Institute of Hydrogeology and Environmental Geology,
Chinese Academy of Geological Sciences
Host
Groundwater Science and Engineering LimitedPublish
2022 Vol. 10, No. 2
Article Contents

Sun Yu-kun, Liu Feng, Wang Hua-jun, Gao Xin-zhi. 2022. Numerical simulation of operation performance on production and injection of a double well geothermal system in Kailu Basin, Inner Mongolia. Journal of Groundwater Science and Engineering, 10(2): 196-208. doi: 10.19637/j.cnki.2305-7068.2022.02.008
Citation: Sun Yu-kun, Liu Feng, Wang Hua-jun, Gao Xin-zhi. 2022. Numerical simulation of operation performance on production and injection of a double well geothermal system in Kailu Basin, Inner Mongolia. Journal of Groundwater Science and Engineering, 10(2): 196-208. doi: 10.19637/j.cnki.2305-7068.2022.02.008

Numerical simulation of operation performance on production and injection of a double well geothermal system in Kailu Basin, Inner Mongolia

More Information
  • Inner Mongolia is abundant in geothermal resources, but the development and utilization of medium-depth geothermal resources for clean heating in winter is still in the preliminary stage compared with the neighboring provinces. In this paper, a recently developed geothermal heating system using the Mesozoic sandstone reservoirs in Baokang of Kailu Basin, Eastern Inner Mongolia was investigated, a three-dimensional geological model of a pair of production and injection well was established, and numerical simulations on the long term operation performance were conducted and verified by pumping test and water level recovery test data. The effects of flow rates, the direction of wells, injection temperature and ratios on the flow field and water level in the thermal reservoir were analyzed. The results show that considering a 30-year operation period and a production rate from 90 m3/h to 110 m3/h, the optimum well spacing can be increased from 225 m to 245 m, with an average value of 235 m. With the decrease of the injection temperature, the cold front of the injection water has an increasing influence on the temperature in the production well. A complete injection or the principle of production according to injection is recommended in order to maintain the long-term operation stability. In addition, the location of the injection well should be arranged in the downstream of the natural flow field. The present results can provide a useful guide for the optimum design and performance prediction of geothermal wells, thus maintaining the production and injection balance and promoting the sustainable development and utilization of medium-depth and deep geothermal resources.

  • 加载中
  • Axelsson G. 2010. Sustainable geothermal utilization - Case histories; definitions; research issues and modelling. Geothermics, 39(4): 283-291. doi: 10.1016/j.geothermics.2010.08.001

    CrossRef Google Scholar

    Blank L, Rioseco EM, Caiazzo A, et al. 2020. Modeling, simulation, and optimization of geothermal energy production from hot sedimentary aquifers. Computational Geosciences, 25(1): 1-38. doi: 10.1007/s10596-020-09989-8

    CrossRef Google Scholar

    Blöcher M G, Zimmermann G, Moeck I, et al. 2010. 3D numerical modeling of hydrothermal processes during the lifetime of a deep geothermal reservoir. Geofluids, 10(3): 406-421. doi: 10.1111/j.1468-8123.2010.00284.x

    CrossRef Google Scholar

    Dang SS, Ma ZY, Zheng L. 2016. An optimization of the distance between geothermal fluid. Ground water, 38(01): 56-58. (in Chinese) doi: 10.3969/j.issn.1004-1184.2016.01.019

    CrossRef Google Scholar

    Darius M, Renate P, Christian V. 2011. The geothermal project Den Haag: 3D numerical models for temperature prediction and reservoir simulation. Geothermics, 40(3): 199-210. doi: 10.1016/j.geothermics.2011.07.001

    CrossRef Google Scholar

    Irtek U, Serhat A. 2003. Optimization of reinjection in geothermal reservoirs. Proceedings of 28th Workshop on Geothermal Reservoir Engineering. California: Stanford University.

    Google Scholar

    Ke TT, Huang SP, Xu W, et al. 2019. Numerical modeling of doublet well system for extracting heat from sandstone geothermal reservoir: A case study of Fengxi area, the Guanzhong Basin, NW China. Quaternary Sciences, 39(5): 1252-1263. (in Chinese) doi: 10.11928/j.issn.1001-7410.2019.05.17

    CrossRef Google Scholar

    Kong YL, Pang ZH, Shao HB, et al. 2017. Optimization of well-doublet placement in geothermal reservoirs using numerical simulation and economic analysis. Environmental Earth Sciences, 76(3): 118-124. doi: 10.1007/s12665-017-6404-4

    CrossRef Google Scholar

    Kong YL, Pang ZH, Shao HB, et al. 2020. Cost-oriented optimization on the multi-well layout for geothermal production and reinjection. Science & Technology For Development, 16(3): 316-322. (in Chinese)

    Google Scholar

    Lei HY, Zhu JL. 2010. Modeing of exploitation and reinjection of porous medium geothermal reservoir. Acta Energiae Solaris Sinica, 31(12): 1633-1638. (in Chinese)

    Google Scholar

    Lous ML, Larroque F, Dupuy A, et al. 2018. Performance of an open-loop well-doublet scheme located in a deep aquitard–aquifer system: Insights from a synthetic coupled heat and flow model. Geothermics, 74: 74-91. doi: 10.1016/j.geothermics.2018.02.008

    CrossRef Google Scholar

    Major M, Poulsen SE, Balling N. 2018. A numerical investigation of combined heat storage and extraction in deep geothermal reservoirs. Geothermal Energy, 6: 1-16. doi: 10.1186/s40517-018-0089-0

    CrossRef Google Scholar

    Mao XP, Li KW, Wang XW. 2019. Causes of geothermal fields and characteristics of ground temperature fields in China. Journal of Groundwater Science and Engineering, 24(01): 18-31.

    Google Scholar

    Noack V, Scheck-Wenderoth M, Cacace M, et al. 2013. Influence of fluid flow on the regional thermal field: Results from 3D numerical modelling for the area of Brandenburg (North German Basin). Environmental Earth Sciences, 70(8): 3523-3544. doi: 10.1007/s12665-013-2438-4

    CrossRef Google Scholar

    Qin B, Cheng RH, Wang TF, et al. 2015. Sedimentary filling characteristics of Jiufotang Formation-Shahai Formation and evolution in Zhangwu Basin. Global Geology, 34(03): 615-623. (in Chinese) doi: 10.3969/j.issn.1004-5589.2015.03.005

    CrossRef Google Scholar

    Shaik AR, Rahman SS, Tran NH, et al. 2011. Numerical simulation of fluid-rock coupling heat transfer in naturally fractured geothermal system. Applied Thermal Engineering, 31(10): 1600-1606. doi: 10.1016/j.applthermaleng.2011.01.038

    CrossRef Google Scholar

    Tan XB, Wei SM, Bo BY, et al. 2019. Analysis of occurrence characteristics of geothermal resources and its relation to control structures in Zibo City, China. Journal of Groundwater Science and Engineering, 24(01): 73-79.

    Google Scholar

    Wang GL, Zhang W, Liang JY, et al. 2017a. Evaluation of geothermal resources potential in China. Acta Geoscientica Sinica, 38(4): 449-459. (in Chinese) doi: 10.3975/cagsb.2017.04.02

    CrossRef Google Scholar

    Wang GL, Zhang W, Lin WJ, et al. 2017b. Research on formation mode and development potential of geothermal resources in Beijing-Tianjin-Hebei region. Geology in China, 44(6): 1074-1085. (in Chinese) doi: 10.12029/gc20170603

    CrossRef Google Scholar

    Wang SF, Liu JR, Sun Y, et al. 2018. Study on the geothermal production and reinjection mode in Xiong County. Journal of Groundwater Science and Engineering, 6(03): 178-186. doi: 10.19637/j.cnki.2305-7068.2018.03.003

    CrossRef Google Scholar

    Xia Y, Plummer M, Mattson E, et al. 2017. Design, modeling, and evaluation of a doublet heat extraction model in enhanced geothermal systems. Renewable Energy, 105: 232-247. doi: 10.1016/j.renene.2016.12.064

    CrossRef Google Scholar

    Zhai MJ. 2019. Tracing test and numerical simulation of geothermal water Pumping and Irrigation system in Sanqiao area of Xi'an City. M. S. thesis, Shaanxi province: Chang’an University. (in Chinese)

    Google Scholar

    Zhang K, Lee BH, Ling L, et al. 2016. Modeling studies for production potential of Chingshui geothermal reservoir. Renewable Energy, 94: 568-578. doi: 10.1016/j.renene.2016.03.099

    CrossRef Google Scholar

    Zhang YD, Wei JH, Wang JY. 2006. Influence of well pair distance on the changes of geo-temperature field due to aquifer energy extraction. Acta Energiae Solaris Sinica, 27(11): 1163-1167. (in Chinese) doi: 10.3321/j.issn:0254-0096.2006.11.017

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(4)

Article Metrics

Article views(1248) PDF downloads(23) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint