2021 Vol. 8, No. 4
Article Contents

LIU Liangting, XIAO Xiang. 2021. Deep-sea carbon cycle under high pressure and its impacts on life activities. Geological Survey of China, 8(4): 66-78. doi: 10.19388/j.zgdzdc.2021.04.07
Citation: LIU Liangting, XIAO Xiang. 2021. Deep-sea carbon cycle under high pressure and its impacts on life activities. Geological Survey of China, 8(4): 66-78. doi: 10.19388/j.zgdzdc.2021.04.07

Deep-sea carbon cycle under high pressure and its impacts on life activities

More Information
  • Corresponding author: XIAO Xiang
  • Currently, about 25% of CO2 from fossil fuel sources has been absorbed by the oceans, which mitigated the impact of human activities on climate change. The oceans transported CO2 from the atmosphere to the deep sea through several conceptual carbon pumps. The high pressure and low temperatures of the deep sea could facilitate the dissolution of CO2, and the oceans have stored inorganic carbon equivalent to 50 times of that in the atmosphere currently. Besides, the large amounts of methane hydrates have been stored in deep-sea sediments. Understanding the carbon cycle process in the deep sea is important to protect the carbon sequestration capacity and develop the carbon sequestration potential of the ocean. The authors have summarized the domestic and international researches on ocean carbon reservoirs and carbon deliveries, focusing on the process of the carbon cycle in the deep sea and the impacts of high pressure on life activities. The microorganisms drive the deep-sea carbon cycle, and the most of the organic carbon containing in phytoplankton is mineralized to CO2 by microorganisms during sedimentation or converted to refractory organic carbon, which makes the deep sea to be a vast and long-turnover time reservoir of organic carbon. The high pressure could increase the activity of archaeal methane anaerobic oxidation and enhance the ability to shield methane release from the seafloor. Besides, the process of methane oxidation under high pressure produces bicarbonate, and acetic acid which can support heterotrophs, so the global budget of methane anaerobic oxidation may be underestimated. The additional production of ammonia from cellular metabolism under high pressure could serve as a potential energy source for inorganic carbon fixation by ammonia-oxidizing archaea. Therefore, it is urgent for deepening our understanding of the deep-sea carbon cycle and other elemental cycles to investigate the impact of present and future human activities on deep-sea carbon cycle processes and environmental effects, and to assess the possibility of applying the deep sea as a geoengineering technology platform to sequester CO2.
  • 加载中
  • [1] IPCC.Climate Change 2014:Synthesis Report[R].Geneva,Switzerland:IPCC,2014.

    Google Scholar

    [2] Friedlingstein P,O’Sullivan M,Jones M W,et al.Global carbon budget 2020[J].Earth Syst Sci Data,2020,12(4):3269-3340.

    Google Scholar

    [3] Myhre G,Shindell D,Bréon F M,et al.Anthropogenic and Natural Radiative Forcing[C]//Climate Change 2013:the Physical Science Basis:Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,2013:659-740.

    Google Scholar

    [4] Tans P.Trends in Atmospheric Carbon Dioxide[EB/OL].[2021-06-28].https://gml.noaa.gov/ccgg/trends/.

    Google Scholar

    [5] MacFarling M C,Etheridge D,Trudinger C,et al.Law dome CO2,CH4 and N2O ice core records extended to 2000 years BP[J].Geophys Res Lett,2006,33(14):L14810.

    Google Scholar

    [6] Lüthi D,Le Floch M,Bereiter B,et al.High-resolution carbon dioxide concentration record 650 000-800 000 years before pre-sent[J].Nature,2008,453(7193):379-382.

    Google Scholar

    [7] Dlugokencky E.Trends in Atmospheric Methane[EB/OL].[2021-06-28].https://gml.noaa.gov/ccgg/trends_ch4/.

    Google Scholar

    [8] Falkowski P,Scholes R J,Boyle E,et al.The global carbon cycle:A test of our knowledge of earth as a system[J].Science,2000,290(5490):291-296.

    Google Scholar

    [9] Atwood T B,Witt A,Mayorga J,et al.Global patterns in marine sediment carbon stocks[J].Front Mar Sci,2020,7:165.

    Google Scholar

    [10] Lee T R,Wood W T,Phrampus B J.A machine learning (kNN) approach to predicting global seafloor total organic carbon[J].Global Biogeochem Cycles,2019,33(1):37-46.

    Google Scholar

    [11] Estes E R,Pockalny R,D’Hondt S,et al.Persistent organic matter in oxic subseafloor sediment[J].Nat Geosci,2019,12(2):126-131.

    Google Scholar

    [12] Bianchi T S,Schreiner K M,Smith R W,et al.Redox effects on organic matter storage in coastal sediments during the holocene:a biomarker/proxy perspective[J].Annu Rev Earth Planet Sci,2016,44:295-319.

    Google Scholar

    [13] Cicerone R J,Oremland R S.Biogeochemical aspects of atmospheric methane[J].Global Biogeochem Cycles,1988,2(4):299-327.

    Google Scholar

    [14] Archer D.Methane hydrate stability and anthropogenic climate change[J].Biogeosciences,2007,4(4):521-544.

    Google Scholar

    [15] Kvenvolden K A.Gas hydrates-geological perspective and global change[J].Rev Geophys,1993,31(2):173-187.

    Google Scholar

    [16] Kvenvolden K A.Methane hydrate in the global organic carbon cycle[J].Terra Nova,2002,14(5):302-306.

    Google Scholar

    [17] Kvenvolden K A.Methane hydrate---A major reservoir of carbon in the shallow geosphere?[J].Chem Geol,1988,71(1/2/3):41-51.

    Google Scholar

    [18] Chronopoulou P M,Shelley F,Pritchard W J,et al.Origin and fate of methane in the Eastern Tropical North Pacific oxygen minimum zone[J].ISME J,2017,11(6):1386-1399.

    Google Scholar

    [19] Schlesinger W H,Bernhardt E S.The oceans[M]//Schlesinger W H,Bernhardt E S.Biogeochemistry:An Analysis of Global Change.4th ed.Amsterdam:Elsevier,2020:361-432.

    Google Scholar

    [20] Skinner L C,Primeau F,Freeman E,et al.Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2[J].Nat Commun,2017,8:16010.

    Google Scholar

    [21] Rae J W B,Burke A,Robinson L F,et al.CO2 storage and release in the deep Southern Ocean on millennial to centennial timesca-les[J].Nature,2018,562(7728):569-573.

    Google Scholar

    [22] Feely R A,Sabine C L,Lee K,et al.Impact of anthropogenic CO2 on the CaCO3 system in the oceans[J].Science,2004,305(5682):362-366.

    Google Scholar

    [23] Berner R A.A model for calcium,magnesium and sulfate in seawater over Phanerozoic time[J].Am J Sci,2004,304(5):438-453.

    Google Scholar

    [24] Ridgwell A,Zeebe R E.The role of the global carbonate cycle in the regulation and evolution of the Earth system[J].Earth Planet Sci Lett,2005,234(3/4):299-315.

    Google Scholar

    [25] Sulpis O,Boudreau B P,Mucci A,et al.Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2[J].Proc Natl Acad Sci USA,2018,115(46):11700-11705.

    Google Scholar

    [26] Berelson W M,Balch W M,Najjar R,et al.Relating estimates of CaCO3 production,export,and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor:A revised global carbonate budget[J].Global Biogeochem Cycles,2007,21(1):GB1024.

    Google Scholar

    [27] Behrenfeld M J,Falkowski P G.Photosynthetic rates derived from satellite-based chlorophyll concentration[J].Limnol Oceanogr,1997,42(1):1-20.

    Google Scholar

    [28] Quay P D,Peacock C,Björkman K,et al.Measuring primary production rates in the ocean:Enigmatic results between incubation and non-incubation methodsat Station ALOHA[J].Global Biogeochem Cycles,2010,24(3):GB3014.

    Google Scholar

    [29] Lee K.Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon[J].Limnol Oceanogr,2001,46(6):1287-1297.

    Google Scholar

    [30] Ridgwell A,Arndt S.Why dissolved organics matter:DOC in Ancient Oceans and Past Climate Change[M]//Hansell D A,Carlson C A.Biogeochemistry of Marine Dissolved Organic Matter.2nd ed.New York:Academic Press,2015:1-20

    Google Scholar

    [31] Garcia H E,Weathers K W,Paver C R,et al.World Ocean Atlas 2018,Volume 4:Dissolved Inorganic Nutrients (Phosphate,Nitrate and Nitrate+Nitrite,Silicate).A.mishonov technical editor[R].NOAA Atlas NESDIS 84,Silver Spring:U.S.Department of Commerce,National Oceanic and Atmospheric Administration,2019:35.

    Google Scholar

    [32] Hansell D A,Carlson C A,Repeta D J,et al.Dissolved organic matter in the ocean:a controversy stimulates new insights[J].Oceanography,2009,22(4):202-211.

    Google Scholar

    [33] 焦念志,张传伦,李超,等.海洋微型生物碳泵储碳机制及气候效应[J].中国科学:地球科学,2013,43(1):1-18.

    Google Scholar

    [34] Jiao N Z,Zhang C L,Li C,et al.Controlling mechanisms and climate effects of microbial carbon pump in the ocean[J].Sci Sin Terr,2013,43(1):1-18.

    Google Scholar

    [34] 焦念志,汤凯,张瑶,等.海洋微型生物储碳过程与机制概论[J].微生物学通报,2013,40(1):71-86.

    Google Scholar

    [36] Jiao N Z,Tang K,Zhang Y,et al.Microbial processes and mechanisms in carbon sequestration in the ocean[J].Microbiol China,2013,40(1):71-86.

    Google Scholar

    [35] Jiao N Z,Cai R H,Zheng Q,et al.Unveiling the enigma of refractory carbon in the ocean[J].Natl Sci Rev,2018,5(4):459-463.

    Google Scholar

    [36] Koch B P,Dittmar T.From mass to structure:An aromaticity index for high-resolution mass data of natural organic matter[J].Ra-pid Commun Mass Spectrom,2006,20(5):926-932.

    Google Scholar

    [37] Medeiros P M,Seidel M,Powers L C,et al.Dissolved organic matter composition and photochemical transformations in the northern North Pacific Ocean[J].Geophys Res Lett,2015,42(3):863-870.

    Google Scholar

    [38] Legendre L,Rivkin R B,Weinbauer M G,et al.The microbial carbon pump concept:Potential biogeochemical significance in the globally changing ocean[J].Prog Oceanogr,2015,134:432-450.

    Google Scholar

    [39] Polimene L,Rivkin R B,Luo Y W,et al.Modelling marine DOC degradation time scales[J].Natl Sci Rev,2018,5(4):468-474.

    Google Scholar

    [40] Ruppel C D,Kessler J D.The interaction of climate change and methane hydrates[J].Rev Geophys,2017,55(1):126-168.

    Google Scholar

    [41] Reeburgh W S.Oceanic methane biogeochemistry[J].Chem Rev,2007,107(2):486-513.

    Google Scholar

    [42] Crémière A,Lepland A,Chand S,et al.Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet[J].Nat Commun,2016,7:11509.

    Google Scholar

    [43] Vielstädte L,Karstens J,Haeckel M,et al.Quantification of methane emissions at abandoned gas wells in the Central North Sea[J].Mar Pet Geol,2015,68:848-860.

    Google Scholar

    [44] Crespo-Medina M,Meile C D,Hunter K S,et al.The rise and fall of methanotrophy following a deepwater oil-well blow-out[J].Nat Geosci,2014,7(6):423-427.

    Google Scholar

    [45] Karl D M,Church M J,Dore J E,et al.Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation[J].Proc Natl Acad Sci USA,2012,109(6):1842-1849.

    Google Scholar

    [46] Arístegui J,Gasol J M,Duarte C M,et al.Microbial oceanography of the dark ocean’s pelagic realm[J].Limnol Oceanogr,2009,54(5):1501-1529.

    Google Scholar

    [47] Baltar F,Arístegui J,Gasol J M,et al.Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the subtropical North Atlantic[J].Limnol Oceanogr,2009,54(1):182-193.

    Google Scholar

    [48] Reinthaler T,Van Aken H M,Herndl G J.Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic's interior[J].Deep Sea Res Part II Top Stud Oceanogr,2010,57(16):1572-1580.

    Google Scholar

    [49] Herndl G J,Reinthaler T,Teira E,et al.Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean[J].Appl Environ Microbiol,2005,71(5):2303-2309.

    Google Scholar

    [50] Reinthaler T,Van Aken H,Veth C,et al.Prokaryotic respiration and production in the meso- and bathypelagic realm of the eastern and western North Atlantic basin[J].Limnol Oceanogr,2006,51(3):1262-1273.

    Google Scholar

    [51] Salazar G,Cornejo-Castillo F M,Benítez-Barrios V,et al.Glo-bal diversity and biogeography of deep-sea pelagic prokaryo-tes[J].ISME J,2016,10(3):596-608.

    Google Scholar

    [52] Sul W J,Oliver T A,Ducklow H W,et al.Marine bacteria exhibit a bipolar distribution[J].Proc Natl Acad Sci USA,2013,110(6):2342-2347.

    Google Scholar

    [53] Petro C,Starnawski P,Schramm A,et al.Microbial community assembly in marine sediments[J].Aquat Microb Ecol,2017,79(3):177-195.

    Google Scholar

    [54] Ducklow H W,Steinberg D K,Buesseler K O.Upper ocean carbon export and the biological pump[J].Oceanography,2001,14(4):50-58.

    Google Scholar

    [55] Nagata T.Organic Matter-bacteria Interactions in Seawater[M]//Kirchman D L.Microbial Ecology of the Oceans.2nd ed.Hoboken:John Wiley & Sons,2008:207-241.

    Google Scholar

    [56] Long R A,Azam F.Antagonistic interactions among marine pela-gic bacteria[J].Appl Environ Microbiol,2001,67(11):4975-4983.

    Google Scholar

    [57] Gram L,Grossart H P,Schlingloff A,et al.Possible quorum sensing in marine snow bacteria:Production of acylated homoserine lactones by Roseobacter strains isolated from marine snow[J].Appl Environ Microbiol,2002,68(8):4111-4116.

    Google Scholar

    [58] Simon M,Grossart H P,Schweitzer B,et al.Microbial ecology of organic aggregates in aquatic ecosystems[J].Aquat Microb Ecol,2002,28(2):175-211.

    Google Scholar

    [59] Smith D C,Simon M,Alldredge A L,et al.Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution[J].Nature,1992,359(6391):139-142.

    Google Scholar

    [60] Borch N H,Kirchman D L.Protection of protein from bacterial degradation by submicron particles[J].Aquat Microb Ecol,1999,16(3):265-272.

    Google Scholar

    [61] Keil R G,Kirchman D L.Utilization of dissolved protein and amino acids in the northern Sargasso Sea[J].Aquat Microb Ecol,1999,18(3):293-300.

    Google Scholar

    [62] Rahav E,Silverman J,Raveh O,et al.The deep water of Eastern Mediterranean Sea is a hotspot for bacterial activity[J].Deep Sea Res Part II Top Stud Oceanogr,2019,164:135-143.

    Google Scholar

    [63] Kawasaki N,Benner R.Bacterial release of dissolved organic matter during cell growth and decline:Molecular origin and composition[J].Limnol Oceanogr,2006,51(5):2170-2180.

    Google Scholar

    [64] Ogawa H,Amagai Y,Koike I,et al.Production of refractory dissolved organic matter by bacteria[J].Science,2001,292(5518):917-920.

    Google Scholar

    [65] Lomstein B A,Jørgensen B B,Schubert C J,et al.Amino acid biogeo- and stereochemistry in coastal Chilean sediments[J].Geochim Cosmochim Acta,2006,70(12):2970-2989.

    Google Scholar

    [66] Lechtenfeld O J,Hertkorn N,Shen Y,et al.Marine sequestration of carbon in bacterial metabolites[J].Nat Commun,2015,6:6711.

    Google Scholar

    [67] Hertkorn N,Harir M,Koch B P,et al.High-field NMR spectroscopy and FTICR mass spectrometry:Powerful discovery tools for the molecular level characterization of marine dissolved organic matter[J].Biogeosciences,2013,10(3):1583-1624.

    Google Scholar

    [68] Hertkorn N,Benner R,Frommberger M,et al.Characterization of a major refractory component of marine dissolved organic mat-ter[J].Geochim Cosmochim Acta,2006,70(12):2990-3010.

    Google Scholar

    [69] Arístegui J,Duarte C M,Agustí S,et al.Dissolved organic carbon support of respiration in the dark ocean[J].Science,2002,298(5600):1967.

    Google Scholar

    [70] Lauro F M,McDougald D,Thomas T,et al.The genomic basis of trophic strategy in marine bacteria[J].Proc Natl Acad Sci USA,2009,106(37):15527-15533.

    Google Scholar

    [71] Lauro F M,Bartlett D H.Prokaryotic lifestyles in deep sea habi-tats[J].Extremophiles,2008,12(1):15-25.

    Google Scholar

    [72] Yokokawa T,Yang Y H,Motegi C,et al.Large-scale geographical variation in prokaryotic abundance and production in meso- and bathypelagic zones of the central Pacific and Southern Ocean[J].Limnol Oceanogr,2013,58(1):61-73.

    Google Scholar

    [73] Herndl G J,Reinthaler T.Microbial control of the dark end of the biological pump[J].Nat Geosci,2013,6(9):718-724.

    Google Scholar

    [74] Wuchter C,Abbas B,Coolen M J L,et al.Archaeal nitrification in the ocean[J].Proc Natl Acad Sci USA,2006,103(33):12317-12322.

    Google Scholar

    [75] Anantharaman K,Breier J A,Sheik C S,et al.Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria[J].Proc Natl Acad Sci USA,2013,110(1):330-335.

    Google Scholar

    [76] Swan B K,Martinez-Garcia M,Preston C M,et al.Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean[J].Science,2011,333(6047):1296-1300.

    Google Scholar

    [77] Stahl D A,de la Torre J R.Physiology and diversity of ammonia-oxidizing archaea[J].Annu Rev Microbiol,2012,66(1):83-101.

    Google Scholar

    [78] Brochier-Armanet C,Boussau B,Gribaldo S,et al.Mesophilic crenarchaeota:Proposal for a third archaeal phylum,the Thaumarchaeota[J].Nat Rev Microbiol,2008,6(3):245-252.

    Google Scholar

    [79] Martens-Habbena W,Berube P M,Urakawa H,et al.Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria[J].Nature,2009,461(7266):976-979.

    Google Scholar

    [80] Nunoura T,Takaki Y,Hirai M,et al.Hadal biosphere:Insight into the microbial ecosystem in the deepest ocean on Earth[J].Proc Natl Acad Sci USA,2015,112(11):E1230-E1236.

    Google Scholar

    [81] Karner M B,DeLong E F,Karl D M.Archaeal dominance in the mesopelagic zone of the Pacific Ocean[J].Nature,2001,409(6819):507-510.

    Google Scholar

    [82] Nunoura T,Nishizawa M,Hirai M,et al.Microbial diversity in sediments from the bottom of the challenger deep,the mariana trench[J].Microbes Environ,2018,33(2):186-194.

    Google Scholar

    [83] Zhang Y,Qin W,Hou L,et al.Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean[J].Proc Natl Acad Sci USA,2020,117(9):4823-4830.

    Google Scholar

    [84] Sintes E,Bergauer K,De Corte D,et al.Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean[J].Environ Microbiol,2013,15(5):1647-1658.

    Google Scholar

    [85] Santoro A E,Saito M A,Goepfert T J,et al.Thaumarchaeal ecotype distributions across the equatorial Pacific Ocean and their potential roles in nitrification and sinking flux attenuation[J].Limnol Oceanogr,2017,62(5):1984-2003.

    Google Scholar

    [86] Santoro A E,Casciotti K L,Francis C A.Activity,abundance and diversity of nitrifying archaea and bacteria in the central California current[J].Environ Microbiol,2010,12(7):1989-2006.

    Google Scholar

    [87] Könneke M,Schubert D M,Brown P C,et al.Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation[J].Proc Natl Acad Sci USA,2014,111(22):8239-8244.

    Google Scholar

    [88] Wang Y,Huang J M,Cui G J,et al.Genomics insights into ecotype formation of ammonia-oxidizing archaea in the deep oc-ean[J].Environ Microbiol,2019,21(2):716-729.

    Google Scholar

    [89] Qin W,Amin S A,Martens-Habbena W,et al.Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation[J].Proc Natl Acad Sci USA,2014,111(34):12504-12509.

    Google Scholar

    [90] Offre P,Kerou M,Spang A,et al.Variability of the transporter gene complement in ammonia-oxidizing archaea[J].Trends Microbiol,2014,22(12):665-675.

    Google Scholar

    [91] Kim J G,Park S J,Sinninghe Damsté J S,et al.Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea[J].Proc Natl Acad Sci USA,2016,113(28):7888-7893.

    Google Scholar

    [92] Kuypers M M M,Blokker P,Erbacher J,et al.Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic ev-ent[J].Science,2001,293(5527):92-95.

    Google Scholar

    [93] Bhattarai S,Cassarini C,Lens P N L.Physiology and distribution of archaeal methanotrophs that couple anaerobic oxidation of methane with sulfate reduction[J].Microbiol Mol Biol Rev,2019,83(3):e00074-18.

    Google Scholar

    [94] Knittel K,Boetius A.Anaerobic oxidation of methane:Progress with an unknown process[J].Annu Rev Microbiol,2009,63:311-334.

    Google Scholar

    [95] Cui M M,Ma A Z,Qi H Y,et al.Anaerobic oxidation of methane:An "active" microbial process[J].Microbiologyopen,2015,4(1):1-11.

    Google Scholar

    [96] Scheller S,Goenrich M,Boecher R,et al.The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of meth-ane[J].Nature,2010,465(7298):606-608.

    Google Scholar

    [97] Wegener G,Krukenberg V,Riedel D,et al.Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria[J].Nature,2015,526(7574):587-590.

    Google Scholar

    [98] Mozhaev V V,Heremans K,Frank J,et al.High pressure effects on protein structure and function[J].Proteins,1996,24(1):81-91.

    Google Scholar

    [99] Balny C,Masson P,Heremans K.High pressure effects on biological macromolecules:From structural changes to alteration of cellular processes[J].Biochim Biophys Acta-Protein Struct Mol Enzymol,2002,1595(1/2):3-10.

    Google Scholar

    [100] Winter R.Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases,model biomembranes and proteins in solution at high pressure[J].Biochim Biophys Acta-Protein Struct Mol Enzymol,2002,1595(1/2):160-184.

    Google Scholar

    [101] Bartlett D H.Pressure effects on in vivo microbial processes[J].Biochim Biophys Acta-Protein Struct Mol Enzymol,2002,1595(1/2):367-381.

    Google Scholar

    [102] Xie Z,Jian H H,Jin Z,et al.Enhancing the adaptability of the deep-sea bacterium Shewanella piezotolerans WP3 to high pressure and low temperature by experimental evolution under H2O2 stress[J].Appl Environ Microbiol,2018,84(5):e02342-17.

    Google Scholar

    [103] Tahara E B,Navarete F D T,Kowaltowski A J.Tissue-,substrate-,and site-specific characteristics of mitochondrial reactive oxygen species generation[J].Free Radic Biol Med,2009,46(9):1283-1297.

    Google Scholar

    [104] Xiao X,Zhang Y.Life in extreme environments:Approaches to study life-environment co-evolutionary strategies[J].Sci China Earth Sci,2014,57(5):869-877.

    Google Scholar

    [105] Yang S S,Lv Y X,Liu X P,et al.Genomic and enzymatic evidence of acetogenesis by anaerobic methanotrophic archaea[J].Nat Commun,2020,11:3941.

    Google Scholar

    [106] Zhang Y,Henriet J P,Bursens J,et al.Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor[J].Bioresour Technol,2010,101(9):3132-3138.

    Google Scholar

    [107] Jiao N Z,Liu J H,Jiao F L,et al.Microbes mediated comprehensive carbon sequestration for negative emissions in the ocean[J].Natl Sci Rev,2020,7(12):1858-1860.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1349) PDF downloads(162) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint