Institute of Hydrogeology and Environmental Geology,
Chinese Academy of Geological Sciences
Host
Groundwater Science and Engineering LimitedPublish
2022 Vol. 10, No. 1
Article Contents

Song Chao, Liu Man, Dong Qiu-yao, Zhang Lin, Wang Pan, Chen Hong-yun, Ma Rong. 2022. Variation characteristics of CO2 in a newly-excavated soil profile, Chinese Loess Plateau: Excavation-induced ancient soil organic carbon decomposition. Journal of Groundwater Science and Engineering, 10(1): 19-32. doi: 10.19637/j.cnki.2305-7068.2022.01.003
Citation: Song Chao, Liu Man, Dong Qiu-yao, Zhang Lin, Wang Pan, Chen Hong-yun, Ma Rong. 2022. Variation characteristics of CO2 in a newly-excavated soil profile, Chinese Loess Plateau: Excavation-induced ancient soil organic carbon decomposition. Journal of Groundwater Science and Engineering, 10(1): 19-32. doi: 10.19637/j.cnki.2305-7068.2022.01.003

Variation characteristics of CO2 in a newly-excavated soil profile, Chinese Loess Plateau: Excavation-induced ancient soil organic carbon decomposition

More Information
  • Soils of the Chinese Loess Plateau (CLP) contain substantial amounts of soil inorganic carbon (SIC), as well as recent and ancient soil organic carbon (SOC). With the advent of the Anthropocene, human perturbation, including excavation, has increased soil CO2 emission from the huge loess carbon pool. This study aims to determine the potential of loess CO2 emission induced by excavation. Soil CO2 were continuously monitored for seven years on a newly-excavated profile in the central CLP and the stable C isotope compositions of soil CO2 and SOC were used to identify their sources. The results showed that the soil CO2 concentrations ranged from 830 μL·L−1 to 11 190 μL·L−1 with an annually reducing trend after excavation, indicating that the human excavation can induce CO2 production in loess profile. The δ13C of CO2 ranged from –21.27 ‰ to –19.22 ‰ (mean: –20.11‰), with positive deviation from top to bottom. The range of δ13CSOC was –24.0‰ to –21.1‰ with an average of –23.1‰. The δ13C-CO2 in this study has a positive relationship with the reversed CO2 concentration, and it is calculated that 80.22% of the soil CO2 in this profile is from the microbial decomposition of SOC and 19.78% from the degasification during carbonate precipitation. We conclude that the human excavation can significantly enhance the decomposition of the ancient OC in loess during the first two years after perturbation, producing and releasing soil CO2 to atmosphere.

  • 加载中
  • [1] Andrews JA, Schlesinger WH. 2001. Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Global Biogeochemical Cycles, 15(1): 149-162. doi: 10.1029/2000gb001278

    CrossRef Google Scholar

    [2] Arora B, Spycher NF, Steefel CI, et al. 2016. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment. Biogeochemistry, 127(2-3): 367-396. doi: 10.1007/s10533-016-0186-8

    CrossRef Google Scholar

    [3] Capaccioni B, Caramiello C, Tatàno F, et al. 2011. Effects of a temporary HDPE cover on landfill gas emissions: Multiyear evaluation with the static chamber approach at an Italian landfill. Waste Management, 31(5): 956-965. doi: 10.1016/j.wasman.2010.10.004

    CrossRef Google Scholar

    [4] Chaopricha NT, Marín-Spiotta E. 2014. Soil burial contributes to deep soil organic carbon storage. Soil Biology and Biochemistry, 69: 251-264. doi: 10.1016/j.soilbio.2013.11.011

    CrossRef Google Scholar

    [5] Chen D, Wei W, Daryanto S, Tarolli P. 2020. Does terracing enhance soil organic carbon sequestration? A national-scale data analysis in China. Science of the Total Environment, 721: 137751. doi: 10.1016/j.scitotenv.2020.137751

    CrossRef Google Scholar

    [6] Chen Q, Shen C, Sun Y, et al. 2007. Characteristics of soil organic carbon and its isotopic compositions. Chinese Journal of Ecology, 26(9): 1327-1334. doi: 10.13292/j.1000-4890.2007.0255

    CrossRef Google Scholar

    [7] Cleveland CC, Nemergut DR, Schmidt SK, et al. 2007. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry, 82(3): 229-240. doi: 10.1007/s10533-006-9065-z

    CrossRef Google Scholar

    [8] Deng Q, Hui D, Chu G, et al. 2017. Rain-induced changes in soil CO2 flux and microbial community composition in a tropical forest of China. Scientific Reports, 7(1): 5539. doi: 10.1038/s41598-017-06345-2

    CrossRef Google Scholar

    [9] Etiope G. 1999. Subsoil CO2 and CH4 and their advective transfer from faulted grassland to the atmosphere. Journal of Geophysical Research:Atmospheres, 104(D14): 16889-16894. doi: 10.1029/1999JD900299

    CrossRef Google Scholar

    [10] Fierer N, Schimel JP. 2003. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Science Society of America Journal, 67(3): 798-805. doi: 10.2136/sssaj2003.0798

    CrossRef Google Scholar

    [11] Flechard CR, Neftel A, Jocher M, et al. 2007. Temporal changes in soil pore space CO2 concentration and storage under permanent grassland. Agricultural and Forest Meteorology, 142(1): 66-84. doi: 10.1016/j.agrformet.2006.11.006

    CrossRef Google Scholar

    [12] Fontaine S, Barot S, Barré P, et al. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450(7167): 277-280. doi: 10.1038/nature06275

    CrossRef Google Scholar

    [13] Gao Y, Tian J, Pang Y, et al. 2017. Soil inorganic carbon sequestration following afforestation is probably induced by pedogenic carbonate formation in Northwest China. Frontiers in Plant Science, 8: 1282. doi: 10.3389/fpls.2017.01282

    CrossRef Google Scholar

    [14] Gerke H, Rieckh H, Sommer M. 2015. Interactions between crop, water, and dissolved organic and inorganic carbon in a hummocky landscape with erosion-affected pedogenesis. Soil and Tillage Research, 156: 230-244. doi: 10.1016/j.still.2015.09.003

    CrossRef Google Scholar

    [15] Granieri D, Chiodini G, Marzocchi W, et al. 2003. Continuous monitoring of CO2 soil diffuse degassing at Phlegraean Fields (Italy): Influence of environmental and volcanic parameters. Earth and Planetary Science Letters, 212(1-2): 167-179. doi: 10.1016/S0012-821X(03)00232-2

    CrossRef Google Scholar

    [16] Han G, Yang T, Man L, et al. 2020. Carbon-nitrogen isotope coupling of soil organic matter in a karst region under land use change, Southwest China. Agriculture Ecosystems & Environment, 301: 107027. doi: 10.1016/j.agee.2020.107027

    CrossRef Google Scholar

    [17] Hashimoto S, Komatsu H. 2006. Relationships between soil CO2 concentration and CO2 production, temperature, water content, and gas diffusivity: implications for field studies through sensitivity analyses. Journal of Forest Research, 11(1): 41-50. doi: 10.1007/s10310-005-0185-4

    CrossRef Google Scholar

    [18] Hashimoto S, Tanaka N, Kume T, et al. 2007. Seasonality of vertically partitioned soil CO2 production in temperate and tropical forest. Journal of Forest Research, 12(3): 209-221. doi: 10.1007/s10310-007-0009-9

    CrossRef Google Scholar

    [19] Hendry MJ, Mendoza CA, Kirkland RA, et al. 1999. Quantification of transient CO2 production in a sandy unsaturated zone. Water Resour. Res, 35(7): 2189-2198. doi: 10.1029/1999WR900060

    CrossRef Google Scholar

    [20] IPCC. 2018. Global Warming of 1.5℃: An IPCC Special Report on the impacts of global warming of 1.5℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.

    Google Scholar

    [21] IPCC. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In: Masson-Delmotte V, Zhai P, Pirani A, et al.

    Google Scholar

    [22] Jassal R, Black A, Novak M, et al. 2005. Relationship between soil CO2 concentrations and forest-floor CO2 effluxes. Agricultural and Forest Meteorology, 130: 176-192. doi: 10.1016/j.agrformet.2005.03.005

    CrossRef Google Scholar

    [23] Jassal RS, Black TA, Drewitt GB, et al. 2004. A model of the production and transport of CO2 in soil: Predicting soil CO2 concentrations and CO2 efflux from a forest floor. Agricultural and Forest Meteorology, 124(3-4): 219-236. doi: 10.1016/j.agrformet.2004.01.013

    CrossRef Google Scholar

    [24] Jobbágy E, Jackson R. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2): 423-436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

    CrossRef Google Scholar

    [25] Johnson MS, Lehmann J, Riha SJ, et al. 2008. CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophysical Research Letters, 35(L17401): 1-5. doi: 10.1029/2008GL034619

    CrossRef Google Scholar

    [26] Keller CK, Bacon DH. 1998. Soil respiration and georespiration distinguished by transport analyses of vadose CO2, 13CO2, and 14CO2. Global Biogeochemical Cycles, 12(2): 361-372. doi: 10.1029/98GB00742

    CrossRef Google Scholar

    [27] Koehler B, Zehe E, Corre MD, et al. 2010. An inverse analysis reveals limitations of the soil-CO2 profile method to calculate CO2 production and efflux for well-structured soils. Biogeosciences, 7: 2311-2325. doi: 10.5194/bg-7-2311-2010

    CrossRef Google Scholar

    [28] Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304: 1623-1627. doi: 10.1126/science.1097396

    CrossRef Google Scholar

    [29] Lee RW. 1997. Effects of carbon dioxide variations in the unsaturated zone on water chemistry in a glacial-outwash aquifer. Applied Geochemistry, 12(4): 347-366. doi: 10.1016/S0883-2927(97)00001-2

    CrossRef Google Scholar

    [30] Lee X, Wu H, Sigler J, et al. 2004. Rapid and transient response of soil respiration to rain. Global Change Biology, 10: 1017-1026. doi: 10.1111/j.1365-2486.2004.00787.x

    CrossRef Google Scholar

    [31] Liegler A. 2016. Diffuse CO2 degassing and the origin of volcanic gas variability from Rincón de la Vieja, Miravalles and Tenorio Volcanoes, Guanacaste Province, Costa Rica. M. S. thesis. Houghton, Michigan: Michigan Technological University: 1-69.

    Google Scholar

    [32] Liu J, Han G. 2020. Effects of chemical weathering and CO2 outgassing on δ13C DIC signals in a karst watershed. Journal of Hydrology, 589: 125192. doi: 10.1016/j.jhydrol.2020.125192

    CrossRef Google Scholar

    [33] Liu J, Hua Z, Liu D. 1997. Preliminary study of greenhouse gases in loess in Weinan, Shaanxi Province. Chinese Science Bulletin, 42(11): 921-924. doi: 10.1007/BF02882548

    CrossRef Google Scholar

    [34] Liu M, Han G, Li X. 2021. Comparative analysis of soil nutrients under different land-use types in the Mun River basin of Northeast Thailand. Journal of Soils and Sediments(21): 1136-1150. doi: 10.1007/s11368-020-02870-2

    CrossRef Google Scholar

    [35] Liu M, Han G, Zhang Q. 2020. Effects of agricultural abandonment on soil aggregation, soil organic carbon storage and stabilization: Results from observation in a small karst catchment, Southwest China. Agriculture, Ecosystems & Environment, 288: 106719.

    Google Scholar

    [36] Liu Q, Liu J, Sui S. 2001. Features of major greenhouse gases in loess, Shanxi Province, China. Chinese Science Bulletin, 46(17): 1469-1471. doi: 10.1007/BF03187034

    CrossRef Google Scholar

    [37] Liu T. 1985. Loess and the Environment. Beijing: China Ocean Press. 1-481. (In Chinese)

    Google Scholar

    [38] Liu W, Yang H, Ning Y, et al. 2007. Contribution of inherent organic carbon to the bulk δ13C signal in loess deposits from the arid western Chinese Loess Plateau. Organic Geochemistry, 38(9): 1571-1579. doi: 10.1016/j.orggeochem.2007.05.004

    CrossRef Google Scholar

    [39] Liu W, Yang H, Sun Y, et al. 2011. δ13C Values of loess total carbonate: A sensitive proxy for Asian summer monsoon in arid northwestern margin of the Chinese loess plateau. Chemical Geology, 3-4(284): 317-322. doi: 10.1016/j.chemgeo.2011.03.011

    CrossRef Google Scholar

    [40] Liu X, Wan S, Su B, et al. 2002. Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem. Plant and Soil, 240(2): 213-223. doi: 10.1023/A:1015744126533

    CrossRef Google Scholar

    [41] Liu Z. 2011. Is pedogenic carbonate an important atmospheric CO2 sink? Chinese Science Bulletin, 56(35): 3794-3796.

    Google Scholar

    [42] Lu H, Hongyan Z, Lin Z, et al. 2015. Temperature forced vegetation varations in glacial interglacial cycles in northeastern China revealed by loess palesol deposit. Quaternary Sciences, 35(4): 828-836. doi: 10.11928/j.issn.1001-7410.2015.04.05

    CrossRef Google Scholar

    [43] Lyu A, Lu H, Lin Z, et al. 2018. Variation and possible forcing mechanism of organic carbon isotopic compositions of loess in Northeastern China over the past 1. 08 Ma. Journal of Asian Earth Sciences, 155: 174-179. doi: 10.1016/j.jseaes.2017.11.013

    CrossRef Google Scholar

    [44] Maier M, Schack-Kirchner H, Hildebrand EE, et al. 2010. Pore-space CO2 dynamics in a deep, well-aerated soil. European Journal of Soil Science, 61(6): 877-887. doi: 10.1111/j.1365-2389.2010.01287.x

    CrossRef Google Scholar

    [45] Maier M, Schack-Kirchner H, Hildebrand EE, et al. 2011. Soil CO2 efflux vs. soil respiration: Implications for flux models. Agricultural & Forest Meteorology, 151(12): 1723-1730. doi: 10.1016/j.agrformet.2011.07.006

    CrossRef Google Scholar

    [46] Pabst H, Gerschlauer F, Kiese R, et al. 2016. Land use and precipitation affect organic and microbial carbon stocks and the specific metabolic quotient in soils of eleven ecosystems of Mt. Kilimanjaro, Tanzania. Land Degradation & Development, 27(3): 592-602.

    Google Scholar

    [47] Pengthamkeerati P, Motavalli PP, Kremer RJ, et al. 2005. Soil carbon dioxide efflux from a claypan soil affected by surface compaction and applications of poultry litter. Agriculture, Ecosystems and Environment, 109(1): 75-86.

    Google Scholar

    [48] Popiţa G, Frunzeti N, Ionescu A, et al. 2015. Evaluation of carbon dioxide and methane emission from Cluj-Napoca municipal landfill, Romania. Environmental Engineering and Management Journal, 14(6): 1389-1398. doi: 10.30638/eemj.2015.151

    CrossRef Google Scholar

    [49] Qin XG, Li CS, Cai BG. 2001. The sensitivity simulation of climate impact on C pools of loess. Quaternary Sciences, 21(2): 153-161.

    Google Scholar

    [50] Reardon EJ, Allison GB, Fritz P. 1979. Seasonal chemical and isotopic variations of soil CO2 at Trout Creek, Ontario. Journal of Hydrology, 43(1): 355-371. doi: 10.1016/0022-1694(79)90181-1

    CrossRef Google Scholar

    [51] Song C, Han G, Ning Z, et al. 2017a. The characteristics and origin of CO2 in unsaturated zone at loess tableland of Northwestern China. Quaternary Research, 37(6): 1172-1181. doi: 10.11928/j.issn.1001-7410.2017.06.02

    CrossRef Google Scholar

    [52] Song C, Han G, Shi Y, et al. 2017b. Characteristics of CO2 in unsaturated zone(~90 m) of loess tableland, Northwest China. Acta Geochimica, 36(3): 489-493. doi: 10.1007/s11631-017-0214-y

    CrossRef Google Scholar

    [53] Song C. 2017. Characteristics and origin of soil CO2 at unsaturated zone in loess tableland and its implication to carbon cycle. Ph. D. thesis. Beijing: China University of Geosciences (Beijing): 1-132. (In Chinese)

    Google Scholar

    [54] Suchomel KH, Kreamer DK, Long A. 1990. Production and transport of carbon dioxide in a contaminated vadose zone: a stable and radioactive carbon isotope study. Environmental science & technology, 24(12): 1824-1831. doi: 10.1021/es00082a006

    CrossRef Google Scholar

    [55] Tan W, Zhang R, Cao H, et al. 2014. Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China. Catena, 121: 22-30. doi: 10.1016/j.catena.2014.04.014

    CrossRef Google Scholar

    [56] Thorstenson DC, Weeks EP, Haas H, et al. 1998. Chemistry of unsaturated zone gases sampled in open boreholes at the crest of Yucca Mountain, Nevada: Data and basic concepts of chemical and physical processes in the mountain. Water resources research, 34(6): 1507-1529. doi: 10.1029/98WR00267

    CrossRef Google Scholar

    [57] Walvoord MA, Striegl RG, Prudic DE, et al. 2005. CO2 dynamics in the Amargosa Desert: Fluxes and isotopic speciation in a deep unsaturated zone. Water resources research, 41(2): W02006. doi: 10.1029/2004WR003599

    CrossRef Google Scholar

    [58] Wang C, Li F, Shi H, et al. 2013. The significant role of inorganic matters in preservation and stability of soil organic carbon in the Baoji and Luochuan loess/paleosol profiles, Central China. Catena, 109: 186-194. doi: 10.1016/j.catena.2013.04.001

    CrossRef Google Scholar

    [59] Wang JP, Wang XJ, Zhang J, et al. 2015. Soil organic and inorganic carbon and stable carbon isotopes in the Yanqi Basin of northwestern China. European Journal of Soil Science, 66(1): 95-103. doi: 10.1111/ejss.12188

    CrossRef Google Scholar

    [60] Wood WW, Petraitis MJ. 1984. Origin and distribution of carbon dioxide in the unsaturated zone of the southern high plains of Texas. Water Resources Research, 20(9): 1193-1208. doi: 10.1029/WR020i009p01193

    CrossRef Google Scholar

    [61] Xiang SR, Doyle A, Holden PA, et al. 2008. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biology and Biochemistry, 40(9): 2281-2289. doi: 10.1016/j.soilbio.2008.05.004

    CrossRef Google Scholar

    [62] Yang S, Ding Z, Li Y, et al. 2015. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene. Proceedings of the National Academy of Sciences of the United States of America, 112(43): 13183. doi: 10.1073/pnas.1504688112

    CrossRef Google Scholar

    [63] Zamanian K, Pustovoytov K, Kuzyakov Y. 2016. Pedogenic carbonates: Forms and formation processes. Earth Science Reviews, 157: 1-17. doi: 10.1016/j.earscirev.2016.03.003

    CrossRef Google Scholar

    [64] Zamanian K, Zarebanadkouki M, Kuzyakov Y. 2018. Nitrogen fertilization raises CO2 efflux from inorganic carbon: A global assessment. Global Change Biology, (24): 2810-2817. doi: 10.1111/gcb.14148

    CrossRef Google Scholar

    [65] Zhou B, Shen C, Sun W, et al. 2014. Late Pliocene-Pleistocene expansion of C4 vegetation in semiarid East Asia linked to increased burning. Geology, 42(12): 1067-1070. doi: 10.1130/G36110.1

    CrossRef Google Scholar

    [66] Zhou B, Wali G, Peterse F, et al. 2016. Organic carbon isotope and molecular fossil records of vegetation evolution in central Loess Plateau since 450 kyr. Science China, 59(6): 1206-1215. doi: 10.1007/s11430-016-5276-x

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(4)

Article Metrics

Article views(2387) PDF downloads(42) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint