鲍新尚,杨立强,和文言.斑岩型矿床母岩浆中水的来源及其成矿机理[J].地球科学与环境学报,2016,38(04):473-482.
Google Scholar
|
BAO Xinshang, YANG Liqiang, HE Wenyan. Origin and mineralization mechanism of the water in parent magma of porphyry deposit[J].Journal of Earth Sciences and Environment, 2016,38(04):473-482.
Google Scholar
|
杨富林,袁晓鹏,吕海龙.内蒙古额济纳旗乔仑恩格次西钨矿点预查区地质特征及远景评价[J].西部资源, 2015,(04):92-94.
Google Scholar
|
YANG Fulin, YUAN Xiaopeng, LV Hailong. Geological characteristics and prospect evaluation of qiolunengexi tungsten deposit in Ejin banner, Inner Mongolia[J]. Western Resources, 2015,(04):92-94.
Google Scholar
|
龚全胜,刘明强,梁明宏,等.北山造山带大地构造相及构造演化[J].西北地质,2003,36(01):11-17.
Google Scholar
|
GONG Quansheng,LIU Mingqiang,LIANG Minghong, et al. The tectonic facies and tectonic evolution of Beishan orogenic belt,Gansu[J].Northwestern Geology,2003,36(01):11-17.
Google Scholar
|
李壮,王立强,张忠,等.西藏邦铺斑岩钼(铜)多金属矿床侵入岩锆石微量元素特征及其地质意义[J].地球科学与环境学报,2015,37(06):59-71.
Google Scholar
|
LI Zhuang,WANG Liqiang,ZHANG Zhong,et al. Zircon trace element characteristics of intrusions in Bangpu porphyry Mo(Cu) polymetallic deposit of Tibet and their geological significance[J].Journal of Earth Sciences and Environment,2015,37(06):59-71.
Google Scholar
|
李惠萍,邹治平.甘肃野牛滩岩体形成的物理化学环境及隆起-冷却史[J].西北地质,2013,46(03):148-155.
Google Scholar
|
LI Huiping, ZOU Ziping. The physicochemical environment and uplift-cooling history of Yeniutangranodiorite, Subeicounty,Gansu province[J]. Northwestern Geology,2013,46(03):148-155.
Google Scholar
|
韩丽.江西大湖塘钨矿花岗岩岩浆-热液演化特征及成矿机制[D].中国科学院研究生院(广州地球化学研究所),2016:1-94.
Google Scholar
|
HAN Li.Magmatic-hydrothermal evolution and mineralization mechanism of the Dahutang tungsten granite,JiangxiProvince,South China[D].University of Chinese Academy of Sciences,2016:1-94.
Google Scholar
|
韩吟文,马振东.地球化学[M].北京:地质出版社,2012, 268-301.
Google Scholar
|
HAN Yinwen,MA Zhendong.Geochemistry[M].Beijing:Geological Publishing House,2012,268-301.
Google Scholar
|
潘大鹏,王迪,王孝磊.赣西北大湖塘石门寺钨矿区花岗岩的成因及其对钨矿的指示意义[J].中国地质,2017,44(01):118-135.
Google Scholar
|
PAN Dapeng, WANG Di, WANG Xiaolei.Petrogenesis of granites in Shimensi in northwestern Jiangxi Province andits implications for tungsten deposits[J]. Geology in China, 2017,44(01):118-135.
Google Scholar
|
潘桂棠,陆松年,肖庆辉,等.中国大地构造阶段划分和演化[J].地学前缘,2016,23(6):1-23.
Google Scholar
|
PAN Guitang,LU Songnian,XIAO Qinghui,et al. Division of tectonic stages and tectonic evolution in China[J]. Earth Science Frontiers,2016, 23(6):1-23.
Google Scholar
|
沈阳,郑远川,马睿,等.云南马厂箐铜钼矿成矿岩体的角闪石和黑云母矿物学特征及其意义[J].矿床地质,2018,37(4):797-815.
Google Scholar
|
SHEN Yang,ZHENG Yuanchuan,MA Rui,et al. Mineralogical characteristics of hornblendes and biotites in ore-forming porphyry from Machangqing Cu-Mo deposit in Yunnan Province and their significance[J]. Mineral deposits, 2018,37 (04):797-815.
Google Scholar
|
王丕军.额济纳旗乔仑恩格次花岗岩特征及构造环境研究[D].中国地质大学(北京).2018.
Google Scholar
|
WANG Pijun.Characteristics and Tectonic Environment of Qiaolunengeci Granite in EjinaCounty[D].China University of Geosciences for Master Degree, 2018.
Google Scholar
|
徐备,陈斌.内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化[J].中国科学(D辑:地球科学),1997(03):227-232.
Google Scholar
|
XU Bei,CHEN Bin.Structure and evolution of middle Paleozoic orogenic belt between north China plate and Siberian plate in northern Inner Mongolia[J].Science in China (Series D),1997(03):227-232.
Google Scholar
|
张德会,张文淮,许国建.岩浆热液出溶和演化对斑岩成矿系统金属成矿的制约[J].地学前缘,2001,(03):193-202.
Google Scholar
|
ZHANG Dehui,ZHANG Weihuai,XU Jianguo. 2001. Exsolution and evolution of magmatic hydrothermal fluids and their constraints on the porphyry ore-forming system[J].Earth Science Frontiers,8(3):193-202.
Google Scholar
|
张德会.成矿作用地球化学[M].北京:地质出版社,2015,12:149-165.
Google Scholar
|
ZHANG Dehui.Geochemistry of Ore-forming Processes[M]. Beijing:Geological Publishing House,2015,12:149-165 (in Chinese)
Google Scholar
|
周海,陈亮,孙勇.北山造山带南带中元古代副变质岩的锆石U-Pb年代学和Hf同位素研究——对北山造山带南带前寒武纪物质演化的探索[J].地质学报, 2018, 92(05):928-945.
Google Scholar
|
ZHOU Hai,CHEN Liang,SUN Yong.Zircon U-Pb chronology and Hf isotope study of the mesoproterozoicmetasedimentaryrocks:insight into the evolutionofPrecambrian materials in the south section of Beishan Orogen[J].Acta Geologica Sinica, 2018,92(05):928-945.
Google Scholar
|
BAO Xinshang, YANG Liqiang, GAO Xue, et al. Geochemical discrimination between fertile and barren Eocene potassic porphyries in the Jinshajiang Cu-Au-Mo metallogenic belt, SW China:Implications for petrogenesis and metallogeny[J]. Ore Geology Reviews, 2020, 116, 103-258.
Google Scholar
|
BALLARD J R,PALIN, M J,CAMPBELL I H. Relative oxidation statesof magmas inferred from Ce (IV)/Ce (Ⅲ) in zircon:Application toporphyry copper deposits of northern Chile[J]. Contributions to Mineralogy and Petrology, 2002, 144 (3):347-364.
Google Scholar
|
CANDELA P A, BOUTON, S L. The influence of oxygen fugacity on tungsten and molybdenum partitioning between silicate melts and ilmenite[J]. Economic Geology, 1990, 85(3):633-640.
Google Scholar
|
DUBESSY J, RAMBOZ C, NGUYEN-TRUNG C, et al. Physical and chemical controls (fO2, T, pH) of the opposite behaviour of U and Sn-W as examplified by hydrothermal deposits in France and Great-Britain, and solubility data[J]. Bulletin de Minéralogie, 1987,110(2):261-281.
Google Scholar
|
HANSON GN. Rare earth elements in petrogenetic studies of igneous systems[J]. Annual Review of Earth Planetary Sciences, 1980,8(1):371-406.
Google Scholar
|
LINNEN R L, CUNEY M. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In Rare-Element Geochemistry and Mineral Deposits (eds. R.L. Linnen and I.M. Samson)[J]. Geological Association of Canada, GAC Short Course Notes, 2005, 17:45-67.
Google Scholar
|
LOUCKS R R. Distinctive composition of copper-ore-forming arc magmas[J]. Australian Journal of Earth Sciences, 2014, 61(1):5-16.
Google Scholar
|
LU Yongjun, LOUCKS R R, FIORENTINI M L, et al. Fluid flux melting generated postcollisional high Sr/Y copper ore-forming water-rich magmas in Tibet[J]. Geology, 2015, 43(7):583-586.
Google Scholar
|
LU Yongjun, LOUCKS R R, FIORENTINI M L, et al. Zircon compositions as a pathfinder for porphyry Cu±Mo±Au deposits[J]. Economic Geology, 2016, 19:329-347.
Google Scholar
|
MCDONOUGH W F, SUN S S. The composition of the Earth[J].Chemical Geology, 1995, 120:223-253.
Google Scholar
|
MENG Xuyang, MAO Jingwen,ZHANG Changqing, et al. Melt recharge, fO2-T conditions, and metal fertility of felsic magmas:Zircon trace element chemistry of Cu-Au porphyries in the Sanjiang orogenic belt, southwest China[J]. Mineralium Deposita, 2018, 53(5):649-663.
Google Scholar
|
NANEY M T. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems[J]. American Journal of Science, 1983, 283(10):993-1033.
Google Scholar
|
RICHARDS J P. High Sr/Y arc magmas and porphyry Cu-Mo-Au deposits:Just add water[J]. Economic Geology, 2011, 106(7):1075-1081.
Google Scholar
|
RICHARDS J P. The oxidation state and sulfur and Cu contents of arc magmas:Implications for metallogeny[J]. Lithos, 2015, 233:27-45.
Google Scholar
|
ROBB L. Introduction to Ore-Forming Processes[M]. Blackwell Publishing:Hoboken, NJ, USA, 2005, 1-386.
Google Scholar
|
SHEN Ping, HATTORI K, PAN H D, et al. Oxidation condition and metal fertility of granitic magmas:Zircon trace-element data from porphyry Cu deposits in the central Asian Orogenic Belt[J]. Economic Geology, 2015, 110(7):1861-1878.
Google Scholar
|
SHIMIZU K, LIANG Yan, SUN Chenguang, et al. Parameterized lattice strain models for REE partitioning between amphibole and silicate melt. American Mineralogist[J]. Journal of Earth and Planetary Materials, 2017, 102(11):2254-2267.
Google Scholar
|
SHU Qihai, Chang Zhaoshan, Lai Yong, et al. Zircon trace elements and magma fertility:insights from porphyry (-skarn) Mo deposits in NE China[J]. Mineralium Deposita, 2019, 54(5), 645-656.
Google Scholar
|
SUN Weidong, ARCULUS RJ, KAMENETSKY VS, et al. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization[J]. Nature, 2004, 431(7011):975-978.
Google Scholar
|
SUN Weidong, HUANG Ruifang, Li He, et al. Porphyry deposits and oxidized magmas[J]. Ore Geology Reviews, 2015, 65:97-131.
Google Scholar
|
SYLVESTER P J. Post-collisional strongly peraluminousgranites[J]. Lithos, 1998, 45(1):29-44.
Google Scholar
|
TRAIL D, WATSON E B, TAILBY N D. Ce and Eu anomalies in zirconas proxies for the oxidation state of magmas[J]. Geochimicaet Cosmochimica Acta, 2012, 97:70-87.
Google Scholar
|
TRAIL D, WATSON EB, TAILBY ND. The oxidation state of Hadean magmas and implications for early Earth's atmosphere[J]. Nature, 2011, 480(7375):79-82.
Google Scholar
|
WATSON EB, HARRISON TM. Zircon thermometer reveals minimum melting conditions on earliest earth[J]. Science, 2005, 308(5723):841-844.
Google Scholar
|
WATSON EB, WARK DA, THOMAS JB. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology, 2006, 151(4):413-433.
Google Scholar
|
ZHANG Wei, LENTZ D R, THORNE K G, et al. Geochemicalcharacteristics of biotite from felsic intrusive rocks around theSisson Brook W-Mo-Cu deposit, west-central New Brunswick:An indicator of halogen and oxygen fugacity of magmaticsystems[J]. Ore Geology Reviews, 2016, 77:82-96.
Google Scholar
|
ZOU Xinyu, QIN Kezhang, HAN Xinlei, et al. Insight into zircon REE oxy-barometers:A lattice strain model perspective[J]. Earth and Planetary Science Letters, 2019, 506:87-96.
Google Scholar
|