmospheric circulation in the past[J].Chemical Geology:Isotope Geosciences Section, 1985, 52:349-363.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1523) PDF downloads(200) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint