2022 Vol. 55, No. 2
Article Contents

HAN Haihui, ZHANG Zhuan, REN Guangli, YI Huan, LIU Tuo. 2022. A New Method for Fast Identification of Basic-ultrabasic Rocks—Basic Degree Index from Remote Sensing Image. Northwestern Geology, 55(2): 71-81. doi: 10.19751/j.cnki.61-1149/p.2022.02.005
Citation: HAN Haihui, ZHANG Zhuan, REN Guangli, YI Huan, LIU Tuo. 2022. A New Method for Fast Identification of Basic-ultrabasic Rocks—Basic Degree Index from Remote Sensing Image. Northwestern Geology, 55(2): 71-81. doi: 10.19751/j.cnki.61-1149/p.2022.02.005

A New Method for Fast Identification of Basic-ultrabasic Rocks—Basic Degree Index from Remote Sensing Image

More Information
  • Although the technique for extracting altered mineral information using near-infrared bands of multispectral remote sensing images is very developed, how to use thermal infrared bands to quantitatively identify the basic-ultrabasic rocks that are closely related to magmatic liquation deposits needs to be explored. By analyzing the emission spectrum characteristics of typical minerals in the range of thermal infrared spectrum, a "basic degree index method" was proposed. The Liuyuan area of Beishan was selected as the experimental area, and basic-ultrabasic rocks were identified based on ASTER thermal infrared data, and the effectiveness of the method was quantitatively evaluated by means of indoor comparison and field verification. The results show that the new method can identify basic-ultrabasic rocks well, the overall identification accuracy can reach about 70%, and the boundaries of the identified rock masses are more detailed than those mapped in the previous geological maps. The application analysis of the Hongliugou typical area shows that the distribution characteristics of the basic-ultrabasic rock masses identified by remote sensing are consistent with the actual geological conditions, and the high-basic degree index area overlaps with the known geomagnetic and geochemical anomalies very well. These findings provide a new basis for the use of multiple methods to locate basic-ultrabasic rocks in mineral exploration. The research results have theoretical and practical significance for similar research in Beishan and even Northwest China.
  • 加载中
  • 别小娟, 张廷斌, 孙传敏, 等.藏东罗布莎蛇绿岩遥感岩矿信息提取方法研究[J].国土资源遥感, 2013, 25(3):72-78.

    Google Scholar

    BIE Xiaojuan, ZHANG Tingbin, SUN Chuanmin, et al. Study of Methods for Extraction of Remote Sensing Information of Rocks and Altered Minerals from Luobusha Ophiolite in East Tibet[J].Remote Sensing for Land and Resources, 2013, 25(3):72-78.

    Google Scholar

    陈圣波, 于亚风, 杨金中, 等.基于实测光谱指数法的ASTER遥感数据岩性信息提取[J].吉林大学学报(地球科学版), 2016, 46(3):938-944.

    Google Scholar

    CHEN Shengbo, YU Yafeng, YANG Jinzhong, et al. Lithologic Information Extraction from ASTER Remote Sensing Data Based on Spectral Ratio Method[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(3):938-944.

    Google Scholar

    成功, 朱佳玮, 毛先成.基于ASTER数据的金川铜镍矿床外围遥感找矿预测[J].国土资源遥感, 2016, 28(1):16-21.

    Google Scholar

    CHENG Gong, ZHU Jiawwei, MAO Xiancheng. Remote sensing prospecting prediction in periphery of the Jinchuan copper-nickel deposit based on ASTER data[J]. Remote Sensing for Land and Resources, 2016, 28(1):15-21.

    Google Scholar

    韩海辉, 王艺霖, 任广利, 等.基于ASTER数据的北山方山口地区蚀变矿物提取与找矿应用[J].遥感技术与应用, 2016, 31(2):368-377.

    Google Scholar

    HAN Haihui, WANG Yilin, REN Guangli, et al. Extraction and Application of Altered Mineral in Prospecting from ASTER Data in Fangshankou, Beishan[J]. Remote Sensing Technology and Application, 2016, 31(2):368-377.

    Google Scholar

    韩海辉, 任广利, 张转, 等.北山方山口地区典型蚀变岩矿的光谱特征研究[J].西北地质, 2018, 51(4):263-275.

    Google Scholar

    HAN Haihui, REN Guangli, ZHANG Zhuan, et al. Spectral Characteristics of Typical Altered Rocks and Minerals from Fangshankou area in Beishan[J].Northwestern Geology, 2018, 51(4):263-275.

    Google Scholar

    胡鹏.北山南带构造岩浆演化与金的成矿作用[D].北京:中国地质科学院, 2007.

    Google Scholar

    HU Peng. Tectonomagmatic Evolution and Gold Metallogeny in South Beishan Mountain, Northwest China[D]. Beijing:Chinese Academy of Geological Sciences, 2007.

    Google Scholar

    刘汉湖.岩矿波谱数据分析与信息提取方法研究[D].成都:成都理工大学, 2008.

    Google Scholar

    LIU Hanhu. Research on the Analysis of the Spectrum Data and Extraction Methods of Minerals[D] Chengdu:Chengdu University of Technology, 2008.

    Google Scholar

    任广利, 杨军录, 杨敏, 等.高光谱遥感异常提取在甘肃北山金滩子-明金沟地区成矿预测中的应用[J].大地构造与成矿学, 2013, 37(4):765-776.

    Google Scholar

    REN Guangli, YANG Junlu, YANG Min, et al. Application of Hyperspectral Remote Sensing Anomaly Information on Metallogenic Prediction in the Jintanzi-Mingjingou Area of Beishan, Gansu[J]. Geotectonica et Metallogenia, 2013, 37(4):765-776.

    Google Scholar

    任广利, 梁楠, 张转, 等.高光谱标志性蚀变矿物组合在找矿预测中的应用研究-以东昆仑东-西大滩一带金矿床为例[J].西北地质, 2018, 51(2):93-107.

    Google Scholar

    REN Guangli, LIANG Nan, ZHANG Zhuan, et al. Iconic Altered Mineral Assemblages on Prospecting Prediction by Hyperspectral Remote Sensing:Example from the Gold Deposits in Dongdatan and Xidatan Region of East Kunlun Mountain[J].Northwestern Geology, 2018, 51(2):93-107.

    Google Scholar

    王立社, 杨建国, 谢春林, 等.甘肃怪石山铜镍矿化基性超基性岩成矿潜力研究[J].大地构造与成矿学, 2008, 32(3):392-399.

    Google Scholar

    WANG Lishe, YANG Jianguo, XIE Chunlin, et al. Metallogenic Potentiality of Guaishishan Cu-Ni Mineralized Basic-ultrabasic Rocks in Beishan Area, Gansu Province[J]. Geotectonica et Metallogenia, 2008, 32(3):392-399.

    Google Scholar

    谢燮, 杨建国, 王小红, 等.甘肃北山红柳沟基性-超基性岩体岩石成因及成矿条件[J].现代地质, 2015, 29(6):1259-1270.

    Google Scholar

    XIE Xie, YANG Jianguo, WANG Xiaohong, et al.The Petrogenesis and Mineralization of the Hongliugou Mafic-ultramafic Rock in Beishan, Gansu Province[J]. Geoscience, 2015, 29(6):1259-1270.

    Google Scholar

    谢燮, 杨建国, 王小红, 等.甘肃北山红柳沟铜镍矿化基性-超基性岩体SHRIMP锆石U-Pb年龄及其地质意义[J].中国地质, 2015, 42(2):396-405.

    Google Scholar

    XIE Xie, YANG Jianguo, WANG Xiaohong, et al.Zircon SHRIMP U-Pb Dating of Hongliugou Mafic-ultramafic Complex in the Beishan Area of Gansu Province and its Geological Significance[J]. Geology in China, 2015, 42(2):396-405.

    Google Scholar

    杨长保, 朱群, 姜琦刚, 等.ASTER热红外遥感地表岩石的二氧化硅含量定量反演[J].地质与勘探, 2009, 45(6):692-696.

    Google Scholar

    YANG Changbao, ZHU Qun, JIANG Qigang, et al. Silicon Dioxide Content of Surface Rock Quantify Inversion and Retrieval by Thermal Infrared ASTER Data[J].Geology and Exploration, 2009, 45(6):692-696.

    Google Scholar

    杨建国, 谢春林, 王小红, 等.甘肃北山地区基本构造格局和成矿系列特征[J].地质通报, 2012, 31(2-3):422-438.

    Google Scholar

    YANG Jianguo, XIE Chunlin, WANG Xiaohong, et al. Basic tectonic framework and features of metallogenic series in Beishan area, Gansu Province[J]. Geological Bulletin of China, 2012, 31(2-3):422-438.

    Google Scholar

    袁金国, 牛铮, 王锡平.基于FLAASH的Hyperion高光谱影像大气校正[J].光谱学与光谱分析, 2009, 29(5):1181-1185.

    Google Scholar

    YUAN Jinguo, NIU Zheng, WANG Xiping. Atmospheric Correction of Hyperion Hyperspectral Image Based on FLAASH[J]. Spectroscope and Spectral Analysis, 2009, 29(5):1181-1185.

    Google Scholar

    张良培.高光谱目标探测的进展与前沿问题[J].武汉大学学报:信息科学版, 2014, 39(12):1387-1400.

    Google Scholar

    ZHANG Liangpei. Advance and Future Challenges in Hyperspectral Target Detection[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12):1387-1400.

    Google Scholar

    张莹彤, 肖青, 闻建光, 等.地物波谱数据库建设进展及应用现状[J].遥感学报, 2017, 21(1):12-26.

    Google Scholar

    ZHANG Yingtong, XIAO Qing, WEN Jianguang, et al. Review on Spectral Libraries:Progress and Application[J]. Journal of Remote Sensing, 2017, 21(1):12-26.

    Google Scholar

    Asadzadeh S, De Souza Filho C R. A Review on Spectral Processing Methods for Geological Remote Sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 47:69-90.

    Google Scholar

    Bishop C., Rivard B, De Souza Filho C R, et al. Geological Remote Sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64:267-274.

    Google Scholar

    Boissieu F F, Sevin B, Cudahy T. Regolith-Geology Mapping with Support Vector Machine:A Case Study over Weathered Ni-bearing Peridotites, New Caledonia[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64:377-385.

    Google Scholar

    Carrino T A, Crósta A P, Toledo C L B, et al. Hyperspectral Remote Sensing Applied to mineral Exploration in Southern Peru:A Multiple Data Integration Approach in the Chapi Chiara Gold Prospect[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64:287-300.

    Google Scholar

    Chavez P S, Berlin G L, Sowers L B. Statistical Methods for Selecting Landsat MSS Ratios[J]. Journal of Applied Photographic Engineering, 1982, 8(1):23-30.

    Google Scholar

    Crosta A P, McMoore J. Enhancement of Landsat Thematic Mapper Imagery for Residual Soil Mapping in SW Minas Gerais State, Brazil:A Prospecting Case History in Greenstone Belt Terrain[C].Seventh Thematic Conference on Remote Sensing for Exploration Geology, Calgary, Alberta, Canada, 1989.

    Google Scholar

    Duke E F, Lewis R S. Near Infrared Spectra of White Mica in the Belt Supergroup and Implications for Metamorphism[J].Am. Mineral, 2010, 95(7):908-920.

    Google Scholar

    Gabr S, Ghulam A, Kusky T. Detecting Areas of High-Potential Gold Mineralization Using ASTER Data[J]. Ore Geology Reviews, 2010, 38(1-2):59-69.

    Google Scholar

    Gabr S S, Hassan S M, Sadek M F. Prospecting for New Gold-bearing Alteration Zones at El-Hoteib area, South Eastern Desert, Egypt, Using Remote Sensing Data Analysis[J]. Ore Geology Reviews, 2015, 71:1-13.

    Google Scholar

    Goetz A F H, Rowan L C. Geologic Remote Sensing[J]. Science, 1981, 211(4484):781-791.

    Google Scholar

    Govil H, Gill N, Rajendran S, et al. Identification of New Base Metal Mineralization in Kumaon Himalaya, India, Using Hyperspectral Remote Sensing and Hydrothermal Alteration[J]. Ore Geology Reviews, 2018, 92:271-283.

    Google Scholar

    Hunt G R, Salisbury J W, Lenhoff G J. Visible and Near-Infrared Spectra of Minerals and Rocks:III Oxides and Hydroxides[J]. Modern Geology, 1978, 2:195-205.

    Google Scholar

    Kalinowski A, Oliver S. ASTER Mineral Index Processing Manual[M]. Remote Sensing Applications Geoscience Australia, 2004.

    Google Scholar

    Liu L, Feng J L, Rivard B, et al.Mapping Alteration Using Imagery from the Tiangong-1 Hyperspectral Spaceborne system:Example for the Jintanzi gold Province, China[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64:275-286.

    Google Scholar

    Loughlin W P. Principal Component Analysis for Alteration Mapping[J].Photogrammetric Engineering and Remote Sensing, 1991, 57(9):1163-1169.

    Google Scholar

    Ninomiya Y. Mapping Quartz, Carbonate Minerals and Mafic-ultramafic Rocks Using Remotely Sensed Multispectral Thermal Infrared ASTER Data[J]. Proceedings of SPIE, 2002, 4710(P1):191-202.

    Google Scholar

    Pour A B, Hashim M. Identifying Areas of High Economic-potential Copper Mineralization Using ASTER Data in the Urumieh-Dokhtar Volcanic Belt, Iran[J]. Advances in Space Research, 2012, 49(4):753-769.

    Google Scholar

    Rowan L C, Goetz A F H., Ashley R P. Discrimination of Hydrothermally Altered and Unaltered Rocks in Visible and Near Infrared Multispectral Images[J]. Geophysics, 1977, 42(3):522-535.

    Google Scholar

    Salisbury J W, Walter L S, Vergo N. Availability of a Library of Infrared (2.1-25.0 MU-M) Mineral Spectra[J]. American Mineralogist, 1989, 74:938-939.

    Google Scholar

    Salisbury J W, Daria D M. Emissivity of Terrestrial Materials in the 8-14 MU-M Atmospheric Window[J]. Remote Sensing of Environment, 1992, 42(2):83-106.

    Google Scholar

    Salisbury J W, Daria D M. Emissivity of Terrestrial Materials in the 3-5 MU-M Atmospheric Window[J]. Remote Sensing of Environment, 1994, 47(3):345-361.

    Google Scholar

    Salles R D R, De Souza Filho C R, Cudahy T, et al. Hyperspectral Remote Sensing Applied to Uranium Exploration:A Case Study at the Mary Kathleen Metamorphic-hydrothermal U-REE Deposit, NW, Queensland, Australia[J].Journal of Geochemicl Exploration, 2017, 179:36-50.

    Google Scholar

    Son Y S, Kang M K, Yoon W J. Lithological and Mineralogical Survey of the Oyu Tolgoi Region, Southeastern Gobi, Mongolia Using ASTER Reflectance and Emissivity Data[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 26:205-216.

    Google Scholar

    Van Der Meer F D, Van Der Werff H M A, Van Ruitenbeek F J A, et al.=Multi-and Hyperspectral Geological Remote Sensing:A Review[J]. International Journal of Applied Earth Observation and Geoformation, 2012, 14(1):112-128.

    Google Scholar

    Yang M, Yang J L, Ren G L, et al. The Application of Near-Infared Spectral Data in Studying The Chloritized Rocks[C].International Symposium on Optoelectronic Technology and Application, 2014, 99-103.

    Google Scholar

    Zadeh M H, Tangestani M H, Roldan F V, et al. Spectral Characteristics of Minerals in Alteration Zones Associated with Porphyry Copper Deposits in the Middle Part of Kerman Copper Belt, SE Iran[J]. Ore Geology Reviews, 2014, 62:191-198.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1166) PDF downloads(57) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint