2021 Vol. 54, No. 3
Article Contents

WANG Jianzhong, WEI Liyong, DUAN Jun, ZHAO Jun, YANG Hanwen. 2021. Genesis and Tectonic Significance of the Chahawusu Monzonitic Granite in the Western Section of the Alataw Mountain, Xinjiang. Northwestern Geology, 54(3): 10-26. doi: 10.19751/j.cnki.61-1149/p.2021.03.002
Citation: WANG Jianzhong, WEI Liyong, DUAN Jun, ZHAO Jun, YANG Hanwen. 2021. Genesis and Tectonic Significance of the Chahawusu Monzonitic Granite in the Western Section of the Alataw Mountain, Xinjiang. Northwestern Geology, 54(3): 10-26. doi: 10.19751/j.cnki.61-1149/p.2021.03.002

Genesis and Tectonic Significance of the Chahawusu Monzonitic Granite in the Western Section of the Alataw Mountain, Xinjiang

More Information
  • The Chahawusu pluton, located in the Alataw mountains of west Tianshan, belongs to the Devonian Carboniferous back-arc basin tectonically.The pluton is mainly composed of gray white medium-grained monzonitic granite and gray white medium-fine grained two-mica monzonitic granite. The geochemical data shows that the rock has a high content of SiO2, Al2O3, and alkali, A/CNK=1.08~1.14, belonging to the peraluminum high potassium calcium-alkaline granite series; the light rare earth elements are relatively enriched and the heavy rare earth elements are relatively depleted.The rare earth distribution mode is a right-leaning type enriched with light rare earth elements, with an obvious negative Eu anomalies;large ion stonephilic elements (LILE) Rb, Th, U, K, Hf are strongly enriched and high field strength elements (HFSE) Ba, Nb, Ta, Sr, P, Ti are depleted. The low ISr value (0.701 5~0.702 6) shows that the Chahawusu monzonitic granite is a low-strontium high-differentiation S-type granite. It has the characteristics of the A-type granite, and it is the product of feldspar separation and crystallization. The high positive εNd(t) value (+0.37~+1.18), high content of Th and Ta, and Th/Ta ratio (6.12~8.54) in Monzonitic granite indicate that the magma source area is a long-term depleted mantle, affected by the assimilation and contamination of ancient crustal materials.All samples of the structural discriminant diagrams are in the junction of the volcanic arc granite or the syn-collision granite, even more closer to the syn-collision granite area. Chahawusu intrusion is in 313 Ma. Combined with the regional geological background, the authors believe that the Yili microplate has already met with the Junggar microplate before 310 Ma, and the closure of North Tianshan Ocean Basin was earlier than the end of the Late Carboniferous. After 310 Ma, the Alataw mountains area gradually entered the post-collision extension stage.Therefore,the Chahawusu monzonitic formed in a transitional environment from co-collision compression to post-collision extensional, being the post-collision granite. It is the result of mantle-derived basaltic magma underplating and the ACF process, the tectonic background being the active continental margin.
  • 加载中
  • 陈必河, 罗照华, 贾宝华, 等.阿拉套山南缘岩浆岩锆石SHRIMP年代学研究[J]. 岩石学报, 2007, 23(7):1756-1764.

    Google Scholar

    CHEN Bihe, LUO Zhaohua, JIA Baohua, et al. SHRIMP U-Pb zircon geochronology of igneous rocks from southern margin of the Atatew mountains, Xinjiang, China[J]. Acta Petrolagica Sinica, 2007, 23 (7):1756-1764.

    Google Scholar

    第五春荣, 孙勇, 林慈銮, 等.豫西宜阳地区TTG质片麻岩锆石U-Pb定年和Hf同位素地质学[J]. 岩石学报, 2007, 23(2):253-262.

    Google Scholar

    DI WU Chunrong, SUN Yong, LIN Ciluan, et al. Zircon U-Pb ales and Hf isotopes and their geological significance of Yiyan TTG gneisses from Henan province, China[J]. Acta Petrologica Sinica, 2007, 23(2):253-262.

    Google Scholar

    顾连兴, 胡受奚, 于春水, 等.东天山博格达造山带石炭纪火山岩及其形成地质环境[J]. 岩石学报, 2000, 16(3):305-316.

    Google Scholar

    GU Lianxing, HU Shouxi, YU Chunshui, et al.Carboniferous volcanites in the Bogda orogenic belt of eastern Tianshan:Their tectonic implications[J]. Acta Petrologica Sinica, 2000, 16(3):305-316.

    Google Scholar

    韩宝福, 何国琦, 王式洸.后碰撞幔源岩浆活动、底垫作用及准噶尔盆地基底的性质[J]. 中国科学(D), 1999, 29(1):16-21.

    Google Scholar

    HAN Baofu, HE Guoqi, WANG Shiguang.Postcollisional mantle-derived magmatism, underplating and implications for basement of the Junggar Basin[J]. Science in China(Series D), 1999, 29(1):16-21.

    Google Scholar

    韩宝福, 郭召杰, 何国琦. "钉合岩体"与新疆北部主要缝合带的形成时限[J]. 岩石学报, 2010, 26(8):2233-2246.

    Google Scholar

    HAN Baofu, GUO Zhaojie, HE Guoqi. Timing of major suture zones in North Xinjiang, China:Constraints from stitching plutons[J]. Acta Petrologica Sinica, 2010, 26(8):2233-2246.

    Google Scholar

    胡霭琴, 韦刚健, 张积斌, 等. 西天山温泉地区早古生代斜长角闪岩的锆石SHRIMP U-Pb年龄及其地质意义[J]. 岩石学报, 2008, 24(12):2731-2740.

    Google Scholar

    HU Aiqin, WEI Gangjian, ZHANG Jibin, et al.SHRIMP U-Pb ages for zircons of the amphibolites and tectonic evolution significance from the Wenquan domain in the West Tianshan Mountains, Xinjiang, China[J]. Acta Petrologica Sinica, 2008, 24(12):2731-2740.

    Google Scholar

    江秀敏.新疆阿拉套山东段晚古生代侵入岩活动特征及其成矿意义[D].北京:中国地质大学, 2015.

    Google Scholar

    JIANG Xiumin. The activity characteristics and metallogenic significance of the Neopaleozoic intrusions in the Eastern Alatao mountains, Xinjiang Province[D].Beijing:China University of Geosciences, 2015.

    Google Scholar

    李锦轶, 高立明, 孙桂华, 等.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J]. 岩石学报, 2007, 23(3):565-582.

    Google Scholar

    LI Jinyi, GAO Liming, SUN Guihua, et al. Shuangjingzi middle Triassic syn-collisional crust-derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean paleo-plates[J]. Acta Petrologica Sinica, 2007, 23(3):565-582.

    Google Scholar

    林涛, 邓宇峰, 陈斌, 等.新疆西天山阿拉套山东部孔吾萨依A型花岗岩成岩年代、地球化学特征及成因[J]. 地质学报, 2019, 93(5):1020-1036.

    Google Scholar

    LIN Tao, DENG Yufeng, CHEN Bin, et al. Geochronology, geochemistry and petrogenesis of the Kongwusayi A-type granites in the eastern Alataw Mountain, West Tianshan, Xinjiang[J]. Acta Geologica Sinica, 2019, 93(5):1020-1036.

    Google Scholar

    刘飞, 杨经绥, 李天福, 等.新疆北天山沙湾地区晚石炭世火山岩地球化学特征及地质意义[J]. 中国地质, 2011, 38(4):868-889.

    Google Scholar

    LIU Fei, YANG Jingsui, LI Tianfu, et al. Geochemical characteristics of Late Carboniferous volcanic rocks in northern Tianshan, Xinjiang, and their geological significance[J]. Geology in China, 2011, 38(4):868-889.

    Google Scholar

    刘志强, 韩宝福, 季建清, 等. 新疆阿拉套山东部后碰撞岩浆活动的时代、地球化学性质及其对陆垂向增长的意义[J]. 岩石学报, 2005, 21(3):623-639.

    Google Scholar

    LIU Zhiqiang, HAN Baofu, JI Jianqing, et al.Ages and geochemistry of the post-collisional granitic rocks from Eastern Alataw Mountains, Xinjiang, and implications for vertical crustal growth[J]. Acta Petrologica Sinica, 2005, 21 (3):623-639.

    Google Scholar

    王京彬, 徐新.新疆北部后碰撞构造演化与成矿[J]. 地质学报, 2006, 80(1):23-31.

    Google Scholar

    WANG Jingbin, XU Xin. Post-collisional metallogenesis in northern Xinjiang, China[J]. Acta Geologica Sinica, 2006, 80(l):23-31.

    Google Scholar

    王宗秀, 李春麟, Nikolaiz P, 等.西天山造山带构造单元划分及古生代洋陆转换过程[J]. 中国地质, 2017, 44 (4):623-641.

    Google Scholar

    WANG Zongxiu, LI Chunlin, Nikolaiz P, et al. Tectonic division and Paleozoic ocean-continent transition in Western Tianshan Orogen[J]. Geology in China, 2017, 44(4):623-641.

    Google Scholar

    吴福元, 江博明, 林强.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义[J]. 科学通报, 1997, 42(20):2188-2192.

    Google Scholar

    WU Fuyuan, JIANG Boming, LIN Qiang. Post-orogenic granite in the North China Orogenic Belt[J]. Chinese Science Bulletin, 1997, 42(20):2188-2192.

    Google Scholar

    吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学(D), 2017, 47(7):745-765.

    Google Scholar

    WU Fuyuan, LIU Xiaochi, JI Weiqiang, et al. Identification and research of highly fractionated Granite[J]. Science in China(Series D), 2017, 47(7):745-765.

    Google Scholar

    吴锁平, 王梅英, 戚开静.A型花岗岩研究现状及其评述[J]. 岩石矿物学杂志, 2007, 26(1):57-66.

    Google Scholar

    WU Suoping, WANG Meiying, QI Kaijing.Present situation of researches on A-type granites:a review[J]. Acta Petrologica et Mineralogica, 2007, 26(1):57-66.

    Google Scholar

    夏林圻, 夏祖春, 徐学义, 等.天山及邻区石炭纪-早二叠世裂谷火山岩岩石成因[J]. 西北地质, 2008, 41(4):1-68.

    Google Scholar

    XIA Linqi, XIA Zuchun, XU Xueyi, et al. Petrogenisis of Carbonifernus-Early Permian rift-related volcanic rocks in the Tianshan and its neighboring area, northwestern China[J]. Northwestern Geology, 2008, 41 (4):1-68.

    Google Scholar

    杨多, 陈满, 龚全德, 等.内蒙古阿巴嘎旗白音图嘎地区晚石炭世花岗岩地球化学特征、锆石U-Pb定年及其地质意义[J]. 地质论评, 2017, 63 (5):1209-1225.

    Google Scholar

    YANG Duo, CHEN Man, GONG Quande, et al. Geochemical characteristics, zircon U-Pb ages of the Late Carboniferous granite in Baiyintuga area, Abaga Banner, Inner Mongolia and their geological significance[J]. Geological Review, 2017, 63 (5):1209-1225.

    Google Scholar

    杨光华, 张炜波, 郭永峰, 等.北天山四棵树花岗岩体锆石U-Pb年代学及地质意义[J]. 西北地质, 2014, 47(2):83-98.

    Google Scholar

    YANG Guanghua, ZHANG Weibo, GUO Yongfeng, et al. LA-ICP-MS zircon U-Pb stitching Pluton in chronology and geological implications of Sikeshu the North Tianshan Suture Zone, Xinjiang[J]. Northwestern Geology, 2014, 47(2):83-98.

    Google Scholar

    杨学明, 杨晓勇, 陈双喜, 译(Hugh R.Rollison, 著).岩石地球化学[M]. 合肥:中国科学技术大学出版社, 2000.

    Google Scholar

    YANG Xueming, YANG Xiaoyong, CHEN Shuangxi, translated (ROLLISON, H R work). Rock Geochemistry[M]. Hefei:University of Science and Technology of China Press, 2000.

    Google Scholar

    曾祥武, 赵军, 聂晓勇.新疆温泉县别珍套山新元古代花岗岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其成因[J]. 地质通报, 2020, 39(2/3):177-193.

    Google Scholar

    ZENG Xiangwu, ZHAO Jun, NIE Xiaoyong. LA-ICP-MS zircon U-Pb age, geochemistry and genesis of Neoproterozoic granitoids in the Biezhentao Mountain of Wenquan County, Xinjiang[J]. Geological Bulletin of China, 2020, 39(2/3):177-193.

    Google Scholar

    张增杰, 陈衍景, 陈华勇, 等.天山海西期不同类型花岗岩类化学特征及其地球动力学意义[J]. 矿物岩石, 2003, 23(1):15-24.

    Google Scholar

    ZHANG Zengjie, CHEN Yanjing, CHEN Huayong, et al. The petrochemical characteristics of the Hercynian granitoids in Tianshan and its geodynamic implications[J]. Journal of Mineralogy and Petrology, 2003, 23 (1):15-24.

    Google Scholar

    张作衡, 王志良, 左国朝, 等.新疆西天山地质构造演化及铜金多金属矿床成矿环境[M]. 北京:地质出版社, 2008.

    Google Scholar

    ZHANG Zuoheng, WANG Zhiliang, ZUO Guochao, et al.Tectonic evolution and metallogenic setting of the copper and gold polymwtallic ore deposits in the West Tianshan, Xinjiang[M]. Beijing:Geological Publishing House, 2008.

    Google Scholar

    周泰禧, 陈江峰, 李学明.新疆阿拉套山花岗岩带的主要特征及形成构造环境[J]. 岩石学报, 1995, 11 (4):386 -396.

    Google Scholar

    ZHOU Tixi, CHEN Jiangfeng, LI Xueming. Tectonic Environment and Origin of Granitoids from Alatao Mountain, Xinjiang, China[J]. Acta Petrologica Sinica, 1995, 11(4):386-396.

    Google Scholar

    周泰禧, 陈江峰, 李学明.新疆阿拉套山花岗岩类高~εNd值的成因探讨[J]. 地质科学, 1996, 31 (1):71-79.

    Google Scholar

    ZHOU Tixi, CHEN Jiangfeng, LI Xueming. Origin of high εNd(t)granites from Alatao Mountain, Xinjiang[J]. Scientia Geologic Sinica, 1996, 31(1):71-79.

    Google Scholar

    朱志新, 王克卓, 徐达, 等.依连哈比尔尕山石炭纪侵入岩锆石SHRIMP U-Pb测年及其地质意义[J]. 地质通报, 2006, 26 (8):986-991.

    Google Scholar

    ZHU Zhixin, WANG Kezhuo, XU Da, et al. SHRIMP U-Pb dating of zircon from Carboniferous intrusive rocks on the active continental margin of Eren Habirga, West Tianshan, Xinjiang, China, and its geological implications[J]. Geological Bulletin of China, 2006, 25(8):986-991.

    Google Scholar

    Zindler A, Hart S. Chemical Geodynamics[J]. Annual Review of Earth and Planetary Science, 1986, 14:493-571.

    Google Scholar

    Ballouard C, Poujol M, Boulyvas P, et al. Nb-Ta fractionation in peraluminous granites:A marker of the magmatic-hydrothermal transition[J]. Geology, 2016, 44:231-234.

    Google Scholar

    Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems:Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect[J]. Contributions to Mineralogy and Petrology, 1996, 123:323-333.

    Google Scholar

    Breiter K, lamarao C N, Borges R M K, et al. Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites[J]. Lithos, 2014, 192-195:208-225.

    Google Scholar

    Brown M.The generation, segregation, ascent and emplacement of granite magma:the migmatite-to-crustally derived granite connection in thickened orogens[J]. Earth Science Reviews, 1994, 36(1-2):83-130.

    Google Scholar

    Chappell B W, White A J R. I and S type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 1992, 83:1-26.

    Google Scholar

    Chappell B W. Aluminium saturation in I- and S-type granites and the characterization of fractionated Haplo granites[J]. Lithos, 1999, 46(3):535-551.

    Google Scholar

    Chen Bin, Jahn B M. Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of northwest China and their tectonic implications[J]. Geological Magazine, 2002, 139:1-13.

    Google Scholar

    Chen Bin, Jahn B M. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China:Nd-Sr isotope and trace element evidence[J]. Journal of Asian Earth Sciences, 2004, 23:691-703.

    Google Scholar

    Chen Jiangfeng, Zhou Taixi, Xie Zhi, et al.Formation of positive εNd(T) granitoids from the Alataw Mountains, Xinjiang, China, by mixing and fractional crystallization:implication for Phanerozoic crustal growth[J]. Tectonophysics, 2000, 328:53-67.

    Google Scholar

    De JONG K, Wang Bo, Faure M, et al. New 40Ar/39Ar age constraints on the Late Palaeozoic tectonic evolution of the western Tianshan (Xinjiang, northwestern China), with emphasis on Permian fluid ingress[J]. International Journal of Earth Sciences, 2009, 98:1239-1258.

    Google Scholar

    Dilek Y, Furnes H. Ophiolite genesis and global tectonics:geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Bulletin of the Geological Society of America, 2011, 123(3/4):387-411.

    Google Scholar

    Rollinson H R. Using Geochemical Data:Evaluation, Presentation, Interpretation[M]. London:Longman Singapore Publishers 1993:234-240.

    Google Scholar

    Harris N B W, Pearce J A, Tindle A G. Geochemial characteristics of collision-zone magmatism. In:Coward MP and Res AC(eds.), Collision tectonics. Spec Publ Grol Lond., 1986, 19:67-81.

    Google Scholar

    Jahn B M, WU Fuyuan, CHEN Bin. Massive Granitoid generation in Central Asia:Nd Isotope evidence and implication for Continental Growth in the Phanerozoic[J]. Episodes, 2000, 23:82-92.

    Google Scholar

    Li Chaofeng, Li Xianhua, Li Qiuli, et al.Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same flament loading by thermal ionization mass spectrometry employing a single-step separation scheme[J]. Analytica Chimica Acta, 2012, 727:54-60.

    Google Scholar

    Li Chaofeng, Chu Zhuyin, Guo Jinghui, et al.A rapid single column separation scheme for high precision Sr-Nd-Pb isotopic analysis in geological samples using thermal ionization mass spectrometry[J]. Analytical Methods, 2015, 7:4793-4802.

    Google Scholar

    Martin H. Adakitic magmas:modern analogues of Archean granitoids[J]. Lithos, 1999, 46(3):411-429.

    Google Scholar

    Mcdonough W F, Sun S S, Ringwood A E, et al. Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth[J]. Geochimica et Cosmochimica Acta, 1992, 56(3):1001-1012.

    Google Scholar

    O'connor J. A classification for quartz-rich igneous rock based on feldspar ratios[J]. US Geol Surv Prof Paper, 1965, 525:B79-B84.

    Google Scholar

    Pálmf H, O'neill H S C. Cosmochcmical estimates of mantle composition[M]. Oxford:Treatise on Geochemistry:Second Edition, 2014, 3:1-39.

    Google Scholar

    Pantiño D A E. What do experiments tells us about the relative contributions of crust and mantle to the origin of granitic magmas. In:Castro A, Fernandez C and Vigneresse J L. (eds.).Understanding granites integrating new and classical techniques. The Geological Society, London, Special Puhlications, 1999, 168:55-75.

    Google Scholar

    Pearce J A, Harris N B, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4):956-983.

    Google Scholar

    Petford N. Segregation of tonalitic-trondhjemitic melts in the continental crust:The mantle connection[J]. Journal of Geophysical Research, 1995, 100(B8):15735-15743.

    Google Scholar

    Pitcher W S, Lobbing E J. Phanerozoic plutonism in the Peruvian edge[A]//Pitcher et al(eds.). Magmatism at a plate edge[C], London:Blackie, 1985, 19-25.

    Google Scholar

    Pitcher W S. The nature and origin of granite[J]. Chapman and Hall, London, 1997, 1-386.

    Google Scholar

    Rudniclk R L, Gao Shan. Composition of the continental crust[J]. Oxford:Treatise on Geochemistry:Second Edition, 2014, 4:1-51.

    Google Scholar

    Smith E I, Sánchez A, Walker J D, et al. Geochemistry of mafic magmas in the hurricane volcanic field, Utah:Implications for small- and large-scale chemical variability of the lithospheric mantle[J]. The Journal of Geology, 1999, 107 (4):433-448.

    Google Scholar

    Sun Linhua, Wang Yuejun, Fan Weiming, et al.Post-collisional potassic magmatism in the Southern Awulale Mountain, western Tianshan Orogen:Petrogenetic and tectonic implications[J]. Gondwana Research, 2008, 14 (3):383-394.

    Google Scholar

    Sun S S.Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs[J]. Phil. R. Soc. Lond, 1980, 297:409-445.

    Google Scholar

    Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42:313-345.

    Google Scholar

    Taylor S R, Mclennan S M. The continental crust:Its composition and evolution:An examination of the geochemic;al record preserved in sedimentary rocks[M]. Boston:Blac;kwell Scientific Publication, 1985.

    Google Scholar

    Vervoot J D, Patchett P J, Gehrels G E, et al. Constraints on early Earth differentiation from hafnium and neodymium isotopes[J]. Nature, 1996, 379:624-627.

    Google Scholar

    Wang Qiang, Derek A W, Zhao Zhenhua, et al. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China):Implications for Phanerozoic crustal growth in the Central Asia orogenic belt[J]. Chemical Geology, 2007, 236:42-64.

    Google Scholar

    Weaver B L. The origin of ocean island basalt end-member compositions:trace element and isotopic constraints[J]. Earth and Planetary Science Letters, 1991, 104(2/4):381-397.

    Google Scholar

    Whalen J B, Cumie K L, Chappell B W.A-type granites:geochemical characteristics, discriminatuon and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95:407-419.

    Google Scholar

    Wilson M. Igneous Petrogenesis:A Global Tectonic Approach[M]. London:Unwin Hyman, 1989, 1-466.

    Google Scholar

    Wu Fuyuan, Sun Deyou, Li Huimin, et al. A-type granites in northeastern China:age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1-2):143-173.

    Google Scholar

    Wu Fuyuan, Yang Jinhui, Wilde S A, et al. Geochronology, petrogenesis and tectonic implications of the Jurassic granites in the Liaodong Peninsula, NE China[J]. Chemical Geology, 2005, 221:127-156.

    Google Scholar

    Xia Linqi, Xu Xueyi, Xia Zuchun, et al. Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, northwestern China[J]. Geological Society of America Bulletin, 2004, 116:419-433.

    Google Scholar

    Wang Tao, Tong Ying, Wang Xiaxiao, et al. Some progress on understanding the Phanerozoic granitoids in China[J]. China Geology, 2018, 1(1):84-108.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1323) PDF downloads(87) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint