2020 Vol. 53, No. 4
Article Contents

DONG Luanhua, LI Ping, XIA Zengxuan, LI Tonglu, GRIFFITHS D V, HOU Xiaokun. 2020. Parameters-based Bayes Estimation and Its Application in the Reliability Analysis of Loess Slope. Northwestern Geology, 53(4): 186-193. doi: 10.19751/j.cnki.61-1149/p.2020.04.017
Citation: DONG Luanhua, LI Ping, XIA Zengxuan, LI Tonglu, GRIFFITHS D V, HOU Xiaokun. 2020. Parameters-based Bayes Estimation and Its Application in the Reliability Analysis of Loess Slope. Northwestern Geology, 53(4): 186-193. doi: 10.19751/j.cnki.61-1149/p.2020.04.017

Parameters-based Bayes Estimation and Its Application in the Reliability Analysis of Loess Slope

More Information
  • There is a correlation between each loess strength parameters. In the traditional slope stability calculation, the loess strength parameters c and φ are often seen as two independent random variables. The neglect of their correlation leads to calculation deviation. In this paper, the two-dimensional joint normal distribution is used as the distribution profile of the loess strength parameters, and the Bayes formula is to optimize the parameters. Taking as an example of the potential landslide in the sewage outlet of Xi'an Xianyang Airport, the reliability index of the slope is calculated. The results show that Bayes makes it possible to reduce the variance of the estimated results, to get more reliable estimated results of loess strength parameter and what’s more, to avoid errors caused by small sample size. Correlation coefficient nearly has no effect on stability coefficient, but has much effect on the reliability index and the failure probability. The stability of the slope will be over-estimated without considering the positive correlation coefficient of c and φ value. The stability of the slope will be seriously under-estimated when the c and φ negative correlation is not taken into account. The estimated strength parameters from Bayes of two-dimensional joint normal distribution evaluate accurately the stability of loess slope.
  • 加载中
  • 穆鹏.兰州石峡口滑坡稳定性分析与治理工程设计研究[D]. 兰州:兰州大学,2006.

    Google Scholar

    MU Peng, Stability Analysis and Treatment Design Research on Shixiakou Landslide in Lanzhou[D].Lanzhou:Lanzhou Univercity, 2006.

    Google Scholar

    李萍.黄土边坡可靠性研究[D].陕西:长安大学,2006.

    Google Scholar

    LI Ping. Reliability Applied to Stability Analysis of LoessSlope[D].Shaanxi:Chang'an University,2006.

    Google Scholar

    周伟.矿床储量(质量)稳定性趋势分析和可靠程度判定——对陕西旬阳姚沟铜矿勘查成果分析的思考[J].西北地质,2016,49(03):141-147.

    Google Scholar

    ZHOU Wei. Stability Trend and Reliability about Reservers (Quality) of Ore Deposits[J]. Northwestern Geology. 2016,49(03):141-147.

    Google Scholar

    倪万魁,牛富俊,刘东燕.黄土土性的空间自相关性研究[J]. 西安工程学院学报,2002,24(2):4-8,12.

    Google Scholar

    NI Wankui,NIU Fujun,LIU Dongyan. A Study on the Spatial Self-correlation of Loess Parameters[J].Journal of Xi'an Polytechnic University,2002,24(2):4-8,12.

    Google Scholar

    毕树欣,岩土参数的相关性检验[J].城市建设理论研究(电子版),2011,(36).

    Google Scholar

    郭重阳,李典庆,曹子君,等.考虑空间变异性条件下的边坡稳定可靠度高效敏感性分析[J]岩土力学2018,39(6):2203-2210.

    Google Scholar

    GUO Chongyang, LI Dianqing, CAO Zijun, et al. Efficient Reliability Sensitivity Analysis for Slope Stability[J]. Rock and Soil Mechanic, 2018,39(6):2203-2010.

    Google Scholar

    李萍,白健忠,GRIFFITHS D V,等.黄土边坡可靠度的随机有限元分析[J].地球科学与环境学报,2019,41(01):116-126.

    Google Scholar

    LI Ping, BAI Jianzhong, GRIFFIHS D V, et al. Random Finite Element Analysis for the Reliability of Loess Slopes[J]. Journal of Earth Sciences and Environment, 2019,41(01):116-126.

    Google Scholar

    李萍,王宁,高德彬,等.山西河南西部地区黄土高边坡可靠度分析[J].西安建筑科技大学学报(自然科学版),2013,45(04):574-581.

    Google Scholar

    LI Ping, WANG Ning, GAO Debin, et al. Analysis on the reliability of the loess slopes in West Shanxi and Henan Provinces[J].Journal of Xi'an University of Architecture &Technology(Natural Science Edition),2013,45(04):574-581.

    Google Scholar

    高德彬,倪万魁,梁伟.基于Monte-Carlo模拟的公路黄土高边坡可靠性研究[J].公路交通科技,2005(S):70-72.

    Google Scholar

    GAO Debin, NI Wankui, LIANG Wei. Reliability Analysis on Highway Loess Slope Stability Based on Monte-CarloMethod[J]. Journal of Highway and Transportation Research and Development,2005(S):70-72.

    Google Scholar

    叶万军,折学森,等.基于可靠度理论的黄土高边坡优化设计[J].地球科学与环境学报,2005(02):82-85.

    Google Scholar

    YE Wanjun, SHE Xuesen, et al. Optional design of high loess slope in highway based on reliabilitymethod[J]. Journal of Earth Sciences and Environment, 2005(02):82-85

    Google Scholar

    张亚国,张波,李萍,等.基于点估计法的黄土边坡可靠度研究[J].工程地质学报,2011,19(04):615-619.

    Google Scholar

    ZHANG Yaguo, ZHANG Bo, LI Ping, et al. Research on loess slope reliability based on the Point estimate Method[J]. Journal of Engineering Geology, 2011,19(04):615-619.

    Google Scholar

    王阿丹,王昌业,李萍,等.西安白鹿塬北缘黄土边坡稳定的可靠度分析[J].地球科学与环境学报,2012,34(01):104-110.

    Google Scholar

    WANG Adan, WANG Changye, LI Ping, et al.Reliability analysis for stability of loess slopes along the northern edge of Bailuyuan,Xi'an[J]. Journal of Earth Sciences and Environment, 2012,34(01):104-110.

    Google Scholar

    陈春利,邢鲜丽,李萍,等.肃黑方台黄土边坡稳定性的可靠度分析[J].工程地质学报,2011,19(04):550-554.

    Google Scholar

    CHEN Chunli, XING Xianli,LI Ping, et al. Analysis on loess slope satbility of Heifangtai, Gansu Province[J]. Journal of Engineering Geology, 2011,19(04):550-554.

    Google Scholar

    刘焕喜,刘涌江.可靠性数学在斜坡稳定性分析中的应用[J].西北地质,2001,34(02):37-42.

    Google Scholar

    LIU Huanxi, LIU Yongjiang. The Reliabilit Mathematics' Application on Analyzing Stability of Slope[J]. Northwestern Geology, 2001,34(02):37-42.

    Google Scholar

    王永刚,任伟中,陈浩,等.一次二阶矩法及其在边坡可靠性分析中的应用[J].中外公路,2006(02):42-46.

    Google Scholar

    李东利.边坡稳定不确定性分析的Bayesian方法[D].河南:河南理工大学,2014.

    Google Scholar

    LI Dongli. Uncertainty Analysis of slope using Bayesian Method[D]. Henan:Henan Polytechnic University,2014.

    Google Scholar

    唐震, 舒继森.基于模糊贝叶斯理论的岩土参数概率分布研究[J].煤炭技术,2011,30(10):182-184.

    Google Scholar

    TANG Zhen, SHU Jisen. Research on Probability Distribution of Rock and Soil Based on Fuzzy BAYESMethod[J]. Coal Thechnology, 2011,30(10):182-184.

    Google Scholar

    赵宇飞,汪小刚.岩土强度参数概率分布拟合及贝叶斯优化[A].中国岩石力学与工程学会[C].岩土力学,2006:200-204.

    Google Scholar

    ZHAO Yufei, WANG Xiaogang. Bayes optimization and fitting research of probability distribution of geotechnical strength parameters[C].Csrme. Rock and Soil Mechanics, 2006:200-204.

    Google Scholar

    TAYLOR, FRANCIS. Erliabilty Based Design In Geotechnical Engineering[M].CRC Press; April 2008. ISBN:9781482265811.

    Google Scholar

    BOZORGZADEH N., BATHURST R. J. Bayesian model checking, comparison and selection with emphasis on outlier detection for geotechnical reliability-based design[J]. Computers and Geotechnics, 2019,116.

    Google Scholar

    AKEJU O. V., SENETAKIS K., WANG Y. Bayesian Parameter Identification and Model Selection for Normalized Modulus Reduction Curves of Soils[J]. Journal of Earthquake Engineering, 2017, 1-29.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1574) PDF downloads(236) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint