侯增谦,杨竹森,徐文艺,等. 青藏高原碰撞造山带:I.主碰撞造山成矿作用[J]. 矿床地质, 2006, 25(4):337-358.
Google Scholar
|
HOU Zengqian, YANG Zhuseng, XU Wenyi, et al. Metallogenesis in Tibetan collisional orogenic belt:I. Mineralization in main collisional orogenic setting[J]. Mineral Deposits, 2006, 25(4):337-358.
Google Scholar
|
侯增谦,王二七. 印度-亚洲大陆碰撞成矿作用主要研究进展[J]. 地球学报, 2008, 29(3):20-37.
Google Scholar
|
HOU Zengqian, WANG Erqi. Metallogenesis of the Indo-Asian collisional orogen:new advances[J]. Acta Geoscientica Sinica, 2008, 29(3):20-37.
Google Scholar
|
胡敬仁. 中华人民共和国区域地质调查报告-日喀则市幅(H45C003004)[M]. 武汉:中国地质大学出版社, 2014:86-190.
Google Scholar
|
HU Jingren. Regional Geological survey report of the People's Republic of China-Xigaze (H45C003004)[M]. Wuhan:China University of Geosciences Press, 2014:86-190.
Google Scholar
|
李华健,王庆飞,杨林,等. 青藏高原碰撞造山背景造山型金矿床:构造背景、地质及地球化学特征[J]. 岩石学报, 2017, 33(7):2189-2201.
Google Scholar
|
LI Huajian, WANG Qingfei, YANG Lin, et al. Orogenic gold deposits formed in Tibetan collisional orogen setting:Geotectonic setting, geological and geochemical features[J]. Acta Petrologica Sinica, 2017, 33(7):2189-2201.
Google Scholar
|
刘庆生. 有序岩石遥感信息的最优分割[J]. 国土资源遥感, 1999,10(2):50-54.
Google Scholar
|
LIU Qingsheng. Optimum segmentation of sequential rock remote sensing information[J]. Remote Sensing for Land & Resources, 1999,10(2):50-54.
Google Scholar
|
妙超. 新疆博格达南缘化探与遥感信息综合应用及找矿预测[J]. 西北地质, 2015, 48(1):213-220.
Google Scholar
|
MIAO Chao. Comprehensive application of geochemical prospecting and remote sensing information in prospecting of the Southern of Bogda, Xinjiang[J]. Northwestern Geology, 2015, 48(1):213-220.
Google Scholar
|
裴英茹. 青藏高原南部造山型金矿地质特征及成矿机制[D]. 北京:中国地质大学(北京), 2016.
Google Scholar
|
PEI Yingru. Geological characteristics and metallogenic mechanism of orogenic gold deposit in the southern area of Tibetan Plateau[D]. Beijing:China University of Geoscience (Beijing), 2016.
Google Scholar
|
宿虎,陈美媛,张丹青,等. 高植被覆盖区遥感矿化蚀变信息提取方法研究——以甘肃省西河县大桥-石峡地区为例[J]. 西北地质, 2020, 53(1):146-161.
Google Scholar
|
SU Hu, CHEN Meiyuan, ZHANG Danqing, et al. Study on the Method of Extracting Information of Mineralization Alteration by using Remote Sensing in High Vegetation Coverage Area-Taking Daqiao-Shixia Area of Xihe County, Gansu Province For Example[J]. Northwestern Geology, 2020, 53(1):146-161.
Google Scholar
|
孙晓明,韦慧晓,翟伟,等. 藏南邦布大型造山型金矿成矿流体地球化学和成矿机制[J]. 岩石学报, 2010, 26(6):1672-1684.
Google Scholar
|
SUN Xiaoming, WEI Huixiao, ZHAI Wei, et al. Ore-forming fluid geochemistry and maeallogenic mechanism of Bangu large scale orogenic gold deposit in southern Tibet, China[J]. Acta Petrologica Sinica, 2010, 26(6):1672-1684.
Google Scholar
|
田淑芳,詹骞.遥感地质学[M]. 北京:地质出版社,2013:1-324.
Google Scholar
|
TIAN Shufang, ZHAN Qian. Remote sensing geology[M]. Beijing:Geological Publishing House, 2013:1-324.
Google Scholar
|
王庆飞,邓军,赵鹤森,等. 造山型金矿研究进展:兼论中国造山型金成矿作用[J]. 地球科学, 2019, 44(6):2155-2186.
Google Scholar
|
WANG Qingfei, DENG Jun, ZHAO Hesen, et al. Review on Orogenic Gold Deposits[J]. Earth Science, 2019, 44(6):2155-2186.
Google Scholar
|
王庆飞,邓军,翁伟俊,等. 青藏高原新生代造山型金成矿系统[J]. 岩石学报, 2020, 36(5):1315-1353.
Google Scholar
|
WANG Qingfei, DENG Jun, WENG Weijun, et al., Cenozoic orogenic gold system in Tibet[J]. Acta Petrologica Sinica, 2020, 36(5):1315-1353.
Google Scholar
|
温春齐,多吉,范小平,等. 西藏西部马攸木金矿床成矿流体的特征[J]. 地质通报, 2006, 25(1-2):261-266.
Google Scholar
|
WEN Chunqi,DUO Ji,FAN Xiaoping,et al. Characteristics of ore fluids of the Mayun gole deposit, weatern Tibet, China[J]. Geological Bulletin of China, 2006, 25(1-2):261-266.
Google Scholar
|
吴德文,张远飞,朱谷昌. 遥感图像岩石信息提取的最优密度分割方法[J]. 国土资源遥感, 2002, 13(4):51-54.
Google Scholar
|
WU Dewen, ZHANG Yuanfei, ZHU Guchang. The best density separation method for extracting rock information from remote sensing image[J]. Remote Sensing for Land & Resources, 2002, 13(4):51-54.
Google Scholar
|
闫颖,陈有炘,孟勇,等. 遥感技术在东天山大黑山地区地质填图中的应用[J]. 西北地质, 2015,48(2):231-237.
Google Scholar
|
YAN Yin, CHEN Youxin, MENG Yong, et al. Application of Remote Sensing Technique in the Geologic Mapping of Daheishan Region, Eastern Tianshan[J]. Northwestern Geology, 2015,48(2):231-237.
Google Scholar
|
张守林. 基于ETM数据矿化蚀变信息定量提取方法研究[D]. 北京:中国地质大学(北京), 2006.
Google Scholar
|
ZHANG Shoulin. A study on methods used to quantitatively extract mineralized alteration information from ETM data[D]. Beijing:China University of Geoscience (Beijing), 2006.
Google Scholar
|
张雄. 青藏高原雅鲁藏布江缝合带造山型金矿成矿作用研究[D]. 北京:中国地质大学(北京), 2017.
Google Scholar
|
ZHANG Xiong. Mineralization of orogenic gold deposits in the Indus-Yarlung Tsangpo suture zone of Tibetan Plateau[D]. Beijing:China University of Geoscience(Beijing), 2017.
Google Scholar
|
张雄,赵晓燕,杨竹森. 念扎金矿床热历史:锆石U-Pb、(U-Th)/He及磷灰石裂变径迹年代学的制约[J]. 地球科学, 2019, 44(06):2039-2051.
Google Scholar
|
ZHANG Xiong, ZHAO Xiaoyan, YANG Zhusen. Thermal History of Nianzha Gold Deposit:Constraints from Zircon U-Pb, (U-Th)/He and Apatite Fission Track Geochronology[J]. Earth Science, 2019, 44(06):2039-2051.
Google Scholar
|
Chung Sunlin, Chu Meifei, Zhang Yuquan, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth Science Reviews, 2005, 68(3-4):173-196.
Google Scholar
|
Ding Lin, Kapp P, Wan Xiaoqiao. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet[J]. Tectonics, 2005, 24(3):0278-7407.
Google Scholar
|
Hunt G R, Salisbury J W, Lenhoff CJ. Visible and near infrared spectra of minerals and rocks. VI. Additional silicates[J]. Modern Geology, 1973, 4:85-106.
Google Scholar
|
Hunt G R. Near-infrared (1.3-2.4) μm spectra of alteration minerals-Potential for use in remote sensing[J]. Geophysics, 1979, 44(12):1974-1986.
Google Scholar
|
Mars J C, Rowan L C. Regional mapping of phyllic-and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms[J]. Geosphere, 2006, 2(3):161-186.
Google Scholar
|
Mars J C, Rowan L C. Aster spectral analysis and lithologic mapping of the khanneshin carbonatite volcano, Afghanistan[J]. Geosphere, 2011, 7(1):276-289.
Google Scholar
|
Phillips N, Powell R. A practical classification of gold deposits, with a theoretical basis[J]. Ore Geology Reviews, 2015,65(3):568-573.
Google Scholar
|
Rockwell B W, Hofstra A H. Identification of quartz and carbonate minerals across northern Nevada using Aster thermal infrared emissivity data-implications for geologic mapping and mineral resource investigations in well-studied and frontier areas[J]. Geosphere, 2008, 4(1):218-246.
Google Scholar
|
Rowan L C, Mars J C. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data[J]. Remote Sensing of Environment, 2003, 84(3):350-366.
Google Scholar
|
Rowan L C, Mars J C, Simpson C J. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)[J]. Remote Sensing of Environment, 2005, 99(1-2):105-126.
Google Scholar
|
Wang Qingfei, Groves D I, Deng Jun, et al. Evolution of the Miocene Ailaoshan orogenic gold deposits, southeastern Tibet, during a complex tectonic history of lithosphere-crust interaction[J]. Mineralium Deposita, 2020, 55:1085-1104.
Google Scholar
|
Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1):211-280.
Google Scholar
|