2021 Vol. 54, No. 4
Article Contents

WANG Qingtong, WANG Zhijun, WANG Haigen, WANG Lizhi, LIU Shibin, ZHANG Xiaolei. 2021. Geochemical Characteristics and Geological Significance of Permian Reef Limestone in the Northwest of Tarim Basin. Northwestern Geology, 54(4): 49-58. doi: 10.19751/j.cnki.61-1149/p.2021.04.004
Citation: WANG Qingtong, WANG Zhijun, WANG Haigen, WANG Lizhi, LIU Shibin, ZHANG Xiaolei. 2021. Geochemical Characteristics and Geological Significance of Permian Reef Limestone in the Northwest of Tarim Basin. Northwestern Geology, 54(4): 49-58. doi: 10.19751/j.cnki.61-1149/p.2021.04.004

Geochemical Characteristics and Geological Significance of Permian Reef Limestone in the Northwest of Tarim Basin

More Information
  • In the northwest of Tarim basin, the Early Permian section exposed thick layer of algae reef limestone, which is an important target layer for the oil-gas prospecting areas. The trace elements of the algae reef limestone showed a seawater-like pattern of LREE depletion, negative Ce anomaly and positive Gd anomaly. The high Y/Ho and Er/Nd, and the extremely low Th indicate that it was not affected by terrestrial debris. δCe had moderate to weak negative anomalies, δU<1, V/(V+Ni) between 0.16~0.20 and V/Sc between 4.28~5.14 indicate that algal reef limestone formed in an oxidizing environment. Sr/Ba is between 16.19~25.77, indicating that the seawater was in a saline environment. Sr/Cu is between 176.42~361.54, indicating the arid climatic condition. Based on various geochemical characteristics, it is inferred that the algae reef limestone in the northwest of Tarim basin was formed in a limited carbonate platform environment.
  • 加载中
  • 常华进, 储雪蕾, 冯连君, 等.湖南安化留茶坡硅质岩的REE地球化学特征及其意义[J]. 中国地质, 2008, 35(5):879-887.

    Google Scholar

    CHANG Huajin, CHU Xuelei, FENG Lianjun, et al. REE geochemistry of the Liuchapo chert in Anhua, Hunan[J]. Geology in China, 2008, 35(5):879-887.

    Google Scholar

    常华进, 储雪蕾, 冯连君, 等.氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1):91-99.

    Google Scholar

    CHANG Huajin, CHU Xuelei, FENG Lianjun, et al. Redox Sensitive Trace Elements as Paleoenvironments Proxies[J]. Geological Review, 2009, 55 (1):91-99.

    Google Scholar

    陈松, 傅雪海, 桂和荣, 等.皖北新元古界望山组灰岩微量元素地球化学特征[J]. 古地理学报, 2012, 14(6):813-820.

    Google Scholar

    CHEN Song, FU Xuehai, GUI Herong, et al. Geochemical characteristics of trace elements in limestone of the Neoproterozoic Wangshan Formation in northern Anhui Province[J]. Journal of Palaeogeography, 2012, 14 (6):813-820.

    Google Scholar

    陈松, 桂和荣, 孙林华, 等.皖北九顶山组灰岩稀土元素地球化学特征及对古海水的制约[J]. 中国地质, 2011, 38(3):664-672.

    Google Scholar

    CHEN Song, GUI Herong, SUN Linhua, et al. Geochemical characteristics of REE in limestone of Jiudingshan Formation, northern Anhui Province and their constraint on the seawater[J]. Geology in China, 2011, 38 (3):664-672.

    Google Scholar

    陈松, 桂和荣, 孙林华, 等.安徽宿州寒武纪猴家山组灰岩微量元素地球化学特征[J]. 矿物岩石, 2013, 33(01):71-78.

    Google Scholar

    CHEN Song, GUI Herong, SUN Linhua, et al. Geochemical characteristics of trace element in limestone of Houjiashan formation from Suzhou, Anhui Province[J]. Journal of Mineralogy and Petrology, 2013, 33(01):71-78.

    Google Scholar

    杜轶伦, 曹毅, 李大鹏, 等.安徽铜陵志留系-三叠系地层层序地层和微量元素地球化学:对沉积环境的约束[J]. 现代地质, 2014, 28(2):281-291.

    Google Scholar

    DU Yilun, CAO Yi, LI Dapeng, et al. Sequence stratigraphy and trace element geochemistry of Silurian Triassic strata in Tongling, Anhui Province:constraints on sedimentary environment[J]. Geoscience, 2014, 28(2):281-291.

    Google Scholar

    胡俊杰, 李琦, 李娟, 等.羌塘盆地角木日地区二叠系碳酸盐岩元素地球化学特征及其对古沉积环境的指示[J]. 高校地质学报, 2014, 20(4):520-527.

    Google Scholar

    HU Junjie, LI Qi, LI Juan, et al. Geochemical characteristics and its application to depositional environment analysis of permian carbonates in jiaomuri area, Qiangtang Basin[J]. Geological Journal of China Universities, 2014, 20(4):520-527.

    Google Scholar

    李锦轶, 刘建峰, 郑荣国, 等.塔里木盆地西北缘柯坪地区二叠纪玄武岩喷发时限:来自碎屑锆石的证据[J]. 地球科学与环境学报, 2017, 39(3):301-325.

    Google Scholar

    LI Jinyi, LIU Jianfeng, ZHENG Rongguo, et al. The eruptive timing of permian basalts in Keping Area, the northwest margin of Tarim Basin, China:Evidence from detrital zircons[J]. Journal of Earch Sciences and Environment, 2017, 39 (3):301-325.

    Google Scholar

    罗金海, 车自成, 周新源, 等.塔里木盆地西北缘二叠系礁灰岩的时空分布特征及其油气地质意义[J]. 地质论评, 2007, 53(5):600-607.

    Google Scholar

    LUO Jinhai, CHE Zicheng, ZHOU Xinyuan, et al. Spatio-temporal distribution and its oil- gas significances of permian reef limestones on the northwestern margin of the Tarim Basin[J]. Geological Review, 2007, 53 (5):600-607.

    Google Scholar

    吕修祥, 白忠凯, 谢玉权, 等.塔里木盆地西北缘柯坪地区油气勘探前景再认识[J]. 沉积学报, 2014, 32(4):766-775.

    Google Scholar

    LÜ Xiuxiang, BAI Zhongkai, XIE Yuquan, et al. Reconsideration on Petroleum Exploration Prospects in the Kalpin Thrust Belt of Northwestern Tarim Basin[J]. Acta Sedimentologica Sinica 2014, 32(4):766-775.

    Google Scholar

    倪善芹.碳酸盐岩中锶元素地球化学特征及其指示意义[J]. 地质学报, 2010, 84(10):1510-1516.

    Google Scholar

    NI Shanqin.Geochemical characteristics of carbonate rocks and its geological implications[J]. Acta Geologica Sinica, 2010, 84 (10):1510-1516.

    Google Scholar

    史宇坤, 刘家润, 杨湘宁, 等.贵州省紫云县宗地剖面早石炭世大塘期-早二叠世栖霞期的蜓.类动物群[J]. 微体古生物学报, 2009, 26(1):1-30.

    Google Scholar

    SHI Yukun, LIU Jiarun, YANG Xiangning, et al. Fusulinid faunas from the datangian to chihsian strata of the Zongdi section in Ziyun County, Guizhou province[J]. Acta Micropalaeontologica Sinica, 2009, 26(1):1-30.

    Google Scholar

    宋立军, 刘池阳, 赵红格, 等.鄂尔多斯地区黄旗口组地球化学特征及其沉积环境与构造背景[J]. 地球科学:中国地质大学学报, 2016, 41(08):1295-1308.

    Google Scholar

    SONG Lijun, LIU Chiyang, ZHAO Hongge, et al. Geochemical characteristics, sedimentary environment and tectonic setting of Huangqikou formation, Ordos Basin[J]. Earth Science:Journal of China University of Geosciences, 2016, 41(08):1295-1308.

    Google Scholar

    田少亭, 彭明兴, 张雄华, 等.中天山卡瓦布拉克地区中元古代卡瓦布拉克群硅质岩成因[J]. 新疆地质, 2012, 30(4):399-403.

    Google Scholar

    TIAN Shaoting, PENG Mengxing, ZHANG Xionghua, et al. The Origin of Siliceous Rock in Kawabulake Group of Mesoproterozoic in Zhongtianshan of Xinjiang[J]. Xinjiang Geology, 2012, 30(4):399-403.

    Google Scholar

    汤好书, 陈衍景, 武广, 等.辽东辽河群大石桥组碳酸盐岩稀土元素地球化学及其对Lomagundi事件的指示[J]. 岩石学报, 2009, 25(11):3075-3093.

    Google Scholar

    TANG Haoshu, CHEN Yanjing, WU Guang, et al. REE geochemistry of carbonates of Dashiqiao formation, Liaohe Group, eastern Liaoning province:Implications for Lomagundi event[J]. Acta Petrologica Sinica, 2009, 25 (11):3075-3093.

    Google Scholar

    王黎栋, 于炳松, 张永旺, 等.塔里木盆地西部康克林组沉积期生物礁滩体——以柯坪地区苏巴什露头剖面为例[J]. 现代地质, 2006, 28(02):291-298.

    Google Scholar

    WANG Lidong, YU Bingsong, ZHANG Yongwang, et al. Characteristics of reef and beach facies in the Kangkelin agefrom western Tarmi Basin-A case study from the Subashi outcrop section in the Keping area[J]. Geoscience, 2006, 28(02):291-298.

    Google Scholar

    王庆同, 宋贺民, 李伟, 等.新疆1:5万卡克、色帕巴依衣幅区域地质矿产调查报告[R]. 烟台:武警黄金第七支队 2015.

    Google Scholar

    翟大兴, 张永生, 田树刚, 等.兴蒙地区晚二叠世林西组灰岩微量元素与碳、氧同位素特征及沉积环境讨论[J]. 地球学报, 2015, 36(3):332-342.

    Google Scholar

    ZHAI Daxing, ZHANG Yongsheng, TIAN Shugang, et al. The late permian sedimentary environments of Linxi formation in Xingmeng area:Constraints from carbon and oxygen isotopes and trace elements[J]. Acta Geosciences Sinica, 2015, 36(3):332-342.

    Google Scholar

    赵振华.微量元素地球化学原理[M]. 北京:科学出版社, 2016.

    Google Scholar

    ZHAO Zhenhua.Principles of trace element geochemistry[M]. Beijing:Science Press, 2016.

    Google Scholar

    Baar H J W D, German C R, Elderfield H, et al. Rare earth element distributions in anoxic waters of the Cariaco Trench[J]. Geochimica et Cosmochimica Acta, 1988, 52(5):1203-1219.

    Google Scholar

    Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochimica Et Cosmochimica Acta, 1996, 60(10):1709-1725.

    Google Scholar

    Bau M, Moeller P.Rare earth element systematics of the chemically precipitated component in early Precambrian iron formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system[J]. Geochimcosmochimacta, 1993, 57(10):2239-2249.

    Google Scholar

    Bellanca A, Masetti D, Neri R.Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetian region, northern Italy); assessing REE sensitivity to environmental changes[J]. Chemical Geology, 1997, 141(3-4):141-152.

    Google Scholar

    Bierlein F P.Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J]. Chemical Geology, 1991, 93(3-4):219-230.

    Google Scholar

    Bolhar R, Kamber B S, Moorbath S, et al. Characterisation of early Archaean chemical sediments by trace element signatures[J]. Earth & Planetary Science Letters, 2004, 222(1):0-60.

    Google Scholar

    Elderfield H, Greaves M J.Negative cerium anomalies in the rare earth element patterns of oceanic ferromanganese nodules[J]. Earth & Planetary Science Letters, 1981, 55(1):163-170.

    Google Scholar

    German C R, Elderfield H.Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin☆[J]. Geochimica et Cosmochimica Acta, 1989, 53(10):2561-2571.

    Google Scholar

    German C R, Elderfield H, Elderfield H. Application of the Ce anomaly as a paleoredox indicator; the ground rules[J]. Paleoceanography, 1990, 5(5):823-833.

    Google Scholar

    Hatch J R, Leventhal J S.Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A[J]. Chemical Geology, 1992, 99(1-3):65-82.

    Google Scholar

    James R H, Elderfield H, Palmer M R.The chemistry of hydrothermal fluids from the Broken Spur site, 29°N Mid-Atlantic ridge[J]. Geochimica et Cosmochimica Acta, 1995, 59(4):651-659.

    Google Scholar

    Kimura H, Watanabe Y.Ocean anoxia at the Precambrian-Cambrian boundary[J]. Geology, 2001, 29(11):995-998.

    Google Scholar

    Klinkhammer G P, Elderfield H, Edmond J M, et al. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges[J]. Geochimcosmochimacta, 1994, 58(23):5105-5113.

    Google Scholar

    Lawrence M G, Greig A, Collerson K D, et al. Rare Earth Element and Yttrium Variability in South East Queensland Waterways[J]. Aquatic Geochemistry, 2006, 12(1):39-72.

    Google Scholar

    Lerman A.Lakes:Chemistry, Geology, Physics[M]. New York:Springer-Verlag, 1978.

    Google Scholar

    liu y g, miah m r u, schmitt R A.Cerium:A chemical tracer for paleo-oceanic redox conditions[J]. Geochimica et Cosmochimica Acta, 1988, 52(6):1361-1371.

    Google Scholar

    Mazumdar A, Tanaka K, Takahashi T, et al. Characteristics of rare earth element abundances in shallow marine continental platform carbonates of Late Neoproterozoic successions from India[J]. EOCHEMICAL JOURNAL, 2003, 37(2):277-289.

    Google Scholar

    Michael, Bau, And, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochimica et Cosmochimica Acta, 1996, 60(10):1709-1725.

    Google Scholar

    Mitra, Arabinda.Rare earth element systematics of submarine hydrothermal fluids and plumes[J]. University of Cambridge, 1991, 45(4):356-367.

    Google Scholar

    Mitra A, Elderfield H, Greaves M J.Rare earth elements in submarine hydrothermal fluids and plumes from the Mid-Atlantic Ridge[J]. Marine Chemistry, 1994, 46(3):217-235.

    Google Scholar

    Nozaki Y, Lerche D, Alibo D S, et al. The estuarine geochemistry of rare earth elements and indium in the Chao Phraya River, Thailand[J]. Geochimica et Cosmochimica Acta, 2000, 64(23):3983-3994.

    Google Scholar

    Taylor S R, Mclennan S M.The Continental Crust:Its Composition and Evolution, An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Blackwell Scientific Pub., 1985.

    Google Scholar

    Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies:An update[J]. Chemical Geology, 2006, 232(1-2):0-32.

    Google Scholar

    Wignall P B, Twitchett R J.Oceanic Anoxia and the End Permian Mass Extinction[J]. Science, 1996, 272(5265):1155-1158.

    Google Scholar

    Wright J, Schrader H, Holser W T.Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica Et Cosmochimica Acta, 1987, 51(3):631-644.

    Google Scholar

    Xiong G, Jiang X, Cai X, et al. The Characteristics of Trace Element and REE Geochemistry of the Cretaceous Mudrocks and Shales from Southern Tibet and Its Analysis of Redox Condition[J]. Advances in Earth Science, 2010, 25(7):730-745.

    Google Scholar

    Zhao Y Y, Zheng Y F, Chen F.Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China[J]. Chemical Geology, 2009, 265(3-4):0-362.

    Google Scholar

    Zhang J, Nozaki Y.Rare earth elements and yttrium inseawater:ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basin of the western South Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(23):4631-4644.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1072) PDF downloads(75) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint