2021 Vol. 54, No. 2
Article Contents

SONG Yiwei, WANG Peng, LIAN Chenqin, DAI Xuejian, WANG Bin. 2021. Lithologic Mapping and Alteration Information Extracting Based on ASTER Spectral Signature: An Example from Nianzha Gold Deposit. Northwestern Geology, 54(2): 126-136. doi: 10.19751/j.cnki.61-1149/p.2021.02.010
Citation: SONG Yiwei, WANG Peng, LIAN Chenqin, DAI Xuejian, WANG Bin. 2021. Lithologic Mapping and Alteration Information Extracting Based on ASTER Spectral Signature: An Example from Nianzha Gold Deposit. Northwestern Geology, 54(2): 126-136. doi: 10.19751/j.cnki.61-1149/p.2021.02.010

Lithologic Mapping and Alteration Information Extracting Based on ASTER Spectral Signature: An Example from Nianzha Gold Deposit

  • Lithologic interpretation and alteration information extracting based on ASTER spectral analysis have been widely used in ore exploration.The authors carried out the study in Nianzha gold deposit of Yarlung Zangbo suture zone.Minerals components such as Fe3+, Fe2+, Al-OH, Mg-OH, silicate and carbonate were analyzed based on ASTER spectrum. This paper used "band radio method + false color synthesis" for lithologic classification and geological mapping and quantitatively delineated the range of mineralization-relatedalteration zone and two prospecting target areas with the "geologic-remote sensing profiles + best density seperation method". The results show that lithological mapping and alteration information extracting based on aster spectral are suitable for prospecting prediction in high altitude areas of Tibet, which can accurately indicate the key prospecting indicators of lithology and alteration.It proves to be an important means of rapid and effective ore exploration in Tibet, and provides reference for other deposits of the same type in the belt.
  • 加载中
  • 侯增谦,杨竹森,徐文艺,等. 青藏高原碰撞造山带:I.主碰撞造山成矿作用[J]. 矿床地质, 2006, 25(4):337-358.

    Google Scholar

    HOU Zengqian, YANG Zhuseng, XU Wenyi, et al. Metallogenesis in Tibetan collisional orogenic belt:I. Mineralization in main collisional orogenic setting[J]. Mineral Deposits, 2006, 25(4):337-358.

    Google Scholar

    侯增谦,王二七. 印度-亚洲大陆碰撞成矿作用主要研究进展[J]. 地球学报, 2008, 29(3):20-37.

    Google Scholar

    HOU Zengqian, WANG Erqi. Metallogenesis of the Indo-Asian collisional orogen:new advances[J]. Acta Geoscientica Sinica, 2008, 29(3):20-37.

    Google Scholar

    胡敬仁. 中华人民共和国区域地质调查报告-日喀则市幅(H45C003004)[M]. 武汉:中国地质大学出版社, 2014:86-190.

    Google Scholar

    HU Jingren. Regional Geological survey report of the People's Republic of China-Xigaze (H45C003004)[M]. Wuhan:China University of Geosciences Press, 2014:86-190.

    Google Scholar

    李华健,王庆飞,杨林,等. 青藏高原碰撞造山背景造山型金矿床:构造背景、地质及地球化学特征[J]. 岩石学报, 2017, 33(7):2189-2201.

    Google Scholar

    LI Huajian, WANG Qingfei, YANG Lin, et al. Orogenic gold deposits formed in Tibetan collisional orogen setting:Geotectonic setting, geological and geochemical features[J]. Acta Petrologica Sinica, 2017, 33(7):2189-2201.

    Google Scholar

    刘庆生. 有序岩石遥感信息的最优分割[J]. 国土资源遥感, 1999,10(2):50-54.

    Google Scholar

    LIU Qingsheng. Optimum segmentation of sequential rock remote sensing information[J]. Remote Sensing for Land & Resources, 1999,10(2):50-54.

    Google Scholar

    妙超. 新疆博格达南缘化探与遥感信息综合应用及找矿预测[J]. 西北地质, 2015, 48(1):213-220.

    Google Scholar

    MIAO Chao. Comprehensive application of geochemical prospecting and remote sensing information in prospecting of the Southern of Bogda, Xinjiang[J]. Northwestern Geology, 2015, 48(1):213-220.

    Google Scholar

    裴英茹. 青藏高原南部造山型金矿地质特征及成矿机制[D]. 北京:中国地质大学(北京), 2016.

    Google Scholar

    PEI Yingru. Geological characteristics and metallogenic mechanism of orogenic gold deposit in the southern area of Tibetan Plateau[D]. Beijing:China University of Geoscience (Beijing), 2016.

    Google Scholar

    宿虎,陈美媛,张丹青,等. 高植被覆盖区遥感矿化蚀变信息提取方法研究——以甘肃省西河县大桥-石峡地区为例[J]. 西北地质, 2020, 53(1):146-161.

    Google Scholar

    SU Hu, CHEN Meiyuan, ZHANG Danqing, et al. Study on the Method of Extracting Information of Mineralization Alteration by using Remote Sensing in High Vegetation Coverage Area-Taking Daqiao-Shixia Area of Xihe County, Gansu Province For Example[J]. Northwestern Geology, 2020, 53(1):146-161.

    Google Scholar

    孙晓明,韦慧晓,翟伟,等. 藏南邦布大型造山型金矿成矿流体地球化学和成矿机制[J]. 岩石学报, 2010, 26(6):1672-1684.

    Google Scholar

    SUN Xiaoming, WEI Huixiao, ZHAI Wei, et al. Ore-forming fluid geochemistry and maeallogenic mechanism of Bangu large scale orogenic gold deposit in southern Tibet, China[J]. Acta Petrologica Sinica, 2010, 26(6):1672-1684.

    Google Scholar

    田淑芳,詹骞.遥感地质学[M]. 北京:地质出版社,2013:1-324.

    Google Scholar

    TIAN Shufang, ZHAN Qian. Remote sensing geology[M]. Beijing:Geological Publishing House, 2013:1-324.

    Google Scholar

    王庆飞,邓军,赵鹤森,等. 造山型金矿研究进展:兼论中国造山型金成矿作用[J]. 地球科学, 2019, 44(6):2155-2186.

    Google Scholar

    WANG Qingfei, DENG Jun, ZHAO Hesen, et al. Review on Orogenic Gold Deposits[J]. Earth Science, 2019, 44(6):2155-2186.

    Google Scholar

    王庆飞,邓军,翁伟俊,等. 青藏高原新生代造山型金成矿系统[J]. 岩石学报, 2020, 36(5):1315-1353.

    Google Scholar

    WANG Qingfei, DENG Jun, WENG Weijun, et al., Cenozoic orogenic gold system in Tibet[J]. Acta Petrologica Sinica, 2020, 36(5):1315-1353.

    Google Scholar

    温春齐,多吉,范小平,等. 西藏西部马攸木金矿床成矿流体的特征[J]. 地质通报, 2006, 25(1-2):261-266.

    Google Scholar

    WEN Chunqi,DUO Ji,FAN Xiaoping,et al. Characteristics of ore fluids of the Mayun gole deposit, weatern Tibet, China[J]. Geological Bulletin of China, 2006, 25(1-2):261-266.

    Google Scholar

    吴德文,张远飞,朱谷昌. 遥感图像岩石信息提取的最优密度分割方法[J]. 国土资源遥感, 2002, 13(4):51-54.

    Google Scholar

    WU Dewen, ZHANG Yuanfei, ZHU Guchang. The best density separation method for extracting rock information from remote sensing image[J]. Remote Sensing for Land & Resources, 2002, 13(4):51-54.

    Google Scholar

    闫颖,陈有炘,孟勇,等. 遥感技术在东天山大黑山地区地质填图中的应用[J]. 西北地质, 2015,48(2):231-237.

    Google Scholar

    YAN Yin, CHEN Youxin, MENG Yong, et al. Application of Remote Sensing Technique in the Geologic Mapping of Daheishan Region, Eastern Tianshan[J]. Northwestern Geology, 2015,48(2):231-237.

    Google Scholar

    张守林. 基于ETM数据矿化蚀变信息定量提取方法研究[D]. 北京:中国地质大学(北京), 2006.

    Google Scholar

    ZHANG Shoulin. A study on methods used to quantitatively extract mineralized alteration information from ETM data[D]. Beijing:China University of Geoscience (Beijing), 2006.

    Google Scholar

    张雄. 青藏高原雅鲁藏布江缝合带造山型金矿成矿作用研究[D]. 北京:中国地质大学(北京), 2017.

    Google Scholar

    ZHANG Xiong. Mineralization of orogenic gold deposits in the Indus-Yarlung Tsangpo suture zone of Tibetan Plateau[D]. Beijing:China University of Geoscience(Beijing), 2017.

    Google Scholar

    张雄,赵晓燕,杨竹森. 念扎金矿床热历史:锆石U-Pb、(U-Th)/He及磷灰石裂变径迹年代学的制约[J]. 地球科学, 2019, 44(06):2039-2051.

    Google Scholar

    ZHANG Xiong, ZHAO Xiaoyan, YANG Zhusen. Thermal History of Nianzha Gold Deposit:Constraints from Zircon U-Pb, (U-Th)/He and Apatite Fission Track Geochronology[J]. Earth Science, 2019, 44(06):2039-2051.

    Google Scholar

    Chung Sunlin, Chu Meifei, Zhang Yuquan, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth Science Reviews, 2005, 68(3-4):173-196.

    Google Scholar

    Ding Lin, Kapp P, Wan Xiaoqiao. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet[J]. Tectonics, 2005, 24(3):0278-7407.

    Google Scholar

    Hunt G R, Salisbury J W, Lenhoff CJ. Visible and near infrared spectra of minerals and rocks. VI. Additional silicates[J]. Modern Geology, 1973, 4:85-106.

    Google Scholar

    Hunt G R. Near-infrared (1.3-2.4) μm spectra of alteration minerals-Potential for use in remote sensing[J]. Geophysics, 1979, 44(12):1974-1986.

    Google Scholar

    Mars J C, Rowan L C. Regional mapping of phyllic-and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms[J]. Geosphere, 2006, 2(3):161-186.

    Google Scholar

    Mars J C, Rowan L C. Aster spectral analysis and lithologic mapping of the khanneshin carbonatite volcano, Afghanistan[J]. Geosphere, 2011, 7(1):276-289.

    Google Scholar

    Phillips N, Powell R. A practical classification of gold deposits, with a theoretical basis[J]. Ore Geology Reviews, 2015,65(3):568-573.

    Google Scholar

    Rockwell B W, Hofstra A H. Identification of quartz and carbonate minerals across northern Nevada using Aster thermal infrared emissivity data-implications for geologic mapping and mineral resource investigations in well-studied and frontier areas[J]. Geosphere, 2008, 4(1):218-246.

    Google Scholar

    Rowan L C, Mars J C. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data[J]. Remote Sensing of Environment, 2003, 84(3):350-366.

    Google Scholar

    Rowan L C, Mars J C, Simpson C J. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)[J]. Remote Sensing of Environment, 2005, 99(1-2):105-126.

    Google Scholar

    Wang Qingfei, Groves D I, Deng Jun, et al. Evolution of the Miocene Ailaoshan orogenic gold deposits, southeastern Tibet, during a complex tectonic history of lithosphere-crust interaction[J]. Mineralium Deposita, 2020, 55:1085-1104.

    Google Scholar

    Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1):211-280.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(809) PDF downloads(50) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint