Institute of Hydrogeology and Environmental Geology,
Chinese Academy of Geological Sciences
Host
Groundwater Science and Engineering LimitedPublish
2021 Vol. 9, No. 3
Article Contents

Joelle Yemeli Elida, Emile Temgoua, Lucas Kengni, Jean-Paul Ambrosi, Mathieu Momo-nouazi, Brice Silatsa-Tedou Francis, Robean Wamba Franck, Brice Tchakam-Kamtchueng. 2021. Hydro-geochemistry of groundwater and surface water in Dschang town (West Cameroon): Alkali and alkaline-earth elements ascertain lithological and anthropogenic constraints. Journal of Groundwater Science and Engineering, 9(3): 212-224. doi: 10.19637/j.cnki.2305-7068.2021.03.004
Citation: Joelle Yemeli Elida, Emile Temgoua, Lucas Kengni, Jean-Paul Ambrosi, Mathieu Momo-nouazi, Brice Silatsa-Tedou Francis, Robean Wamba Franck, Brice Tchakam-Kamtchueng. 2021. Hydro-geochemistry of groundwater and surface water in Dschang town (West Cameroon): Alkali and alkaline-earth elements ascertain lithological and anthropogenic constraints. Journal of Groundwater Science and Engineering, 9(3): 212-224. doi: 10.19637/j.cnki.2305-7068.2021.03.004

Hydro-geochemistry of groundwater and surface water in Dschang town (West Cameroon): Alkali and alkaline-earth elements ascertain lithological and anthropogenic constraints

More Information
  • This study focuses on the sources of alkali and alkaline-earth elements based on the geochemistry of groundwater and surface water in Dschang concerning environmental and anthropogenic constraints. A comprehensive set of 50 samples from groundwater and surface water were analyzed by ICP-MS and processed by spatial interpolation in a GIS environment. The results highlight a geochemical anomaly at the center of the densely inhabited area subject to a profusion of open dumps discharges. This anomaly with the highest spatial contents of Be (Cs, Rb, Mg) suggests an anthropogenic source that demarcates with the lowest alkali and alkaline-earth elements on the peripheral area of Dschang. Other findings include lithological constraints with volcanic rocks being the main source compared to granitoid. The study points out good correlations between Be, Cs, Rb and Mg spatial distributions and physico-chemical parameters of waters (K, EC, TDS), and inversely with the lowest pH. pH is established as the most functioning physico-chemical constraint of alkali and alkaline-earth mobility in Dschang. The pH lowest values within the geochemical anomaly also highlight the impact of human activities on water acidity, which later enhance elements mobility and enrichment. Despite low elements contents relative to WHO standards, our findings point out an example of anthropogenic impact on water geochemistry linked to solid waste pollution; it also demonstrates significant anthropogenic changes of environmental physico-chemical parameters of prime importance in the mobility and distribution of elements in the study area. Similar assessments should be extended in major towns in Cameroon.

  • 加载中
  • [1] Adamczyk Z, Nowińska K. 2016. Environmental mobility of trace elements present in dusts emitted from Zn-Pb metallurgical processes. Environmental Earth Science, 75: 956.1-956.6.

    Google Scholar

    [2] Ako Ako A, Takem Eyong GE, Shimada J, et al. 2014. Nitrate contamination of groundwater in two areas of the Cameroon Volcanic Line (Banana Plain and Mount Cameroon area). Applied Water Science, 4: 99-113. doi: 10.1007/s13201-013-0134-x

    CrossRef Google Scholar

    [3] Ananfouet Djeufack CY. 2012. Cartographie et caractérisation géotechnique des sols développés sur roches volcaniques dans la ville de Dschang. Thèse de Doctorat, Université de Dschang : 58. (in French)

    Google Scholar

    [4] Bakyayita GK, Norrström AC, Kulabako RN. 2019. Assessment of levels, speciation, and toxicity of trace metal contaminants in selected shallow groundwater sources, surface runoff, wastewater, and surface water from designated streams in Lake Victoria Basin, Uganda. Journal of Environmental and Public Health, Article ID 6734017: 18.

    Google Scholar

    [5] Benessam S, Debieche TH, Amiour S, et al. 2019. Mobility of metallic trace elements in surface waters and sediments: Case of the Nil Wadi (Jijel, North-East Algeria). Advances in sustainable and environmental hydrology, hydrogeology, hydrochemistry and water resources. CAJG 2018. Springer: 69-71.

    Google Scholar

    [6] Defo C, Mishra AK, Yerima BPK, et al. 2016. Current conditions of groundwater resources development and related problems in the Republic of Cameroon, West Africa. European Water, 54: 43-68.

    Google Scholar

    [7] Elumalai V, Brindha K, Sithole B, et al. 2017. Spatial interpolation methods and geostatistics for mapping groundwater contamination in a coastal area. Environmental Science and Pollution Research, 24: 11601-11617. doi: 10.1007/s11356-017-8681-6

    CrossRef Google Scholar

    [8] Embaby A, Redwan M. 2019. Sources and behavior of trace elements in groundwater in the South Eastern Desert, Egypt. Environmental Monitoring and Assessment, 191: 686. doi: 10.1007/s10661-019-7868-3

    CrossRef Google Scholar

    [9] Ge Y, Murray P, Hendershot WH. 2000. Trace metal speciation and bioavailability in urban soils. Environmental Pollution, 107: 137-144. doi: 10.1016/s0269-7491(99)00119-0

    CrossRef Google Scholar

    [10] Huynh TDM. 2009. Impact des métaux lourds sur l’interaction plante/vers de terre/microbe tellurique. Thèse de Doctorat, Université de Paris Est: 145. (in French)

    Google Scholar

    [11] Kravchenko J, Darrah TH, Miller RK. 2014. A review of the health impacts of barium from natural and anthropogenic exposure. Environmental Geochemistry and Health, 36: 797-814. doi: 10.1007/s10653-014-9622-7

    CrossRef Google Scholar

    [12] Kwékam M, Liégeois JP, Njonfang E, et al. 2010. Nature, origin and significance of the Fomopéa Pan-African high-K calc-alkaline plutonic complex in the Central African fold belt (Cameroon). Journal of African Earth Sciences, 57: 79-95. doi: 10.1016/j.jafrearsci.2009.07.012

    CrossRef Google Scholar

    [13] Li PY, Wu JH, Qian J. 2014. Hydrogeochemistry and quality assessment of shallow groundwater in the southern part of the Yellow River Alluvial Plain (Zhongwei Section), Northwest China. Earth Sciences Research Journal, 18(1): 27-38. doi: 10.15446/esrj.v18n1.34048

    CrossRef Google Scholar

    [14] Liao F, Wang G, Shi Z, et al. 2018. Distributions, sources, and species of heavy metals/trace elements in shallow groundwater around the Poyang Lake, East China. Exposure and Health, 10: 211-227. doi: 10.1007/s12403-017-0256-8

    CrossRef Google Scholar

    [15] Mba FF, Temgoua E, Kengne PD, et al. 2019. Vulnérabilité des eaux souterraines à la pollution dans la ville de Dschang, Ouest-Cameroun. International Journal of Biological and Chemical Sciences, 13(5): 39-56. doi: 10.4314/ijbcs.v13i5.3S

    CrossRef Google Scholar

    [16] Mfonka Z, Kpoumié A, Ngouh AN, et al. 2021. Water quality assessment in the Bamoun Plateau, Western Cameroon: Hydrogeochemical modelling and multivariate statistical analysis approach. Journal of Water Resource and Protection, 13: 112-138. doi: 10.4236/jwarp.2021.132007

    CrossRef Google Scholar

    [17] Mofor NA, Tamungang EBN, Mvondo-zé AD, et al. 2017. Assessment of physico-chemical and heavy metals properties of some agricultural soils of Awing-North West Cameroon. Archives of Agriculture and Environmental Science, 2(4): 277-286. doi: 10.26832/24566632.2017.020405

    CrossRef Google Scholar

    [18] Momo Nouazi M, Yemefack M, Tematio P, et al. 2016. Distribution of bauxitic duricrusted laterites on the Bamiléké plateau (West Cameroon): Constraints from GIS mapping and geochemistry. Catena, 40: 15-23.

    Google Scholar

    [19] Morris LA. 2004. Soil biology and tree growth | Soil organic matter forms and functions. Encyclopedia of Forest Sciences, Elsevier: 1201-1207. ISBN 9780121451608

    Google Scholar

    [20] Ngouffo R. 1989. Les monts Bambouto, environment et utilisation de l’espace. Thèse de Doctorat 3ème cycle de géographie Physique, Université de Yaoundé: 374. (in French)

    Google Scholar

    [21] Nirel PM, Revaclier R. 1999. Assessment of sewage treatment plant effluents impact on river water quality using dissolved Rb/Sr ratio. Environmental Science and Technology, 33(12): 1996-2000. doi: 10.1021/es981097g

    CrossRef Google Scholar

    [22] Njoyim KI, Kengni L, Tita AM, et al. 2020. Hydrogeochemistry of surface and ground water in Alatening Village, Northwest Region, Cameroon. Applied and Environmental Soil Science, 12: 1-15.

    Google Scholar

    [23] Njueya Kopa A, Zebaze Tonang A, Kengni L, et al. 2021. Assessment of groundwater mineralization processes in Mbakaou Area (Adamawa Plateau-Cameroon) by using conventional diagrams and multivariate statistical analysis. European Journal of Environment and Earth Sciences, 2(1): 44-52. doi: 10.24018/ejgeo.2021.2.1.11

    CrossRef Google Scholar

    [24] Nkouathio DG, Kagou Dongmo A, Bardintzeff JM, et al. 2008. Evolution of volcanism in graben and horst structures along the Cenozoic Cameroon Line (Africa): Implications for tectonic evolution and mantle source composition. Mineralogy and Petrology, 94: 287-303. doi: 10.1007/s00710-008-0018-1

    CrossRef Google Scholar

    [25] Noor Shah A, Tanveer M, Hussain S, et al. 2016. Beryllium in the environment: Whether fatal for plant growth? Reviews in Environmental Science and Bio/Technology, 15: 549-561.

    Google Scholar

    [26] Ntangmo Tsafack H, Temgoua E, Njine T. 2012. Physico-chemical and bacteriological quality of the vegetable watering water in the Dschang Town, Cameroon. Journal of Environmental Protection, 3: 949-955. doi: 10.4236/jep.2012.328110

    CrossRef Google Scholar

    [27] Ntangmo Tsafack H, Temgoua E, Njine T. 2019. Persistance de E coli, des oeufs d’helminthes et des kystes de protozoaires contenus dans les eaux usées urbaines d’arrosage sur les cultures maraîchères à Dschang, Ouest-Cameroun. International Journal of Biological and Chemical Sciences, 13(5): 81-90. (in French)

    Google Scholar

    [28] Rodier J, Geoffray CH, Kovacsik G, et al. 1976. L’analyse de l’eau: Eau naturelle, eau résiduaire, eau de mer. 6ème Ed. Dunod Technique Paris: 709-785. (in French)

    Google Scholar

    [29] Tchakam Kamtchueng B, Fantong WY, Wirmvem MJ, et al. 2016. Hydrogeochemistry and quality of surface water and groundwater in the vicinity of lake Monoun, West Cameroon: Approach from multivariate statistical analysis and stable isotopic characterization. Environmental Monitoring and Assessment, 188: 1-24. doi: 10.1007/s10661-016-5514-x

    CrossRef Google Scholar

    [30] Temgoua E. 2011. Chemical and bacteriological analysis of drinking water from alternative sources in the Dschang Municipality, Cameroon. Journal of Environmental Protection, 22: 620-628. doi: 10.4236/jep.2011.25071

    CrossRef Google Scholar

    [31] Temgoua E, Ntangmo Tsafack H, Njine T, et al. 2012. Vegetable production systems of swamp zone in urban environment in West Cameroon: Case of Dschang City. Universal Journal of Environmental Research and Technology, 2(2): 83-92.

    Google Scholar

    [32] United Councils and Cities of Cameroon, National Office. 2021.

    Google Scholar

    [33] WHO. 2011. Guidelines for drinking-water quality. Fourth edition: 541.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(1312) PDF downloads(34) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint