2021 Vol. 8, No. 4
Article Contents

GUO Chaobin, LI Cai, YANG Lichao, LIU Kai, RUAN Yuejun, HE Yang. 2021. Research review and engineering case analysis of geological compressed air energy storage. Geological Survey of China, 8(4): 109-119. doi: 10.19388/j.zgdzdc.2021.04.12
Citation: GUO Chaobin, LI Cai, YANG Lichao, LIU Kai, RUAN Yuejun, HE Yang. 2021. Research review and engineering case analysis of geological compressed air energy storage. Geological Survey of China, 8(4): 109-119. doi: 10.19388/j.zgdzdc.2021.04.12

Research review and engineering case analysis of geological compressed air energy storage

More Information
  • Corresponding author: LI Cai  
  • Geological Compressed Air Energy Storage (GCAES) can provide a flexible and efficient energy storage scheme for the large-scale deployment of intermittent clean energy, such as wind energy and solar energy, which could promote the rapid transformation of energy structure and accelerate the realization of carbon emission peak and carbon neutrality strategy. Based on the introduction of the concept and classification of GCAES, the authors have summarized the research status and development trend of GCAES from aspects of theoretical analysis, technical methods and economic cost, and described the key parameters and experience of typical engineering cases of GCAES, including salt caverns, aquifers and exhausted oil and gas fields, in order to analyze the application prospect of GCAES. With the increasing proportion of clean and renewable energy in the power grid, the authors have also explored the characteristics and influence factors of different storage tanks, and put forward their suitable conditions, which could provide some scientific reference for the sustainable development and utilization of clean energy.
  • 加载中
  • [1] 国家能源局.国新办举行中国可再生能源发展有关情况发布会[EB/OL].(2021-03-30)[2021-06-21].http://www.nea.gov.cn/2021-03/30/c_139846095.htm.

    Google Scholar

    [2] National Energy Administration.China’s Renewable Energy Deve-lopment Situation Briefing[EB/OL].(2021-03-30)[2021-06-21].http://www.nea.gov.cn/2021-03/30/c_139846095.htm.

    Google Scholar

    [2] 张静,李岱昕.物理储能技术的市场现状及发展前景[J].储能科学与技术,2015,4(2):153-157.

    Google Scholar

    [4] Zhang J,Li D X.Current application situation and development prospect of physical energy storage technologies[J].Energy Sto-rage Sci Technol,2015,4(2):153-157.

    Google Scholar

    [3] Guo C B,Li C,Zhang K N,et al.The promise and challenges of utility-scale compressed air energy storage in aquifers[J].Appl Energy,2021,286:116513.

    Google Scholar

    [4] 郭新生,傅秦生,赵知辛,等.电热冷联产的新压缩空气蓄能系统[J].热能动力工程,2005,20(2):170-173.

    Google Scholar

    [7] Guo X S,Fu Q S,Zhao Z X,et al.A new type of compressed air energy-storage system for the cogeneration of electricity,heat and cooling energy[J].J Eng Therm Energy Power,2005,20(2):170-173.

    Google Scholar

    [5] 郭朝斌,王志辉,刘凯,等.特殊地下空间应用与研究现状[J].中国地质,2019,46(3):482-492.

    Google Scholar

    [9] Guo C B,Wang Z H,Liu K,et al.The application and research progress of special underground space[J].Geol China,2019,46(3):482-492.

    Google Scholar

    [6] International Renewable Energy Agency.Renewable Capacity Highlights[R].Abu Dhabi:International Renewable Energy Agency,2021.

    Google Scholar

    [7] 张新敬,陈海生,刘金超,等.压缩空气储能技术研究进展[J].储能科学与技术,2012,1(1):26-40.

    Google Scholar

    [12] Zhang X J,Chen H S,Liu J C,et al.Research progress in compressed air energy storage system:A review[J].Energy Stor Sci Technol,2012,1(1):26-40.

    Google Scholar

    [8] 小于.[储能]万亿级储能市场跳出“大黑马”……[EB/OL].(2021-05-26)[2021-07-05].https://www.sohu.com/a/468582567_651733.

    Google Scholar

    [14] Xiao Y.Trillion-level Energy Storage Market Came Out As a Dark Horse…[EB/OL].(2021-05-26)[2021-07-05].https://www.sohu.com/a/468582567_651733.

    Google Scholar

    [9] 郭朝斌,张可倪,李采.压缩空气含水层储能系统设计及可行性分析[J].同济大学学报:自然科学版,2016,44(7):1107-1112.

    Google Scholar

    [16] Guo C B,Zhang K N,Li C.Subsurface system design and feasibi-lity analysis of compressed air energy storage in aquifers[J].J Tongji Univ:Nat Sci,2016,44(7):1107-1112.

    Google Scholar

    [10] Raju M,Khaitan S K.Modeling and simulation of compressed air storage in caverns:A case study of the Huntorf plant[J].Appl Energy,2012,89(1):474-481.

    Google Scholar

    [11] Kushnir R,Ullmann A,Dayan A.Thermodynamic and hydrodynamic response of compressed air energy storage reservoirs:a review[J].Rev Chem Eng,2012,28(2/3):123-148.

    Google Scholar

    [12] Rutqvist J,Kim H M,Ryu D W,et al.Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns[J].Int J Rock Mech Min Sci,2012,52:71-81.

    Google Scholar

    [13] Kim H M,Rutqvist J,Ryu D W,et al.Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth:a modeling study of air tightness and energy ba-lance[J].Appl Energy,2012,92:653-667.

    Google Scholar

    [14] Liu G L,Lu Y W,Xu J L,et al.Optimization of compressed air energy storage system parameters[J].Adv Mater Res,2013,634/638:787-791.

    Google Scholar

    [15] Zhuang X Y,Huang R Q,Liang C,et al.A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage[J].Math Probl Eng,2014,2014:179169.

    Google Scholar

    [16] Kim H M,Rutqvist J,Kim H,et al.Failure monitoring and leakage detection for underground storage of compressed air energy in lined rock caverns[J].Rock Mech Rock Eng,2016,49(2):573-584.

    Google Scholar

    [17] Murvay P S,Silea I.A survey on gas leak detection and localization techniques[J].J Loss Prev Process Ind,2012,25(6):966-973.

    Google Scholar

    [18] Oldenburg C M,Pan L.Porous Media Compressed-Air Energy Storage (PM-CAES):Theory and simulation of the coupled wellbore-reservoir system[J].Transp Porous Med,2013,97(2):201-221.

    Google Scholar

    [19] Oldenburg C M,Pan L.Utilization of CO2 as cushion gas for porous media compressed air energy storage[J].Greenh Gases:Sci Technol,2013,3(2):124-135.

    Google Scholar

    [20] 胡贤贤,张可霓,郭朝斌.压缩空气地下咸水含水层储能技术[J].新能源进展,2014,2(5):390-396.

    Google Scholar

    [28] Hu X X,Zhang K N,Guo C B.Compressed air energy storage using saline aquifer as storage reservior[J].Adv New Renew Energy,2014,2(5):390-396.

    Google Scholar

    [21] Kushnir R,Ullmann A,Dayan A.Compressed air flow within aquifer reservoirs of CAES plants[J].Transp Porous Med,2010,81(2):219-240.

    Google Scholar

    [22] Guo C B,Zhang K N,Li C,et al.Modelling studies for influence factors of gas bubble in compressed air energy storage in aqui-fers[J].Energy,2016,107:48-59.

    Google Scholar

    [23] Guo C,Zhang K,Li C.Influence of Permeability on the Initial Gas Bubble Evolution in Compressed Air Energy Storage in Aqui-fers[C]//Proceedings of the TOUGH Symposium 2015.Berkeley,2015.

    Google Scholar

    [24] Lerch E.Energy Storage to Balance Wind Power Fluctuations[C]//Proceedings of the Third IASTED Asian Conference on Power and Energy Systems.Phuket,2007:134-139.

    Google Scholar

    [25] Fiaschi D,Manfrida G,Secchi R,et al.A versatile system for offshore energy conversion including diversified storage[J].Energy,2012,48(1):566-576.

    Google Scholar

    [26] 王志文,熊伟,王海涛,等.水下压缩空气储能研究进展[J].储能科学与技术,2015,4(6):585-598.

    Google Scholar

    [35] Wang Z W,Xiong W,Wang H T,et al.A review on underwater compressed air energy storage[J].Energy Storage Sci Technol,2015,4(6):585-598.

    Google Scholar

    [27] Allen R D,Doherty T J,Erikson R L,et al.Factors Affecting Sto-rage of Compressed Air in Porous-Rock Reservoirs[R].Richland:Pacific Northwest Lab,1983.

    Google Scholar

    [28] 董家伟,李毅.含水层压缩空气储能选址评价方法研究[J].安全与环境工程,2021,28(3):228-239.

    Google Scholar

    [38] Dong J W,Li Y.Study of the site evaluation of compressed air energy storage in aquifers[J].Safety Environ Eng,2021,28(3):228-239.

    Google Scholar

    [29] Metz B.IPCC Special Report on Carbon Dioxide Capture and Sto-rage:Prepared by Working Group III of the Intergovernmental Panel on Climate Change[M].Cambridge:Cambridge University Press,2005.

    Google Scholar

    [30] 张炜,吕鹏.二氧化碳地质封存中“对流混合”过程的研究进展[J].水文地质工程地质,2013,40(2):101-107.

    Google Scholar

    [41] Zhang W,Lv P.Density-driven convection in carbon dioxide geo-logical storage:a review[J].Hydrogeol Eng Geol,2013,40(2):101-107.

    Google Scholar

    [31] Pruess K,Oldenburg C M,Moridis G J.TOUGH2 User’s Guide Version 2[R].Berkeley:Lawrence Berkeley National Laboratory,1999.

    Google Scholar

    [32] Pan L H,Oldenburg C M.T2Well:An integrated wellbore-re-servoir simulator[J].Comput Geosci,2014,65:46-55.

    Google Scholar

    [33] Kempka T,Norden B,Tillner E,et al.Comparison of Long-Term Numerical Simulations at the Ketzin Pilot Site Using the Schlumberger ECLIPSE and LBNL TOUGH2 Simulators[C]//Proceedings of the EGU General Assembly Conference 2012.Vienna,2012.

    Google Scholar

    [34] Wang B,Pfeiffer W T,Li D,et al.A Feasibility Study on Operating Large Scale Compressed Air Energy Storage in Porous Forma-tions[C]//Proceedings of the AGU Fall Meeting 2015.San Fransisco:American Geophysical Union,2015.

    Google Scholar

    [35] Gyuk I P.EPRI-DOE handbook of energy storage for transmission & distribution applications[R].Washington:U.S.Department of Energy,2003.

    Google Scholar

    [36] Succar S,Williams R H.Compressed Air Energy Storage:Theory,Resources,and Applications for Wind Power[R].PEI,2008.

    Google Scholar

    [37] 谭靖,李国杰,唐志伟.基于压缩空气储能的风电场功率调节及效益分析[J].电力系统自动化,2011,35(8):33-37.

    Google Scholar

    [49] Tan J,Li G J,Tang Z W.Design and economic analysis of compressed air energy storage based wind farm power regulation system[J].Autom Electr Power Syst,2011,35(8):33-37.

    Google Scholar

    [38] 张新敬. 压缩空气储能系统若干问题的研究[D].北京:中国科学院研究生院(工程热物理研究所),2011.

    Google Scholar

    [51] Zhang X J.Investigation on Compressed Air Energy Storage[D].Beijing:University of Chinese Academy of Sciences (Institute of Engineering Thermophysics),2011.

    Google Scholar

    [39] Crotogino F,Quast P.Compressed-air Storage Caverns at Hun-torf[M]//Bergman M.Subsurface Space.Amsterdam:Elsevier,1981:593-600.

    Google Scholar

    [40] Crotogino F,Mohmeyer K U,Scharf R.Huntorf CAES:More than 20 Years of Successful Operation[C]//Proceedings of the Spring 2001 Meeting.Orlando,2001.

    Google Scholar

    [41] Budt M,Wolf D,Span R,et al.A review on compressed air energy storage:Basic principles,past milestones and recent develop-ments[J].Appl Energy,2016,170:250-268.

    Google Scholar

    [42] Crotogino F.Compressed Air Storage[C]//Proceedings of the Internationale Konferenz “Energieautonomie Durch Speicherung Erneuerbarer Energien”.2006.

    Google Scholar

    [43] Arsie I,Marano V,Moran M,et al.Optimal Management of a Wind/CAES Power Plant by means of Neural Network Wind Speed Forecast[C]//Proceedings of the European Wind Energy Conference and Exhibition.Milan:The European Wind Energy Association (EWEA),2007.

    Google Scholar

    [44] Davis L,Schainker R.Compressed Air Energy Storage (CAES):Alabama Electric Cooperative Mcintosh Plantñoverview and Operational History[C]//Proceedings of the Electricity Storage Association Meeting:Energy Storage in Action.2006.

    Google Scholar

    [45] 梅生伟,公茂琼,秦国良,等.基于盐穴储气的先进绝热压缩空气储能技术及应用前景[J].电网技术,2017,41(10):3392-3399.

    Google Scholar

    [59] Mei S W,Gong M Q,Qin G L,et al.Advanced adiabatic compressed air energy storage system with salt cavern air storage and its application prospects[J].Power Syst Technol,2017,41(10):3392-3399.

    Google Scholar

    [46] Simon Structure CAES System Performance Analysis[R].Iowa:The Hydrodynamics Group,2011.

    Google Scholar

    [47] Heath J E,Bauer S J,Broome S T,et al.Petrologic and Petrophy-sical Evaluation of the Dallas Center Structure,Iowa,for Compressed Air Energy Storage in the Mount Simon Sandstone[R].Albuquerque:Sandia National Lab,2013.

    Google Scholar

    [48] Moridis G J,King M,Jansen J.Iowa Stored Energy Park Compressed-air Energy Storage Project:Compressed-air Energy Sto-rage Candidate site Selection Evaluation in Iowa:Dallas Center Feasibility Analysis[EB/OL].(2007-01).https://www.researchgate.net/publication/303286546_Iowa_stored_energy_park_compressed-air_energy_storage_project_compressed-air_energy_storage_candidate_site_selection_evaluation_in_Iowa_Dallas_Center_feasibility_analysis.

    Google Scholar

    [49] 张益炬. 枯竭油气藏型地下储气库方案优选及安全性评价方法研究[D].成都:西南石油大学,2014.

    Google Scholar

    [64] Zhang Y J.Research on Optimal Selection and Safety Evaluation Method of Depleted Oil and Gas Reservoir Underground Gas Storage[D].Chengdu:Southwest Petroleum University,2014.

    Google Scholar

    [50] Matos C R,Carneiro J F,Silva P P.Overview of large-scale underground energy storage technologies for integration of renewable energies and criteria for reservoir identification[J].J Energy Stor,2019,21:241-258.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2005) PDF downloads(318) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint