Institute of Hydrogeology and Environmental Geology,
Chinese Academy of Geological Sciences
Host
Groundwater Science and Engineering LimitedPublish
2022 Vol. 10, No. 2
Article Contents

Wei Shuai-chao, Liu Feng, Zhang Wei, Wang Gui-ling, Yuan Ruo-xi, Liao Yu-zhong, Yan Xiao-xue. 2022. Research on the characteristics and influencing factors of terrestrial heat flow in Guizhou Province. Journal of Groundwater Science and Engineering, 10(2): 166-183. doi: 10.19637/j.cnki.2305-7068.2022.02.006
Citation: Wei Shuai-chao, Liu Feng, Zhang Wei, Wang Gui-ling, Yuan Ruo-xi, Liao Yu-zhong, Yan Xiao-xue. 2022. Research on the characteristics and influencing factors of terrestrial heat flow in Guizhou Province. Journal of Groundwater Science and Engineering, 10(2): 166-183. doi: 10.19637/j.cnki.2305-7068.2022.02.006

Research on the characteristics and influencing factors of terrestrial heat flow in Guizhou Province

More Information
  • Terrestrial heat flow is an important physical parameter in the study of heat transfer and thermal structure of the earth and it has great significance in the genesis and development and utilization potential of regional geothermal resources. Although several breakthroughs in geothermal exploration have been made in Guizhou Province. The terrestrial heat flow in this area has not been properly measured, restricting the development of geothermal resources in the province. For this reason, the terrestrial heat flow in Guizhou was measured in this study, during which the characteristics of heat flow were determined using borehole thermometry, geothermal monitoring and thermal property testing. Moreover, the influencing factors of the terrestrial heat flow were analyzed. The results show that the thermal conductivity of rocks ranges from 2.0 W/(m·K) to 5.0 W/(m·K), with an average of 3.399 W/(m·K); the heat flow varies from 30.27 mW/m2 to 157.55 mW/m2, with an average of 65.26 ± 20.93 mW/m2, which is slightly higher than that of the average heat flow in entire land area in China. The heat flow in Guizhou generally follows a dumbbell-shaped distribution, with high values present in the east and west and low values occurring in the north and south. The terrestrial heat flow is related to the burial depths of the Moho and Curie surface. The basaltic eruptions in the Emeishan led to a thinner lithosphere, thicker crust and lateral emplacement, which dominated the basic pattern of heat flow distribution in Guizhou. In addition, the dichotomous structure of regional active faults and concealed deep faults jointly control the heat transfer channels and thus influence the terrestrial heat flow.

  • 加载中
  • Ban WT, Duan XQ, Yang Q, et al. 2018. A study of the occurrence law of zonal thermal reservoirs in the Gedong area of Guizhou. Geology and Exploration, 54(2): 0366-0375. (in Chinese) doi: 10.13712/j.cnki.dzykt.2018.02.015

    CrossRef Google Scholar

    Chen MX, Huang GS, Xiong LP, et al. 1988. Geothermics of North China. Beijing: Science Press: 61-70. (in Chinese)

    Google Scholar

    Chen P, Zhang BM, Jin B. 2014. Heat-reservoir structure study and its significance of Langgong scenic spot in Huangguoshu, Guizhou. Guizhou Geology, 31(4): 318-322. (in Chinese) doi: 10.3969/j.issn.1000-5943.2014.04.014

    CrossRef Google Scholar

    Chen XY, Jiang ZJ, Xu HY, et al. 2022. Heat control mechanism and productivity optimization of artificial fracture zone structure of dry hot rock in Gonghe Basin. Hydrogeology & Engineering Geology, 49(1): 191-199. (in Chinese)

    Google Scholar

    Chen Y, Xu Y, Xu T, et al. 2015. Magmatic underplating and crustal growth in the Emeishan Large Igneous Province, SW China, revealed by a passive seismic experiment. Earth and Planetary Science Letters, 432: 103-114. doi: 10.1016/j.jpgl.2015.09.048

    CrossRef Google Scholar

    Chen ZS. 2021. The formation mechanism of physiotherapy thermomineral water (hot spring) in guizhou and its effect on human health. Ph. D thesis. Guizhou: Guizhou University: 53-166. (in Chinese)

    Google Scholar

    Dai CG, Qin SR, Chen JS, et al. 2013. Characteristics of deep concealed faults in Guizhou. Geological Science and Technology Information, 32(6): 1-13. (in Chinese)

    Google Scholar

    Ding J, Xiang T, You B, et al. 2019. Analysis on geothermal resources prospecting in Dashan-Xinzhuang area, Xingren County, Guizhou Province. West-China Exploration Engineering, 10: 142-146. (in Chinese) doi: 10.3969/j.issn.1004-5716.2019.10.053

    CrossRef Google Scholar

    Duan QB, Song XQ, Meng FT, et al. 2015. Study on occurrence law of geothermal water in metamorphic rock area of eastern Guizhou. Groundwater, 37(4): 37-39. (in Chinese)

    Google Scholar

    Fang SW, Li Q, Chen G, et al. 2020. Study on distribution characteristics of geothermal field in central and Eastern Bijie, Guizhou Province. West-China Exploration Engineering, 10: 130-134. (in Chinese)

    Google Scholar

    Feng K, Xu S, Chen A, et al. 2021. Middle permian dolomites of the SW Sichuan Basin and the role of the Emeishan large igneous province in their origin. Marine and Petroleum Geology, 128(3-4): 1-18. doi: 10.1016/j.marpetgeo.2021.104981

    CrossRef Google Scholar

    Furlong KP, Chapman DS. 2013. Heat flow, heat generation, and the thermal state of the lithosphere. Annual Review of Earth and Planetary Sciences, 41: 385-410. doi: 10.1146/annurev.earth.031208.100051

    CrossRef Google Scholar

    GBBGMEDGP (Geological Brigade of Bure of Geology and Mineral Exploration and Development Guizhou Province). 2015. Report on well completion of CK1 geothermal exploration hole in Longjing geothermal water survey in Duyun City, Guizhou Province. 114 Geological Brigade of Bure of Geology and Mineral Exploration and Development Guizhou Province. (in Chinese)

    Google Scholar

    GSGP (Geological Survey of Guizhou Province). 2017. Regional geologic annuals of Guizhou. Beijing: Geological Publishing House: 1-788. (in Chinese)

    Google Scholar

    Grall C, Henry P, Tezcan D, et al. 2012. Heat flow in the Sea of Marmara Central Basin: Possible implications for the tectonic evolution of the North Anatolian fault. Geology, 40(1): 3-6.

    Google Scholar

    Guo C, Qin Y, Lu L. 2018. Terrestrial heat flow and geothermal field characteristics in the Bide-Santang basin, western Guizhou, South China. Energy Exploration & Exploitation, 36(5): 1114-1135. doi: 10.1177/0144598717752364

    CrossRef Google Scholar

    He B, Xu Y, Chung S, et al. 2003. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letters, 213(3-4): 391-405. doi: 10.1016/S0012-821X(03)00323-6

    CrossRef Google Scholar

    He C, Santosh M, Wu J, et al. 2014. Plume or no plume: Emeishan Large Igneous Province in Southwest China revisited from receiver function analysis. Physics of the Earth and Planetary Interiors, 232: 72-78.

    Google Scholar

    He L. 2015. Thermal regime of the North China Craton: Implications for craton destruction. Earth-Science Reviews, 140: 14-26. doi: 10.1016/j.earscirev.2014.10.011

    CrossRef Google Scholar

    Hou DG. 2016. Research on reservoir characteristics and recoverability of CBM resources in Songhe mine field, Guizhou province. M.S. thesis. Xuzhou: China University of Mining and Technology: 21-51. (in Chinese)

    Google Scholar

    Hu S, He L, Wang J. 2000. Heat flow in the continental area of China: A new data set. Earth and Planetary Science Letters, 179(2): 407-419. doi: 10.1016/S0012-821X(00)00126-6

    CrossRef Google Scholar

    Jiang G, Hu S, Shi Y, et al. 2019. Terrestrial heat flow of continental China: Updated dataset and tectonic implications. Tectonophysics, 753(20): 36-48. doi: 10.1016/j.tecto.2019.01.006

    CrossRef Google Scholar

    Jiang GZ, Gao P, Rao S, et al. 2016. Compilation of heat flow data in the continental area of China (4th edition). Chinese Journal of Geophysis, 59(8): 2892-2910. (in Chinese) doi: 10.6038/cjg20160815

    CrossRef Google Scholar

    Jiang Q, Qiu N, Zhu C. 2018. Heat flow study of the Emeishan large igneous province region: Implications for the geodynamics of the Emeishan mantle plume. Tectonophysics, 724-725: 11-27. doi: 10.1016/j.tecto.2017.12.027

    CrossRef Google Scholar

    Li YL, Yu CS, Jiang ZC, et al. 2021. An experimental study of heating tail water treatment of the Lindian geothermal fields in the Northern Songnen Basin. Hydrogeology & Engineering Geology, 48(1): 188-194. (in Chinese)

    Google Scholar

    Liu F, Wang GL, Zhang W, et al. 2020a. Terrestrial heat flow and geothermal genesis mechanism of geothermal resources in northern Ningdu County, Jiangxi Province. Geological Bulletin of China, 39(12): 1883-1890. (in Chinese)

    Google Scholar

    Liu Y, Qiu N, Li H, et al. 2020b. Terrestrial heat flow and crustal thermal structure in the northern slope of Tazhong uplift in Tarim Basin. Geothermics, 83: 101709. doi: 10.1016/j.geothermics.2019.101709

    CrossRef Google Scholar

    Lu JR. 1996. Dynamical characteristics of the Emei Mantle Plume. Acta Geoscientia Sinica, 17(4): 424-438. (in Chinese)

    Google Scholar

    Lu LL. 2014. Differentiation and geological controls of modern geothermal field in Bide-Santang basin. M. S. thesis. Xuzhou: China University of Mining and Technology: 29-41. (in Chinese).

    Google Scholar

    Lu LL, Qing Y, Guo C. 2013. Modern geothermal field and coal seam heating temperature in Buzuo exploration area, Western Guizhou. Coal Geology of China, 25(10): 12-17. (in Chinese)

    Google Scholar

    Mao JQ, Zhang QH, Gu SY. 1997. The geological characteristics and tectonic evolution of Shuicheng fault subsidence. Journal of Guizhou University of Technology, 26(2): 1-6. (in Chinese)

    Google Scholar

    Mao X, Li K, Wang X. 2019. Causes of geothermal fields and characteristics of ground temperature fields in China. Journal of Groundwater Science and Engineering, 7(1): 15-28. doi: 10.19637/j.cnki.2305-7068.2019.01.002

    CrossRef Google Scholar

    Mu ZM, Wu L. 2021. Genetic analysis of hot mineral water in ZK2 geothermal well, Zhongba, Shiqian, Guizhou. West-China Exploration Engineering, 8: 131-136. (in Chinese)

    Google Scholar

    Pollack HN, Hurter SJ, Johnson JR. 1993. Heat flow from the Earth’s interior: Analysis of the global data set. Reviews of Geophysics, 31(3): 367-280. doi: 10.1029/93RG01249

    CrossRef Google Scholar

    Qu NN, Li JB, Zhang XJ, et al. 2019. Study of deep structural feature in Guizhou based on gravity and magnetic data. Progress in Geophysics, 34(5): 1785-1793. (in Chinese) doi: 10.6038/pg2019CC0310

    CrossRef Google Scholar

    Rolandone F, Lucazeau F, Leroy S, et al. 2013. New heat flow measurements in Oman and the thermal state of the Arabian Shield and Platform. Tectonophysics, 589: 77-89. doi: 10.1016/j.tecto.2012.12.034

    CrossRef Google Scholar

    Shellnutt JG. 2014. The Emeishan large igneous province: A synthesis. Geoscience Frontiers, 5: 369-394. doi: 10.1016/j.gsf.2013.07.003

    CrossRef Google Scholar

    Song XQ, Jiang M, Peng Q, et al. 2019. Thermal property parameters and influencing factor analysis of main rock strata in Guizhou province. Acta Geologica Sinica, 93(8): 2092-2103. (in Chinese) doi: 10.19762/j.cnki.dizhixuebao.2019116

    CrossRef Google Scholar

    Song XQ, Peng Q, Xia YL. 2012. Estimation of reservoir temperature and circulation depth of geothermal water of SK08-2 well in Laofenzui metamorphic rock area of Wengan city. Water Saving Irrigation, 10: 24-26. (in Chinese)

    Google Scholar

    Sun Y, Lai X, Wignall PB, et al. 2010. Dating the onset and nature of the Middle Permian Emeishan large igneous province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models. Lithos, 119(1-2): 20-33. doi: 10.1016/j.lithos.2010.05.012

    CrossRef Google Scholar

    Tian XL. 2016. Occurrence and development of geothermal water in Shiqian fracture. Acta Geologica Sichuan, 36(4): 623-626. (in Chinese)

    Google Scholar

    Tu MJ, Li Q, Yi SY. 2019. Study on the occurrence condition of geothermal in Leishan, Guizhou. West-China Exploration Engineering, 7: 154-156. (in Chinese)

    Google Scholar

    Wang GL, Lin WJ, Zhang W, et al. 2018. Geothermal Records of China (Southwest Volume II). Beijing: Science Press: 499-525. (in Chinese)

    Google Scholar

    Wang GL, Wang WL, Zhang W, et al. 2020. The status quo and prospect of geothermal resources exploration and development in Beijing-Tianjin-Hebei region in China. China Geology, 3: 173-181. doi: 10.31035/cg2020013

    CrossRef Google Scholar

    Wang JY. 2015. Geothermics and its applications. Beijing: Science Press: 56-122. (in Chinese)

    Google Scholar

    Wang JY. Huang SP. 1990. Compilation of heat flow data in the China continental area (2rd edition). Seismology and Geology, 12(4): 351-366. (in Chinese)

    Google Scholar

    Wang J, Huang SY, Huang GS, et al. 1990. Basic characteristics of the Earth’s temperature distribution in China. Beijing: Geological Publishing House: 1-231. (in Chinese)

    Google Scholar

    Wang J, Wang JA, Shen JY, et al. 1995. Heat flow in tarim basin. Earth Science-Journal of China University of Geosciences, 20(4): 399-404. (in Chinese)

    Google Scholar

    Wang L, Zhang JW, Chen GY, et al. 2020. Delineation of concealed intermediate-acidic pluton and significance of mineral prospecting in Guizhou province. Geology and Exploration, 20(4): 399-404. (in Chinese) doi: 10.12134/j.dzykt.2020.02.013

    CrossRef Google Scholar

    Wang MZ, Wang SY. 2007. Concerns of developing geothermal resources in Guizhou province and counter measure proposals. Guizhou Geology, 24(1): 9-12. (in Chinese)

    Google Scholar

    Wang Z, Rao S, Xiao H, et al. 2021. Terrestrial heat flow of Jizhong depression, China, Western Bohai Bay basin and its influencing factors. Geothermics, 96: 102210. doi: 10.1016/j.geothermics.2021.102210

    CrossRef Google Scholar

    Wu KB, Zeng GQ, Chen GX, et al. 2016. Deep structural features of Guizhou revealed by bouguer gravity anomaly. Geological Science and Technology Information, 35(1): 190-199. (in Chinese)

    Google Scholar

    Wu L, Zhao L, Luo XG. 2012. Characteristics of geothermal field and estimation of heat flow in Wudang district of Guiyang. Site Investigation Science and Technology, 3: 41-43. (in Chinese)

    Google Scholar

    Xing JS, Yang WR, Xing ZY, et al. 2007. Deep-seated structure characteristics of eastern China and its relation with metal mineralization-concentrated region. Earth Science Frontiers, 14(3): 114-130. (in Chinese)

    Google Scholar

    Xiong LP, Hu SB, Wang JA. 1994. Analysis on the thermal conductivity of rocks from SE China. Acta Petrologica Sinica, 10(3): 323-329. (in Chinese)

    Google Scholar

    Xiong LP, Hu SB, Wang JY. 1993. Terrestrial heat flow values in southeastern China. Chinese Journal of Geophysics, 36(6): 784-790. (in Chinese)

    Google Scholar

    Xiong SQ, Yang H, Ding YY. 2016. Characteristics of Chinese continent Curie point isotherm. Chinese Journal of Geophysics, 59(10): 3604-3617. (in Chinese) doi: 10.6038/cjg20161008

    CrossRef Google Scholar

    Yang RK, Luo W, Pei RW, et al. 2018. Distribution and fluids hydrochemistry characteristics of hydrothermal geothermal resources in Guizhou Province. Geological Survey of China, 5(2): 38-44. (in Chinese) doi: 10.19388/j.zgdzdc.2018.02.06

    CrossRef Google Scholar

    Yang RK, Wang Q, Yang LJ, et al. 2015. Investigation, evaluation and zoning of geothermal resources in Guizhou Province. Guizhou Geological Environment Monitoring Institute: 1-157. (in Chinese)

    Google Scholar

    Yang YJ, Ding GL, Xu W, et al. 2020. Tracer test and geothermal resource quantity evaluation based on dynamic data in the Xiaotangshan area of Beijing. Hydrogeology & Engineering Geology, 47(5): 196-200. (in Chinese)

    Google Scholar

    Yuan FG. 1997. Geotherm characteristic of the north suburb of Zunyi city. Guizhou Geology, 14(2): 175-178. (in Chinese)

    Google Scholar

    Yuan YS, Ma YS, Hu SB, et al. 2006. Present-day geothermal characteristics in South China. Chinese Journal of Geophysics, 49(4): 1118-1126. (in Chinese)

    Google Scholar

    Zhang BJ, ZhaoT, Li YY,et al. 2019. The hydrochemical characteristics and its significance of geothermal water in both sides of large fault: Taking northern section of the Liaokao fault in north China as an example. China Geology, 2: 512-521. doi: 10.31035/cg2018132

    CrossRef Google Scholar

    Zhang CW, Li Q. 2015. Research of geotemperature field distribution characteristics and influence factors in Zunyi area. Guizhou Science, 33(2): 65-70. (in Chinese)

    Google Scholar

    Zhang J, Huang S, Zuo Y, et al. 2020. Terrestrial heat flow in the baiyinchagan sag, erlian Basin, northern China. Geothermics, 86: 101799. doi: 10.1016/j.geothermics.2019.101799

    CrossRef Google Scholar

    Zhang L, Chen G, Li Q, et al. 2014. Formation condition and exploration prospecting of geothermal water in central Zunyi of Guizhou. Guizhou Geology, 31(1): 60-66. (in Chinese)

    Google Scholar

    Zhang YH, Li X, Xu ZX, et al. 2021. An analysis of the genesis and engineering influence of geothermal water in the Kangding tunnel site of the Sichuan-Tibet Railway. Hydrogeology & Engineering Geology, 48(5): 46-53. (in Chinese)

    Google Scholar

    Zhu SY. 2020. Study on the characteristics of geothermal water occurrence and water and heat migration in Zhenfeng anticline. M. S. thesis. Guizhou: Guizhou University: 25-28. (in Chinese)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(1324) PDF downloads(46) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint