Institute of Hydrogeology and Environmental Geology,
Chinese Academy of Geological Sciences
Host
Groundwater Science and Engineering LimitedPublish
2022 Vol. 10, No. 4
Article Contents

Can Ertekin, Emin U Ulugergerli. 2022. Geoelectrical survey over perched aquifers in the northern part of Upper Sakarya River Basin, Türkiye. Journal of Groundwater Science and Engineering, 10(4): 335-352. doi: 10.19637/j.cnki.2305-7068.2022.04.003
Citation: Can Ertekin, Emin U Ulugergerli. 2022. Geoelectrical survey over perched aquifers in the northern part of Upper Sakarya River Basin, Türkiye. Journal of Groundwater Science and Engineering, 10(4): 335-352. doi: 10.19637/j.cnki.2305-7068.2022.04.003

Geoelectrical survey over perched aquifers in the northern part of Upper Sakarya River Basin, Türkiye

More Information
  • In this study, a groundwater exploration survey was conducted using the DC Resistivity (DCR) method in a hydrogeological setting containing a perched aquifer. DCR data were gathered and an electrical tomography section was recovered using conventional four-electrode instruments with a Schlumberger array and a two-dimensional (2D) inversion scheme. The proposed scheme was tested over a synthetic three-dimensional (3D) subsurface model before deploying it in a field situation. The proposed method indicated that gathering data with simple four-electrode instruments at stations along a line and 2D inversion of datasets at multiple stations can recover depth intervals of the studied aquifer in the hydrogeological setting even if it has a 3D structure. In this study, 2D inversion of parallel profiles formed a pseudo-3D volume of the subsurface resistivity structures and mapped out multiple resistive (>25 ohm·m) bodies at shallow (between 50–100 m) and deep sections (>150 m). In general, the proposed method is convenient to encounter geological units that have limited vertical and spatial extensions in any direction and presents resistivity contrast from groundwater-bearing geologic materials.

  • 加载中
  • Akbaş B, Akdeniz N, Aksay A, et al. 2011. 1:1 250 000 scale geological map of Turkey. General Directorate of Mineral Research and Exploration Publication: Ankara−Turkey.

    Google Scholar

    Araffa SA, Mohamadin MI, Saleh Sabet H, et al. 2019. Geophysical interpretation for groundwater exploration around Hurghada area, Egypt. Journal of Astronomy and Geophysics, 8(1): 171−179. doi: 10.1080/20909977.2019.1647389

    CrossRef Google Scholar

    Awotoye KS, Selemo AO. 2006. Design and construction of a resistivity meter for shallow investigation. Nigerian Journal of Physics, 18(2): 261−270. doi: 10.4314/njphy.v18i2.38113

    CrossRef Google Scholar

    Bhattacharya BB, Shalivahan S. 2016. Geoelectric methods: Theory and application. McGraw-Hill Education. ISBN: 9789339221379

    Google Scholar

    Boubaya D. 2017. Combining resistivity and aeromagnetic geophysical surveys for groundwater exploration in the Maghnia plain of Algeria. Journal of Geological Research: 1309053.

    Google Scholar

    Briggs IC. 1974. Machine contouring using minimum curvature. Geophysics, 39(1): 39−48. doi: 10.1190/1.1440410

    CrossRef Google Scholar

    Clark JA, Page R. 2011. Inexpensive geophysical instruments supporting groundwater exploration in developing nations. Journal of Water Resource and Protection, 3(10): 768. doi: 10.4236/jwarp.2011.310087

    CrossRef Google Scholar

    Constable SC, Parker RL, Constable CG. 1987. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3): 289−300. doi: 10.1190/1.1442303

    CrossRef Google Scholar

    EARTHDATA. 2021. SRTM Elevation Data of 1 arc-second. (A.D. 19.08.2021)

    Google Scholar

    Ekinci YL, Demirci A. 2008. A damped least-squares inversion program for the interpretation of Schlumberger sounding curves. Journal of Applied Sciences, 8(22): 4070−4078. doi: 10.3923/jas.2008.4070.4078

    CrossRef Google Scholar

    Emre Ö, Duman TY, Özalp S, et al. 2013. Active fault map of Turkey with explanatory text. General Directorate of Mineral Research and Exploration Special Publication Series: 30.

    Google Scholar

    Emre Ö, Duman TY, Özalp S, et al. 2018. Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8): 3229−3275. doi: 10.1007/s10518-016-0041-2

    CrossRef Google Scholar

    Esen E. 1978. Hydrogeological Investigation Report of Yukarı Sakarya Basin (in Turkish), General Directorate of State Hydraulic Works, 147, Ankara, Turkey

    Google Scholar

    Fitts CR. 2013. Groundwater Science (2nd edn). Elsevier.

    Google Scholar

    Florsch N, Muhlach F. 2017. Everyday applied geophysics 1: Electrical methods. Elsevier.

    Google Scholar

    Freeze RA, Cherry JA. 1979. Groundwater. Prentice-Hall Inc. Eaglewood Cliffs, New Jersey. ISBN: 0133653129

    Google Scholar

    Fretwell JD, Stewart MT. 1981. Resistivity study of a coastal karst terrain, Florida. Ground Water, 19: 156−162. doi: 10.1111/j.1745-6584.1981.tb03454.x

    CrossRef Google Scholar

    Gallardo LA, Meju MA. 2007. Joint two-dimensional cross-gradient imaging of magnetotelluric and seismic traveltime data for structural and lithological classification. Geophysical Journal International, 169(3): 1261−1272. doi: 10.1111/j.1365-246X.2007.03366.x

    CrossRef Google Scholar

    GMVDE 2016. Geoscience Map Viewer and Drawing Editor Version 2.9, (AD 19.08.2021)

    Google Scholar

    Igboama WN, Ugwu NU. 2011. Fabrication of resistivity meter and its evaluation. American Journal of Scientific and Industrial Research, 2(5): 713−717. doi: 10.5251/ajsir.2011.2.5.713.717

    CrossRef Google Scholar

    IHME. 2021. International Hydrogeological Map of Europe 1: 1 500 000 scale. (AD 19.08.2021).

    Google Scholar

    Jones AG. 1983. On the equivalence of the “Niblett” and “Bostick” transformations in the magnetotelluric method. Journal of Geophysics, 53(1): 72−73.

    Google Scholar

    Kanar F, Kandemir Ö. 2018. 1: 100 000 Scaled Turkey Geological Map Series Eskişehir-İ25 Sheet (in Turkish), General Directorate of Mineral Research and Exploration Publication, Ankara, Turkey.

    Google Scholar

    Lee CH. 1915. The determination of safe yield of underground reservoirs of the closed-basin type. Transactions of the American Society of Civil Engineers, 98: 148−218.

    Google Scholar

    Loke MH, Barker RD. 1996a. Rapid least-squares inversion of apparent resistivity pseudo sections by a quasi-Newton method. Geophysical Prospecting, 44(1): 131−152. doi: 10.1111/j.1365-2478.1996.tb00142.x

    CrossRef Google Scholar

    Loke MH, Barker RD. 1996b. Practical techniques for 3D resistivity surveys and data inversion. Geophysical prospecting, 44(3): 499−523. doi: 10.1111/j.1365-2478.1996.tb00162.x

    CrossRef Google Scholar

    Maliva RG. 2016. Aquifer characterization techniques. Berlin: Springer. ISBN: 978-3-319-32137-0

    Google Scholar

    Meju MA. 1994. Geophysical Data Analysis: Understanding Inverse Problem Theory and Practice: SEG Course Notes Series, 6: Tulsa: SEG.

    Google Scholar

    Meju MA. 2002. Geoelectromagnetic exploration for natural resources: Models, case studies and challenges. Surveys in Geophysics, 23(2−3): 133−206. doi: 10.1023/A:1015052419222

    CrossRef Google Scholar

    Menke W. 1989. Geophysical data analysis: Discrete inverse theory. Academic press.

    Google Scholar

    Mikailu A, Abdullahi I, Sani MG, et al. 2015. Development of Digital Resistivity Meter. Advances in Physics Theories and Applications, 42. ISSN 2224-719X

    Google Scholar

    MTA. 1964. The general directorate of mineral research and exploration. Geological map of Turkey (1:500 000 scale). Ankara: Turkey.

    Google Scholar

    Nwankwo LI. 2011. 2D resistivity survey for groundwater exploration in a hard rock terrain: A case study of MAGDAS observatory, UNILORIN, Nigeria. Journal of Asian Earth Sciences, 4(1): 46−53. doi: 10.3923/ajes.2011.46.53

    CrossRef Google Scholar

    Okay AI, Tüysüz O. 1999. Tethyan sutures of northern Turkey. Geological Society, London, Special Publications. 156(1): 475-515.

    Google Scholar

    Okay AI. 2011. Tavşanli Zone: The northern subducted margin of the Anatolide-Tauride block. Bulletin of the Mineral Research and Exploration, 142: 191−211.

    Google Scholar

    Oldenburg DW, Li Y. 1999. Estimating depth of investigation in dc resistivity and IP surveys. Geophysics, 64(2): 403−416. doi: 10.1190/1.1444545

    CrossRef Google Scholar

    Olorunfemi MO, Fasuyi SA. 1993. Aquifer types and the geoelectric/hydrogeologic characteristics of part of the central basement terrain of Nigeria (Niger State). Journal of African Earth Sciences (and the Middle East), 16(3): 309−317. doi: 10.1016/0899-5362(93)90051-Q

    CrossRef Google Scholar

    Özürlan G, Candansayar ME, Şahin HM. 2006. Deep resistivity structure of Dikili-Bergama region, West Anatolia, revealed by two dimensional inversion of vertical electrical sounding data. Geophysical Prospecting, 54: 187−197. doi: 10.1111/j.1365-2478.2006.00525.x

    CrossRef Google Scholar

    Palacky GJ. 1987. Clay mapping using electromagnetic methods. First Break, 5(8): 295−306. doi: 10.3997/1365-2397.1987015

    CrossRef Google Scholar

    Rijo L, Pelton WH, Feitosa EC, et al. 1977. Interpretation of apparent resistivity data from Apodi Valley, Rio Grande DoNorte, Brazil. Geophysics, 42: 811−822. doi: 10.1190/1.1440749

    CrossRef Google Scholar

    Roy A, Apparao A. 1971. Depth of investigation in direct current methods. Geophysics, 36(5): 943−959. doi: 10.1190/1.1440226

    CrossRef Google Scholar

    Saad R, Nawawi MNM, Mohamad ET. 2012. Groundwater detection in alluvium using 2-D electrical resistivity tomography (ERT). Electronic Journal of Geotechnical Engineering, 17: 369−376.

    Google Scholar

    Sasaki Y, Meju MA. 2006. A multidimensional horizontal-loop controlled-source electromagnetic inversion method and its use to characterize heterogeneity in aquiferous fractured crystalline rocks. Geophysical Journal International, 166(1): 59−66. doi: 10.1111/j.1365-246X.2006.02957.x

    CrossRef Google Scholar

    Shaaban FF. 2001. Vertical electrical soundings for groundwater investigation in northwestern Egypt: A case study in a coastal area. Journal of African Earth Sciences, 33(3−4): 673−686. doi: 10.1016/S0899-5362(01)00092-6

    CrossRef Google Scholar

    Surfer. 2020. Contouring, gridding, and 3D surface mapping software (Software Version 18), Golden Software, Colorado, USA

    Google Scholar

    Swartz JH. 1937. Resistivity studies of some salt-water boundaries in the Hawaiian Islands. Eos, Transactions American Geophysical Union, 18(2): 387-393. doi: 10.1029/TR018i002p00387

    CrossRef Google Scholar

    Swartz JH. 1939. Resistivity studies of some salt-water boundaries in the Hawaiian Islands Part II. Eos, Transactions American Geophysical Union, 20: 292. doi: 10.1029/TR020i003p00292

    CrossRef Google Scholar

    Szalai S, Novák A, Szarka, L. 2009. Depth of investigation and vertical resolution of surface geoelectric arrays. Journal of Environmental and Engineering Geophysics, 14(1): 15−23. doi: 10.2113/JEEG14.1.15

    CrossRef Google Scholar

    Telford WM, Geldart LP, Sheriff RE (editors). 1990. Applied Geophysics. Cambridge, UK: University Press.

    Google Scholar

    Ulugergerli EU. 2017. Marine effects on vertical electrical soundings along shorelines. Turkish Journal of Earth Sciences, 26(1): 57−72. doi: 10.3906/yer-1610-10

    CrossRef Google Scholar

    USGS. 2021. https://www.usgs.gov/special-topic/water-science-school/science/groundwater-decline-and-depletion?qt-science_center_objects=0#qt-science_center_objects. Accessed 06/07/2021

    Google Scholar

    Vedanti N, Srivastava RP, Sagode J, et al. 2005. An efficient 1D Occam’s inversion algorithm using analytically computed first-and second-order derivatives for DC resistivity soundings. Computers and Geosciences, 31(3): 319−328. doi: 10.1016/j.cageo.2004.10.015

    CrossRef Google Scholar

    Werkema Jr DD, Atekwana E, Sauck W, et al. 1998. A versatile Windows based multi-electrode acquisition system for dc electrical methods surveys. Environmental Geosciences, 5(4): 196−206. doi: 10.1046/j.1526-0984.1998.08027.x

    CrossRef Google Scholar

    Yang X, Lagmanson M. 2006. Comparison of 2D and 3D electrical resistivity imaging methods. In 19th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems (pp. cp-181). European Association of Geoscientists and Engineers.

    Google Scholar

    Zhdanov MS, Keller GV. 1994. The geoelectrical methods in geophysical exploration (Vol. 31). Elsevier Science Limited. ISBN-10: 0444896783.

    Google Scholar

    Zürcher L, Bookstrom AA, Hammarstrom JM, et al. 2010. Porphyry copper assessment of the Tethys region of western and southern Asia: U. S. Geological Survey Scientific Investigations Report 2010–5090–V, 232, and spatial data.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(3)

Article Metrics

Article views(3000) PDF downloads(20) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint