白瑾.五台山早前寒武纪地质[M]. 天津:天津科学技术出版社, 1986.
Google Scholar
|
BAI Jin.The Early Precambrian Geology of Wutaishan[M]. Tianjin:Tianjin Science and Technology Press, 1986.
Google Scholar
|
成功, 孙卫宾, 李尚林, 等.印度达尔瓦尔克拉通绿岩带BIF型铁矿地质特征及成因分析[J]. 西北地质, 2016, 49(4):136-145.
Google Scholar
|
CHENG Gong, SUN Weibin, LI Shanglin, et al. Geological Characters and Genesis Analysis of Greenstone-type BIF Iron Deposits in Dharwar Craton, India[J]. Northwestern Geology, 2016, 49(4):136-145.
Google Scholar
|
杜利林, 杨崇辉, 王伟, 等.五台地区滹沱群时代与地层划分新认识:地质学与锆石年代学证据[J]. 岩石学报, 2011, 27(04):1037-1055.
Google Scholar
|
DU Lilin, YANG Chonghui, WANG Wei, et al. The re-examination of the age and stratigraphic subdivision of the HutuoGroup in the Wutai Mountains area, North China Craton:evidence from geologyand zircon U-Pb geochronology[J]. Acta Petrologica Sinica, 2011, 27(04):1037-1055.
Google Scholar
|
李树勋, 冀树楷, 马志红, 等.五台山区变质沉积铁矿地质[M]. 吉林:吉林科学技术出版社, 1986.
Google Scholar
|
LI Shuxun, JI Shukai, MA Zhihong, et al. The geology of metamorphosed sedimentary iron deposit in the Wutai Mountain area[M]. Jilin:Jilin Science and Technology Press, 1986.
Google Scholar
|
李志红, 朱祥坤, 唐索寒, 等.冀东、五台和吕梁地区条带状铁矿的稀土元素特征及其地质意义[J]. 现代地质, 2010, 24(5):840-846.
Google Scholar
|
LI Zhihong, ZHU Xiangkun, TANG Suohan, et al. Characteristics of rare earth elements and geological significations of BIFs from Jidong, Wutai and Lüliang area[J]. Geoscience, 2010, 24(5):840-846.
Google Scholar
|
骆辉, 彭晓亮, 赵运起.五台山绿岩带铁建造金矿[M]. 北京:地质出版社, 1994.
Google Scholar
|
LUO Hui, PENG Xiaoliang, ZHAO Yunqi.BIF-hosted gold deposits in Wutaishan greenstone belt[M]. Beijing:Geological Publishing House, 1994.
Google Scholar
|
南景博, 黄华, 王长乐, 等.内蒙古固阳绿岩带条带状铁建造地球化学特征与沉积环境讨论[J]. 中国地质, 2017, 44(2):331-345.
Google Scholar
|
NAN Jingbo, HUANG Hua, WANG Changle, et al. Geochemistry and depositional setting of Banded Iron Formations in Guyang greenstone belt, Inner Mongolia[J]. Geology in China, 2017, 44(2):331-345.
Google Scholar
|
沈其韩, 宋会侠, 杨崇辉, 等.山西五台山和冀东迁安地区条带状铁矿的岩石化学特征及其地质意义[J]. 岩石矿物学杂志, 2011, 30(2):161-171.
Google Scholar
|
SHEN Qihan, SONG Huixia, YANG Chonghui, et al. Petro-chemical characteristics and geological significations of banded ironformations in the Wutai Mountain of Shanxi and Qian'an of eastern Hebei[J]. Acta Petrologica et Mineralogica, 2011, 30(2):161-171.
Google Scholar
|
田永清.五台山-恒山绿岩带地质及金的成矿作用[M]. 太原:山西科技出版社, 1991.
Google Scholar
|
TIAN Yongqing.Geology and gold mineralization of Wutai-shan-Hengshan greenstone belt[M]. Taiyuan:Shanxi Science and Technology Press, 1991.
Google Scholar
|
万渝生, 董春艳, 任鹏, 等.华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化:综述[J]. 岩石学报, 2017, 33(05):1405-1419.
Google Scholar
|
WAN Yusheng, DONG Chunyan, REN Peng, et al. Spatial and temporal distribution, compositional characteristics and formation and evolution of Archean TTG rocks in the North China Craton:A synthesis[J]. Acta Petrologica Sinica, 2017, 33(05):1405-1419.
Google Scholar
|
王长乐, 张连昌, 刘利, 等.国外前寒武纪铁建造的研究进展与有待深入探讨的问题[J]. 矿床地质, 2012, 31(6), 1311-1325.
Google Scholar
|
WANG Changle, ZHANG Lianchang, LIU Li, et al. Research progress of Precambrian iron formations abroad and some problems deserving furtherdiscussion[J]. Mineral Deposits, 2012, 31(6), 1311-1325.
Google Scholar
|
王浩然, 刘建朝, 张燕娜, 等.山东省海阳市郭城镇BIF型铁矿地球化学特征与矿床成因探讨[J]. 西北地质, 2018, 51(04):156-165.
Google Scholar
|
WANG Haoran, LIU Jianchao, ZHANG Yanna, et al. Geochemical characteristics and genesis of BIF iron deposit in Guocheng Town, Haiyang City, ShandongProvince[J]. Northwestern Geology, 2018, 51(04):156-165.
Google Scholar
|
王凯怡, WILDE Simon.山西五台地区大洼梁花岗岩的SHRIMP锆石U-Pb精确年龄[J]. 岩石矿物学杂志, 2002, 4:407-411.
Google Scholar
|
WANG Kaiyi, WILDE S.Precise SHRIMP U-Pb ages of Dawaliang granite inWutaishan area, Shanxi Province[J]. Acta Petrologica et Mineralogica, 2002, 4:407-411.
Google Scholar
|
伍家善, 耿元生, 沈其韩, 等.中朝古大陆太古宙地质特征及构造演化[M]. 北京:地质出版社, 1998.
Google Scholar
|
WU Jiashan, GENG Yuansheng, SHEN Qihan, et al. Archaean geology characteristics and tectonic evolution of China-Korea Paleo-continent[M]. Beijing:Geological Publishing House, 1998.
Google Scholar
|
姚培慧.中国铁矿志[M]. 北京:冶金工业出版社, 1993.
Google Scholar
|
YAO Peihui.Records of China's iron ore deposits[M]. Beijing:Metallurgic Industry Press, 1993.
Google Scholar
|
张连昌, 翟明国, 万渝生, 等.华北克拉通前寒武纪 BIF 铁矿研究:进展与问题[J]. 岩石学报, 2012, 28(11):3431-3445.
Google Scholar
|
ZHANG Lianchang, ZHAI Mingguo, WAN Yusheng, et al. Study of the Precambrian BIF-iron deposits in the North China Craton:Progresses and questions[J]. Acta Petrologica Sinic, 2012, 28(11):3431-3445.
Google Scholar
|
赵娜, 王忠梅, 王浩, 等.山西五台金岗库矿床成矿作用研究[J]. 地质科学, 2019, 54(2):608-641.
Google Scholar
|
ZHAO Na, WANG Zhongmei, WANG Hao, et al. Mineralization of Jingangku deposit in Wutai, North Shanxi Province[J]. Chinese Journal of Geology, 2019, 54(2):608-641.
Google Scholar
|
Achterberg E V, Ryan C G, Jackson S E, et al. Data reduction software for Laser-Ablation-ICP-Mass in the earth sciences:Principles and Applications[J]. Mineralogical Association of Canada (short course series), 2001, 29:239-243.
Google Scholar
|
Albut G, Babechuk M G, Kleinhanns I C, et al. Modern rather than Mesoarchaean oxidative weathering responsible for the heavy stable Cr isotopic signatures of the 2.95 Ga old Ijzermijn iron formation (South Africa)[J]. Geochimica et Cosmochimica Acta, 2018, 228:157-189.
Google Scholar
|
Alexander B W, Bau M, Andersson P, et al. Continentally-derived solutes in shallow Archean seawater:rare earth element and Nd isotope evidence in iron formation from the 2.9Ga Pongola Supergroup, SouthAfrica[J]. Geochimica et Cosmochimica Acta, 2008, 72(2), 378-394.
Google Scholar
|
Alibo D S, Nozaki Y.Rare earth elements in seawater:particle association, shale-normalization, and Ce oxidation[J]. Geochimica et Cosmochimica Acta, 1999, 63(3-4), 363-372.
Google Scholar
|
Andersen T.Correction of common lead in U-Pb analyses that donot report 204Pb[J]. Chemical Geology, 2002, 192(1-2):59-79.
Google Scholar
|
Basta F F, Maurice A E, Fontboté L, et al. Petrology and geochemistry of the banded iron formation (BIF) of WadiKarim and Um Anab, eastern Desert, Egypt:implications for the origin of NeoproterozoicBIF[J]. Precambrian Research, 2011, 187(3):277-292.
Google Scholar
|
Bau M.Effects of syn-and post-depositional processes on the rare-earth element distribution in Precambrian Iron-formations[J]. European Journal of Mineralogy, 1993, 5(2):257-267.
Google Scholar
|
Bau M, Dulski P.Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79:37-55.
Google Scholar
|
Bau M, Dulski P.Comparing yttrium and rare-earth in hydrothermal fluids from the mid-Atlantic ridge:implications for Y and REE behaviour during near vent mixingand for the Y/Ho ratio of Proterozoic seawater[J]. Chemical Geology, 1999, 155(1):77-90.
Google Scholar
|
Bekker A, Slack J F, Planavsky A, et al. Iron formation:The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biosphericprocesses[J]. Economic Geology, 2010, 105:467-508.
Google Scholar
|
Bolhar R, Hofmann A, Siahi M, et al. A trace element and Pb isotopic investigation into the provenance and deposition of stromatolitic carbonates, ironstones and associated shales of the~3.0 Ga Pongola Supergroup, Kaapvaal Craton[J]. Geochimica et Cosmochimica Acta, 2015, 158:57-78.
Google Scholar
|
Bolhar R, Kamber B S, Moorbath S, et al. Characterisation of early Archaean chemical sediments by trace element signatures[J]. Earth and Planetary Science Letters, 2004, 222(1):43-60.
Google Scholar
|
Bonatti E.Metallogenesis at oceanic spreading centers[J]. Annual Reviews of Earth and Planetary Sciences, 1975, 3(1):401-433.
Google Scholar
|
Busigny V, Planavsky N J, Goldbaum E, et al. Origin of the Neoproterozoic Fulu iron formation, South China:Insights from iron isotopesand rare earth element patterns[J]. Geochimica et Cosmochimica Acta, 2018, 242:123-142.
Google Scholar
|
Chen Huichun, Zhao Guochun, Sun Min, et al. Geochemistry of~2.5Ga granitoids at the northern margin of the Yinshan Block:Implications for the crustal evolution of the North China Craton[J]. Precambrian Research, 2017, 303:673-686.
Google Scholar
|
Chen Yanjing, Zhao Yongchao.Geochemical characteristics and evolution of REE in the Early Precambrian sediments:evidence from the southern margin of the north China craton[J]. Episodes, 1997, 20(2):109-116.
Google Scholar
|
Condie K C, Wronkiewicz D J.The Cr/Th ratio in Precambrian pelites from the KaapvaalCratonas an index of craton evolution[J]. Earth and Planetary Science Letters, 1990, 97(3):256-267.
Google Scholar
|
Condie K C.Chemical composition and evolution of the upper continental crust:contrasting results from surface sample and shales[J]. Chemical Geology, 1993, 104(1-4):1-37.
Google Scholar
|
Diwu Chunrong, Sun Yong, Guo Anlin, et al. Crustal growth in the North China Craton at~2.5Ga:Evidence from in situ zircon U-Pb ages, Hf isotopes and whole-rock geochemistry of the Dengfengcomplex[J]. Gondwana Research, 2011, 20(1):149-170.
Google Scholar
|
Du Lilin, Yang Chonghui, Wang Wei, et al. Paleoproterozoic rifting of the North China Craton:geochemical and zircon Hf isotopic evidence from the 2137 Ma Huangjinshan A-type granite porphyry in the Wutaiarea[J]. Journal of Asian Earth Sciences, 2013, 72, 190-202.
Google Scholar
|
Dymek R F, Klein C.Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 Ma Isua supracrustal belt, West Greenland[J]. Precambrian Research, 1988, 39 (4), 247-302.
Google Scholar
|
Frei R, Dahl P S, Duke E F, et al. Trace element and isotopic characterization of Neoarchaean and Paleoproterozoic iron formations in the Black Hills (South Dakota, USA):Assessment of chemical change during 2.9~1.9 Ga deposition bracketing the 2.4~2.2 Ga first rise of atmospheric oxygen[J]. Precambrian Research, 2008, 162(3-4):441-474.
Google Scholar
|
Gao Pin, Santosh M.Building the Wutai arc:Insights into the Archean-Paleoproterozoic crustal evolution of the North China Craton[J]. Precambrian Research, 2019, 333:105429.
Google Scholar
|
Gao Pin, Santosh M.Trace element and stable isotope characteristics of Algoma-type sulfidic banded iron formations from the Wutai Complex, central NorthChina Craton[J]. Ore Geology Reviews, 2020, 116:103221.
Google Scholar
|
German C R, Elderfield H.Application of the Ce anomaly as a paleoredox indicator:The ground rules[J]. Paleoceanography, 1990, 5(5):823-833.
Google Scholar
|
German C R, Holliday B P, Elderfield H.Redox cycling of rare earth elements in the suboxic zone of the Black Sea[J]. Geochimica et Cosmochimica Acta, 1991, 55:3553-3558.
Google Scholar
|
Gnaneshwar R T G, Naqvi S M.Geochemistry, depositional environment and tectonic setting of the BIF's of the Late Archaean Chitradurga Schist Belt, India[J]. Chemical Geology, 1995, 121:217-243.
Google Scholar
|
Halevy I, Bachan A.The geologic history of seawater PH[J]. Science, 355:1061-1071.
Google Scholar
|
HAN Chunming, XIAO Wenjiao, SU Benxun, et al. Neoarchean Algoma-type banded iron formation from the Northern Shanxi, the Trans-North China Orogen:SIMS U-Pb age, origin and tectonic setting[J]. Precambrian Research, 2017, 303:548-572.
Google Scholar
|
Hou Kejun, Li Yanhe, Gao Jianfeng, et al. Geochemistry and Si-O-Fe isotope constraints on the origin of banded iron formations of the Yuanjiacun Formation, Lvliang Group, Shanxi, China[J]. Ore Geology Reviews, 2014, 57, 288-298.
Google Scholar
|
Huston D L, Logan G A.Barite, BIFs and bugs:evidence for the evolution of the Earth's early hydrosphere[J]. Earth and Planetary Science Letters, 2004, 220(1-2), 41-55.
Google Scholar
|
Hyndman R D, Rogers G C, Dragert H, et al. Giant earthquakes beneath Canada's west coast[J]. Geoscience Canada, 1996, 23(2):63-72.
Google Scholar
|
James H L.Sedimentary facies of iron-formation[J]. Economic Geology, 1954, 49:235-293.
Google Scholar
|
Kappler A, Pasquero C, Konhauser K O, et al. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria[J]. Geology, 2005, 33(11):865-868.
Google Scholar
|
Konhauser K O, Pecoits E, Lalonde S V, et al. Oceanic nickel depletion and a methanogen famine before the great oxidation event[J]. Nature, 2009, 458(7239):750-753.
Google Scholar
|
Kusky T M, Li Jianghai.Paleoproterozoic tectonic evolution of the North China Craton[J]. Journal of Asian Earth Sciences, 2003, 22(4):383-397.
Google Scholar
|
Kusky T, Polat A, Windley B, et al. Insights into the tectonic evolution of the north China Craton through comparative tectonic analysis:a record of outward growth of Precambrian continents[J]. Earth-Science Reviews, 2016, 162:387-432.
Google Scholar
|
Lan Tingguang, Fan Hongrui, Santosh M, et al. U-Pb zircon chronology, geochemistry and isotopes of the Changyi banded iron formation in the eastern Shandong Province:constraints on BIF genesis and implications for Paleoproterozoic tectonic evolution of the North China Craton[J]. Ore Geology Reviews, 2014, 56:472-486.
Google Scholar
|
Li Qiugen, Chen Xu, Liu Shuwen, et al. Evaluating the provenance of metasedimentary rocks of the Jiangxian Group from the Zhongtiao Mountain using whole-rockgeochemistry and detrital zircon Hf isotope[J]. International Journal of Earth Sciences, 2008, 83(3), 550-561.
Google Scholar
|
Liu Chaohui, Zhao Guochun, Sun Min, et al. U-Pb and Hf isotopic study of detrital zircons from the Hutuo group in the Trans-North China Orogen and tectonicimplications[J]. Gondwana Research, 2010, 20(1):106-121.
Google Scholar
|
Liu Chaohui, Liu Fulai, Shi Jianrong, et al. Depositional age and provenance of the Wutai Group:Evidence from zircon U-Pb and Lu-Hf isotopes and whole-rock geochemistry[J].Precambrian Research, 2016, 281:269-290.
Google Scholar
|
Liu Shuwen, Pan Yuanming, Xie, Qianli, et al. Archean geodynamics in the central zone, North China Craton:constraints from geochemistry of two contrasting series of granitoids in the Fuping and Wutaicomplexes[J]. Precambrian Research, 2004, 130:229-249.
Google Scholar
|
Ludwig KR.ISOPLOT 3.0:A Geochronological Toolkit for Microsoft Excel[M]. Los Angeles, Berkeley:Berkeley Geochronology Center Special Publication, 2003.
Google Scholar
|
Mclennan S M.Rare earth elements in sedimentary rocks:Influence of provenance and sedimentary processes.In:LIPIN B R and MCKAY G A (eds).Geochemistry and Mineralogy of Rare EarthElements[J]. Reviews in Mineralogy, 1989, 21(1):169-200.
Google Scholar
|
Michard A, Michard G, Stuben D., et al. Submarine thermal springs associated with young volcanoes:the Teahitia vents, Society islands Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1993, 57(21-22):4977-4986.
Google Scholar
|
Partin C A, Lalonde S V, Planavsky N J, et al. Uranium in iron formations and the rise ofatmosphericoxygen[J]. Chemical Geology, 2013, 362:82-90.
Google Scholar
|
Pearson R G.Hard and Soft Acids and Bases[J]. Journal of the American Chemical Society, 1973, 85(22):3533-3539.
Google Scholar
|
Pecoits E, Gingras M K, Barley, M E, et al. Petrography and geochemistry of the Dales Gorge banded iron formation:paragenetic sequence, source and implications for paleo-oceanchemistry[J]. Precambrian Research, 2009, 172(1-2):163-187.
Google Scholar
|
Peng Peng, Feng Lianjun, Sun Fengbo, et al. Dating the Gaofan and Hutuo Groups-Targets to investigate the Paleoproterozoic Great Oxidation Event in North China[J]. Journal of Asian Earth Sciences, 2017, 138:535-547.
Google Scholar
|
Peter J M, Goodfellow W D.Mineralogy, bulk and rare earth element geochemistry of massive sulphide-associated hydrothermal sediments of the Brunswick Horizon, Bathurst Mining Camp, New Brunswick[J]. Canadian Journal of Earth Sciences, 1996, 33:252-283.
Google Scholar
|
Planavsky N J, Asael D, Hofmann A, et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event[J]. Nature Geoscience, 2014, 7(4):283-286.
Google Scholar
|
Planavsky N, Bekker A, Rouxel O J, et al. Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited:New perspectives on the significance and mechanisms ofdeposition[J]. Geochimica et Cosmochimica Acta, 2010, 74 (22):6387-6405.
Google Scholar
|
Planavsky N, Rouxel O J, Bekker A, et al. Iron isotope composition of some Archean and Proterozoic iron formations[J]. Geochimicaet Cosmochimica Acta, 2012, 80:158-169.
Google Scholar
|
Polat A, Kusky T M, Li Jianghai, et al. Geochemistry of Neoarchean (ca.2.55-2.50 Ga) volcanic and ophiolitic rocks in the Wutaishan Greenstone Belt, Central Orogenic Belt, North China Craton:implications for geodynamic setting and continental growth[J]. Bulletin of the Geological Society of America, 2005, 117:1387-1399.
Google Scholar
|
Smith A J, Beukes N J, Gutzmer J.The composition and depositional environments of Mesoarchean iron formations of the West Rand Group of the Witwatersrand Supergroup, South Africa[J]. Economic Geology, 2013, 108:111-134.
Google Scholar
|
SUN DI, LI QIUGEN, LIU Shuwen, et al. Neoarchean-Paleoproterozoic magmatic arc evolution in the Wutai-Hengshan-Fuping area, North China Craton:New perspectives from zircon U-Pb ages and Hf isotopic data[J]. Precambrian Research, 2019, 331:105368.
Google Scholar
|
Sun Shensu, Mcdonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. In:Sauders, A D, Norry, M J (Eds.), Magmatism in the Ocean Basins.Geological Society Special Publication, 1989, 42:313-345.
Google Scholar
|
Sunder R P V.Petrography and geochemical behaviour of trace element, REE and precious metal signatures of sulphidic banded iron formations from the Chikkasiddavanahalli area, Chitradurga schist belt, India[J]. Journal of Asian Earth Sciences, 2009, 34:663-673.
Google Scholar
|
Tang Li, Santosh M.Neoarchean-Paleoproterozoic terrane assembly and Wilson cycle in the North China Craton:an overview from the central segment of the Trans-North ChinaOrogen[J]. Earth-Science Reviews, 2018, 182:1-27.
Google Scholar
|
Wang Changle, Zhang Lianchang, Dai Peiyan, et al. Source characteristics of the 2.5 Ga Wangjiazhuang Banded Iron Formation from the Wutai greenstone belt in the North China Craton:Evidence from neodymium isotopes[J]. Journal of Asian Earth Sciences, 2014b, 93:288-300.
Google Scholar
|
Wang Changle, Zhang Lianchang, Lan Caiyun, et al. Petrology and geochemistry of the Wangjiazhuang banded iron formation and associated supracrustal rocks from the Wutai greenstone belt in the North China Craton:Implications for their origin and tectonicsetting[J]. Precambrian Research, 2014a, 255:603-626.
Google Scholar
|
Wang Zhihong, Wilde S A, Wang K Y, et al. A MORB-arc basalt-adakite association in the 2.5 Ga Wutai greenstone belt:late Archean magmatism and crustal growth in the North China Craton[J]. Precambrian Research, 2004, 131(3-4):323-343.
Google Scholar
|
Widdel F, Schnell S, Heising S, et al. Ferrous iron oxidation by anoxygenic phototrophic bacteria[J]. Nature, 1993, 362(6423):834-836.
Google Scholar
|
Wilde, S A, Cawood P A, Wang K Y, et al. Determining Precambrian crustal evolution in China:a case-study from Wutaishan, Shanxi Province, demonstrating the application of precise SHRIMP U-Pb geochronology[J]. Geological Society of London, 2004a, 226:5-26.
Google Scholar
|
Wilde, S A, Cawood P A, Wang K Y, et al. Granitoid evolution in the late Archean Wutaicomplex, North China Craton[J]. Journal of Asian Earth Sciences, 2005, 24:597-613.
Google Scholar
|
Wilde, S A, Zhao Guochun, Wang K Y, et al. First precise SHRIMP U-Pb zircon ages for the Hutuo Group, Wutaishan:further evidence for the Paleoproterozoic amalgamation of the North China Craton[J]. Chinese Science Bulletin, 2014b, 49(1):83-90.
Google Scholar
|
Windley B F, Kusky T, Polat A.Onset of plate tectonics by the Eoarchean[J]. Precambrian Research, 2021, 352:105980.
Google Scholar
|
Wonder J, Spry P, Windom K.Geochemistry and origin of manganese-rich rocks related to iron-formation and sulfide deposits, Western Georgia[J]. Economic Geology, 1988, 83, 1070-1081.
Google Scholar
|
Yang Chonghui, Du Lilin, Ren Liudong, et al. Delineation of the ca.2.7 Ga TTG gneisses in the Zanhuang Complex, North China Cratonand its geological implications[J]. Journal of Asian Earth Sciences, 2013, 72:178-189.
Google Scholar
|
Zhai Mingguo, Santosh M.Metallogeny of the North China Craton:link with secular changes in the evolvingEarth[J]. Gondwana Research, 2013, 24(1):275-297.
Google Scholar
|
Zhai Mingguo, Santosh M.The early Precambrian odyssey of the North China Craton:a synoptic overview[J]. Gondwana Research, 2011, 20(1):6-25.
Google Scholar
|
Zhang Juquan, Li Shengrong, Santosh, M, et al. Metallogenesis of Precambrian gold deposits in the Wutai greenstone belt:Constrains on the tectonic evolution of the North China Craton[J]. Geoscience Frontiers, 2018, 9(2):317-333.
Google Scholar
|
Zhao Guochun, Cawood P A, LI Sanzhong, et al. Amalgamation of the North China Craton:key issues and discussion[J]. Precambrian Research, 2012, 222:55-76.
Google Scholar
|
Zhao Guochun, Sun Min, Wilde, S A, et al. Neoarchaean to Palaeoproterozoic evolution of the North China Craton:key issues revisited[J]. Precambrian Research, 2005, 136:177-202.
Google Scholar
|
WAN Yusheng, LIU Shoujie, XIE Hangqiang, et al. Formation and evolution of the Archean continental crust of China:A review[J]. China Geology, 2018, 1, 109-136. doi:10.31035/cg2018011.
Google Scholar
|