陈留勤. 从基本层序地层模式论地层穿时的本质——以滇黔桂盆地泥盆纪层序地层格架为例[J]. 西北地质, 2008, 41(1):50-58.
Google Scholar
|
CHEN Liuqin. On the Essence of Stratigraphic Diachronism from the Basic Sequence Stratigraphic Model——An example from the Devonian sequence stratigraphic framework of the Dianqiangui basin[J]. Northwestern Geology, 2008, 41(1):50-58.
Google Scholar
|
程文斌, 顾雪祥, 胡修棉, 等. 现代大洋红色粘土与白垩纪大洋红层元素地球化学对比[J]. 地质学报, 2008, 82(1):37-47.
Google Scholar
|
CHENG Wenbin, GU Xuexiang, HU Xiumian, et al. Comparative Element Geochemistry of Recent Oceanic Red Clay and Cretaceous Oceanic Red Bed[J]. Acta Geologica Sinica, 2008, 82(1):37-47.
Google Scholar
|
郭旭升. 上扬子地区五峰组-龙马溪组页岩层序地层及演化模式[J]. 地球科学, 2017, 42(7):1069-1082.
Google Scholar
|
GUO Xusheng. Sequence Stratigraphy and Evolution Model of the Wufeng-Longmaxi Shale in the Upper Yangtze Area[J]. Earth Scienc, 2017, 42(7):1069-1082.
Google Scholar
|
姜振学, 宋岩, 唐相路, 等. 中国南方海相页岩气差异富集的控制因素[J]. 石油勘探与开发, 2020, 47(3):1-12.
Google Scholar
|
JIANG Zhenxue, SONG Yan, TANG Xianglu, et al. Controlling factors of marine shale gas differential enrichment in southern China[J]. Petroleum Exploration and Development, 2020, 47(3):1-12.
Google Scholar
|
李关清, 顾雪祥, 程文斌, 等. 藏南扎西康Sb-Pb-Zn-Ag多金属矿集区下侏罗统日当组赋矿地层元素地球化学特征及地质意义[J]. 矿物岩石地球化学通报, 2014, 33(5):598-608.
Google Scholar
|
LI Guanqing, GU Xuexiang, CHENG Wenbin, et al. Geochemical Characteristics and Their Geologic Significance of the Lower Jurassic Ridang Formation Host Strata from the Zhaxikang Sb-Pb-Zn-Ag Polymetallic Ore-concentrated District,South Tibet[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(5):598-608.
Google Scholar
|
李一凡, 樊太亮, 高志前, 等. 渝东南地区志留系黑色页岩层序地层研究[J]. 天然气地球科学, 23(2):299-306.
Google Scholar
|
LI Yifan, FAN Tailiang, GAO Zhiqian, et al. Sequence Stratigraphy of Silurian Black Shale and Its Distribution in Southeastern Area of Chongqing[J]. Natural Gas Geoscience, 2012, 23(2):299-306.
Google Scholar
|
梁兴,王高成,徐政语, 等. 中国南方海相复杂山地页岩气储层甜点综合评价技术-以昭通国家级页岩气示范区为例[J].天然气工业, 2016, 36(1):33-42.
Google Scholar
|
LIANG Xing, WANG Gaocheng, XU Zhengyu, et al. Comprehensive evaluation technology forshale gas sweet spots in the complex marine mountains,South China:A case study from Zhaotong national shale gas demonstration zone[J]. Natural Gas Industry, 2016, 36(1):33-42.
Google Scholar
|
林畅松, 张燕梅, 刘景彦, 等. 高精度层序地层学和储层预测[J]. 地学前缘, 2000, 7(3):111-117.
Google Scholar
|
LIN Changsong, ZHANG Yanmei, LIU Jingyan, et al. High resolution sequence stratigraphy and reservoir prediction[J]. Earth Science Frontiers, 2000, 7(3):111-117.
Google Scholar
|
陆扬博, 马义权, 王雨轩, 等. 上扬子地区五峰组-龙马溪组主要地质事件及岩相沉积响应[J]. 地球科学, 2017, 42(7):1169-1184.
Google Scholar
|
LU Yangbo, MA Yiquan,WANG Yuxuan, et al. The Sedimentary Response to the Major Geological Events and Lithofacies Characteristics of Wufeng Formation-Longmaxi Formation in the Upper Yangtze Area[J]. Earth Scienc, 2017, 42(7):1169-1184.
Google Scholar
|
马新华,谢军.川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018,45(1):161-169.
Google Scholar
|
MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1):161-169.
Google Scholar
|
马永生,蔡勋育,赵培荣.中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4):561-574.
Google Scholar
|
MA Yongsheng, CAI Xunyu, ZHAO Peirong. China's shale gas exploration and development:Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4):561-574(in Chinese with English abstract).
Google Scholar
|
邱振, 邹才能, 王红岩, 等.中国南方五峰组-龙马溪组页岩气差异富集特征与控制因素探讨[J].天然气地球科学, 2020, 31(2):163-175.
Google Scholar
|
QIU Zhen, ZOU Caineng, WANG Hongyan, et al. Discussion on characteristics and controlling factors of differential enrichment of Wufeng-Longmaxi Shale gas in South China[J]. Natural Gas Geoscience, 2020, 31(2):163-175.
Google Scholar
|
王同, 杨克明, 熊亮, 等.川南地区五峰组-龙马溪组页岩层序地层及其对储层的控制[J]. 石油学报, 2015, 36(8):915-925.
Google Scholar
|
WANG Tong, YANG Keming, XIONG Liang, et al. Shale Sequence Stratigraphy of Wufeng-Longmaxi Formation in Southern Sichuan and Their Control on Reservoirs[J]. Acta Petrolei Sinica, 2015, 36(8):915-925.
Google Scholar
|
王玉满, 李新景, 董大忠, 等.上扬子地区五峰组-龙马溪组优质页岩沉积主控因素[J]. 天然气工业, 2017, 37(4):9-20.
Google Scholar
|
WANG Yuman, LI Xinjing, DONG Dazhong, et al. Main factors controlling the sedimentation of high-quality shale in Wufeng-Longmaxi Fm, Upper Yangtze region[J]. Natural Gas Industry, 2017,37(4):9-20 (in Chinese with English abstract).
Google Scholar
|
余瑜, 林良彪, 蓝彬桓, 等. 基于小波分析的层序地层划分及识别-以川东地区上二叠统龙潭组为例[J]. 西北地质, 2018, 51(4):43-52.
Google Scholar
|
YU Yu, LING Liangbiao, LAN Binhuan, et al. Sequence stratigraphic division and recognition based on wavelet analysis:example from the upper permian Longtan formation in eastern Sichuan Basin[J]. Northwestern Geology, 2018, 51(4):43-52.
Google Scholar
|
赵亮东, 郭荣涛. 层序级别划分的两种途径:具有重要科学意义的难题[J]. 西北地质, 2011, 44(2):8-14.
Google Scholar
|
ZHAO Liangdong, GUO Rongtao. Two kinds of sequence hierarchy classification systems:a difficult problem with scientific significance[J]. Northwestern Geology, 2011, 44(2):8-14.
Google Scholar
|
郑荣才, 文华国, 李凤杰. 高分辨率层序地层学[M]. 北京:地质出版社, 2010.
Google Scholar
|
ZHENG Rongcai, WEN Huaguo, LI Fengjie. High-resolution sequence stratigraphy[M]. Beijing:Geological Publishing House, 2010.
Google Scholar
|
陈孝红,张保民,张国涛,等. 湖北宜昌地区奥陶系五峰组-志留系龙马溪组获页岩气高产工业气流[J]. 中国地质, 2018, 45(1):199-200.
Google Scholar
|
CHEN Xiaohong,ZHANG Baomin,ZHANG Guotao, et al. High shale gas industry flow obtained from the Ordovician Wufeng Formation and the Silurian Longmaxi Formation of Yichang area, Hubei Province[J]. Geology in China, 2018, 45(1):199-200(in Chinese with English abstract).
Google Scholar
|
Abouelresh M O, Slatt R M. Lithofacies and Sequence Stratigraphy of the Barnett Shale in East-Central Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012,96(1):1-22.
Google Scholar
|
Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic sediments:implications for the geological record[J]. Marine Geology, 1993, 113:67-88.
Google Scholar
|
Catuneanu O, Abreu V, Bhattacharya J P, et al. Towards the standardization of sequence stratigraphy[J]. Earth-Science Reviews, 2009, 92(1-2):1-33.
Google Scholar
|
Chen Lei, Lu Yongchao, Jiang Shu, et al. Heterogeneity of the Lower Silurian Longmaxi Marine Shale in the Southeast Sichuan Basin of China[J]. Marine and Petroleum Geology, 2015, 65:232-246.
Google Scholar
|
Craigie N. Principles of Elemental Chemostratigraphy-A Practical User Guide[M]. Springer, 2018.
Google Scholar
|
Filzmoser P, Hron K. Outlier detection for compositional data using robust methods[J]. Mathematical Geosciences, 2008, 40 (3):233-248.
Google Scholar
|
Hammes U, Frébourg G. Haynesville and Bossier Mudrocks:A Facies and Sequence Stratigraphic Investigation, East Texas and Louisiana, USA[J]. Marine and Petroleum Geology, 2012, 31(1):8-26.
Google Scholar
|
Haq B U, Hardenbol J, Vail P R. Mesozoic and cenozoic chronostratigraphy and cycles of sea-levelchange[A]. In:Wilgus C K, Hastings B S, Kendall C, et al. (Eds.), Sea Level Changes-An Integrated Approach[C]. SEPM Special Publication No. 42, 1988, 71-108.
Google Scholar
|
Haq B U, Schutter S R. A Chronology of Paleozoic Sea-LevelChanges[J]. Science, 2008, 322:64-68.
Google Scholar
|
Lash G G, Engelder T. Thickness Trends and Sequence Stratigraphy of the Middle Devonian Marcellu Formation, Appalachian Basin:Implications for Acadian Foreland Basin Evolution[J]. AAPG Bulletin, 2011, 95(1):61-103.
Google Scholar
|
Li Y H, Schoonmaker J E. Chemical composition and mineralogy of marine sediments[C]. In:Rudnick R L(eds). Sediments, diagenesis, and sedimentary rocks. Treatise on geochemistry, volume 7[A]. New York:Elsevier Sciences, 2003, 1-35.
Google Scholar
|
Martin-Fernandez J A, Barcelo-Vidal C, Pawlowsky-Glahn V. Dealing with zeros and missing values in compositional data sets using nonparametric imputation[J]. Mathematical Geology, 2003, 35(3):253-278.
Google Scholar
|
Martín-Fernández J A, Barceló-Vidal C, Pawlowsky-Glahn V. Subcompositional patterns in Cenozoic volcanic rocks of Hungary[J]. Mathematical Geology, 2005, 37 (7):729-752.
Google Scholar
|
Palarea-Albaladejo J, Martín-Fernández J A, Gómez-García J. A parametric approach for dealing with compositional rounded zeros[J]. Mathematical Geology, 2007, 39 (7):625-645.
Google Scholar
|
Palarea-Albaladejo J, Martín-Fernández J A. A modified EM alr-algorithm for replacing rounded zeros in compositional data sets[J]. Computers & Geosciences, 2008, 34:902-917.
Google Scholar
|
Pan Songqi, Zou Caineng, Yang Zhi, et al. Methods for Shale Gas Play Assessment:A Comparison between Silurian Longmaxi Shale and Mississippian Barnett Shale[J]. Journal of Earth Science, 2015, 26(2):285-294.
Google Scholar
|
Pearce T J, Martin J H, Cooper D. Chemostratigraphy of upper carboniferous (Pennsylvanian) sequences from the southern North Sea (United Kingdom)[A]. In:Ratcliffe K T, Zaitlin B A (Eds.), Modern alternative stratigraphic techniques, Theory and case histories[C]. SEPM Special Publication No. 94, 2010.109-129.
Google Scholar
|
Pison G, Rousseeuw P, Filzmoser P. Robust factoranalysis[J]. Journal of Multivariate Analysis, 2003, 84, 145-172.
Google Scholar
|
Posamentier H W, Vail P R. Eustatic controls on clastic deposition II-sequence and systems tract models[A]. In:Wilgus C K, Hastings B S, Kendall C, et al. (Eds.), Sea Level Changes-An Integrated Approach[C]. SEPM Special Publication No. 42, 1988, 125-154.
Google Scholar
|
Ramkumar M. Chemostratigraphy:Concepts, Techniques, and Applications[M]. Elsevier, 2015.
Google Scholar
|
Ratcliffe K T, Wilson A, Payenberg T,et al. Ground trothing chemostratigraphic correlations in fluvial systems[J]. AAPG Bulletin, 2015, 99, 155-180.
Google Scholar
|
Reiman C, Filmoser P. Normal and lognormal data distribution in geochemistry:death of a myth. Consequences for the statistical treatment of geochemical and environmental data[J]. Environmental Geology, 1999, 39, 1001-1014.
Google Scholar
|
Sandford R F, Pierson C T, Crovelli R A. An objective replacement method for censored geochemical data[J]. Mathematical Geology, 1993, 25(1):59-80.
Google Scholar
|
Sano J L, Ratcliffe K T, Spain D. Chemostratigraphy of the HaynesvilleShale[A]. In:Hammes U & Gale J(Eds.), Geology of the Haynesville Gas Shale in East Texas and West Louisiana, USA[C]. AAPG Memoir 105, 2013.137-154.
Google Scholar
|
Slatt R M, Rodriguez N D. Comparative Sequence Stratigraphy and Organic Geochemistry of Gas Shales:Commonality or Coincidence?[J]. Journal of Natural Gas Science and Engineering, 2012, 8:68-84.
Google Scholar
|
Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies:an update[J]. Chemical Geology, 2006, 232:12-32.
Google Scholar
|
Turgeon S, Brumsack H J. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian -Turonian Boundary Event(Cretaceous)in the Umbria-Marche Basin of central Italy[J]. Chemical Geology, 2006, 234:321-339.
Google Scholar
|
Turner B W, Molinares-Blanco C E, Slatt R M. Chemostratigraphic, Palynostratigraphic, and Sequence Stratigraphic Analysis of the Woodford Shale,Wyche Farm Quarry, Pontotoc County, Oklahoma[J]. Interpretation, 2015, 3(1):1-9.
Google Scholar
|
Wang Yuman, Dong Dazhong, Li Xinjing,et al. Stratigraphic Sequence and Sedimentary Characteristics of Lower Silurian Longmaxi Formation in Sichuan Basin and Its Peripheral Areas. Natural Gas Industry B, 2015, 2(2-3):222-232.
Google Scholar
|
Wedepohl K H. The composition of the upper Earth`s crustand the natural cycles of selected metals[A]. In:Merian E(eds). Metals and their compounds in the environment[C]. VCH-Verlagsgesellschaft, Weinheim, 1991, 3-17.
Google Scholar
|
Zhai Gangyi, Li Juan, Jiao Yang, et al. Applications of chemostratigraphy in a characterization of shale gas Sedimentary Microfacies and predictions of sweet spots -taking the Cambrian black shales in Western Hubei as an example[J]. Marine and Petroleum Geology, 2019, 109, 547-560.
Google Scholar
|