2021 Vol. 8, No. 4
Article Contents

QIU Tian, ZENG Lingsen, SHEN Tingting. 2021. Progresses on carbon sequestration through carbonation of mafic-ultramafic rocks. Geological Survey of China, 8(4): 20-32. doi: 10.19388/j.zgdzdc.2021.04.03
Citation: QIU Tian, ZENG Lingsen, SHEN Tingting. 2021. Progresses on carbon sequestration through carbonation of mafic-ultramafic rocks. Geological Survey of China, 8(4): 20-32. doi: 10.19388/j.zgdzdc.2021.04.03

Progresses on carbon sequestration through carbonation of mafic-ultramafic rocks

More Information
  • Corresponding author: ZENG Lingsen  
  • Global warming caused by man-made CO2 emission has posed a great threat to the survival and the development of human beings. Carbon capture and storage (CCS) is regarded as a generally accepted technique for reducing CO2 emission worldwide. As one of geological carbon sinks, carbonation of mafic-ultramafic rocks is an economic, safe and permanent method to capture and store atmospheric CO2, which has attracted increasing attention from the international community in recent years. The authors have described the carbonation process of mafic-ultramafic rocks under natural conditions, and illustrated the carbon sequestration mechanism and the major factors affecting the rate of carbonation of mafic-ultramafic rocks. Besides, the international research progresses and typical application projects of carbon sequestration through mafic-ultramafic rocks were summarized, and the wide spread of carbonation of mafic-ultramafic rocks around the world was considered to be high potential of carbon sequestration. The promotion and application of this technique has great significance to the reduction of atmospheric CO2 in the near future.
  • 加载中
  • [1] IPCC.Climate change:synthesis report[M]//Core Writing Team,Pachauri R K,Meyer L A.Contribution of Working Groups I,II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Geneva,Switzerland:IPCC,2014.

    Google Scholar

    [2] Blunden J,Arndt D S.State of the climate in 2018[J].Bull Am Meteor Soc,2019,100(9):S1-S306.

    Google Scholar

    [3] United Nations Framework Convention on Climate Change.Report of the conference of the Parties on its twenty-first session[R]. Paris:UNFCCC,2016.

    Google Scholar

    [4] Intergovernmental panel on climate change.Global Warming of 1.5 ℃[R].IPCC,2018.

    Google Scholar

    [5] International Energy Agency.World energy outlook 2017[R].IEA,2017.

    Google Scholar

    [6] Mani D,Charan S N,Kumar B.Assessment of carbon dioxide sequestration potential of ultramafic rocks in the greenstone belts of Southern India[J].Curr Sci,2008,94(1):53-60.

    Google Scholar

    [7] Metz B,Davidson O,de Coninck H,et al.IPCC special report on carbon dioxide capture and storage[R].Cambridge:Cambridge University Press,2005:195-276.

    Google Scholar

    [8] Suekane T,Nobuso T,Hirai S,et al.Geological storage of carbon dioxide by residual gas and solubility trapping[J].Int J Greenh Gas Control,2008,2(1):58-64.

    Google Scholar

    [9] Gentzis T.Subsurface sequestration of carbon dioxide——An overview from an Alberta (Canada) perspective[J].Int J Coal Geol,2000,43(1-4):287-305.

    Google Scholar

    [10] 李小春,刘延锋,白冰,等.中国深部咸水含水层CO2储存优先区域选择[J].岩石力学与工程学报,2006,25(5):963-968.

    Google Scholar

    [11] Li X C,Liu Y F,Bai B,et al.Ranking and screening of CO2 saline aquifer storage zones in China[J].Chin J Rock Mech Eng,2006,25(5):963-968.

    Google Scholar

    [11] 张炜,李义连,郑艳,等.二氧化碳地质封存中的储存容量评估:问题和研究进展[J].地球科学进展,2008,23(10):1061-1069.

    Google Scholar

    [13] Zhang W,Li Y L,Zheng Y,et al.CO2 storage capacity estimation in geological sequestration:Issus and research progress[J].Adv Earth Sci,2008,23(10):1061-1069.

    Google Scholar

    [12] Bachu S,Adams J J.Sequestration of CO2 in geological media in response to climate change:Capacity of deep saline aquifers to sequester CO2 in solution[J].Energy Convers Manage,2003,44(20):3151-3175.

    Google Scholar

    [13] Snæbjörnsdóttir S Ó,Sigfússon B,Marieni C,et al.Carbon dioxide storage through mineral carbonation[J].Nat Rev Earth Environ,2020,1(2):90-102.

    Google Scholar

    [14] Seifritz W.CO2 disposal by means of silicates[J].Nature,1990,345(6275):486.

    Google Scholar

    [15] Lackner K S,Wendt C H,Butt D P,et al.Carbon dioxide disposal in carbonate minerals[J].Energy,1995,20(11):1153-1170.

    Google Scholar

    [16] 盛雪芬,季峻峰,陈骏.中国超基性岩封存CO2的潜力研究[J].第四纪研究,2011,31(3):447-454.

    Google Scholar

    [19] Sheng X F,Ji J F,Chen J.Assessment of carbon dioxide sequestration potential of ultramafic rocks in China[J].Quat Sci,2011,31(3):447-454.

    Google Scholar

    [17] Matter J M,Kelemen P B.Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation[J].Nat Geosci,2009,2(12):837-841.

    Google Scholar

    [18] Kelemen P B,Matter J M,Streit E E,et al.Rates and mechanisms of mineral carbonation in peridotite:Natural processes and recipes for enhanced,in situ CO2 capture and storage[J].Annu Rev Earth Planet Sci,2011,39:545-576.

    Google Scholar

    [19] Ellis A J.The solubility of calcite in carbon dioxide solutions[J].Am J Sci,1959,257(5):354-365.

    Google Scholar

    [20] Ellis A J.The solubility of calcite in sodium chloride solutions at high temperatures[J].Am J Sci,1963,261(3):259-267.

    Google Scholar

    [21] Saldi G D,Jordan G,Schott J,et al.Magnesite growth rates as a function of temperature and saturation state[J].Geochim Cosmochim Acta,2009,73(19):5646-5657.

    Google Scholar

    [22] Johnson N C,Thomas B,Maher K,et al.Olivine dissolution and carbonation under conditions relevant for in situ carbon stora-ge[J].Chem Geol,2014,373:93-105.

    Google Scholar

    [23] Gadikota G,Matter J,Kelemen P,et al.Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO3[J].Phys Chem Chem Phys,2014,16(10):4679-4693.

    Google Scholar

    [24] Turvey C C,Wilson S A,Hamilton J L,et al.Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine,New South Wales,Australia:controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings[J].Int J Greenh Gas Control,2018,79:38-60.

    Google Scholar

    [25] Gras A,Beaudoin G,Molson J,et al.Atmospheric carbon sequestration in ultramafic mining residues and impacts on leachate water chemistry at the Dumont Nickel Project,Quebec,Canada[J].Chem Geol,2020,546:119661.

    Google Scholar

    [26] Gaillardet J,Dupré B,Louvat P,et al.Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J].Chem Geol,1999,159(1-4):3-30.

    Google Scholar

    [27] Berner R A,Kothavala Z.Geocarb III:a revised model of atmospheric CO2 over phanerozoic time[J].Am J Sci,2001,301(2):182-204.doi:10.2475/ajs.301.2.182.

    Google Scholar

    [28] Oelkers E H,Gislason S R,Matter J.Mineral carbonation of CO2[J].Elements,2008,4(5):333-337.

    Google Scholar

    [29] Gadikota G.Carbon mineralization pathways for carbon capture,storage and utilization[J].Commun Chem,2021,4(1):23.

    Google Scholar

    [30] White A F.Natural weathering rates of silicate minerals[J].Treatise Geochem,2003,5:133-168.

    Google Scholar

    [31] Kelemen P B,Matter J M.In situ carbonation of peridotite for CO2 storage[J].Proc Natl Acad Sci USA,2008,105(45):17295-17300.

    Google Scholar

    [32] Macdonald F A,Swanson-Hysell N L,Park Y,et al.Arc-continent collisions in the tropics set Earth’s climate state[J].Science,2019,364(6436):181-184.

    Google Scholar

    [33] 吴卫华,郑洪波,杨杰东,等.硅酸盐风化与全球碳循环研究回顾及新进展[J].高校地质学报,2012,18(2):215-224.

    Google Scholar

    [37] Wu W H,Zheng H B,Yang J D,et al.Review and advancements of studies on silicate weathering and the global carbon cycle[J].Geol J China Univ,2012,18(2):215-224.

    Google Scholar

    [34] Kappel E S,Ryan W B F.Volcanic episodicity and a non-steady state rift valley along northeast Pacific spreading centers:evidence from Sea MARC I[J].J Geophys Res:Solid Earth,1986,91(B14):13925-13940.

    Google Scholar

    [35] Karson J A.Geologic structure of the uppermost oceanic crust created at fast-to intermediate-rate spreading centers[J].Annu Rev Earth Planet Sci,2002,30:347-384.

    Google Scholar

    [36] Alt J C,Teagle D A H.The uptake of carbon during alteration of ocean crust[J].Geochim Cosmochim Acta,1999,63(10):1527-1535.

    Google Scholar

    [37] Coogan L A,Parrish R R,Roberts N M W.Early hydrothermal carbon uptake by the upper oceanic crust:insight from in situ U-Pb dating[J].Geology,2016,44(2):147-150.

    Google Scholar

    [38] Wiese F,Fridriksson T,Ármannsson H.CO2 fixation by calcite in high-temperature geothermal systems in Iceland.ÍSOR report-2008/003[R].Iceland:Iceland Geosurvey,2008:1-68.

    Google Scholar

    [39] Snæbjörnsdóttir S Ó,Wiese F,Fridriksson T,et al.CO2 storage potential of basaltic rocks in Iceland and the oceanic ridges[J].Energy Procedia,2014,63:4585-4600.

    Google Scholar

    [40] O’Hanley D S.Serpentinites:recorders of tectonic and petrological history[M].New York:Oxford University Press,1996:1-277.

    Google Scholar

    [41] Kerrick D M,Connolly A D.Subduction of ophicarbonates and recycling of CO2 and H2O[J].Geology,1998,26(4):375-378.

    Google Scholar

    [42] Falk E S,Kelemen P B.Geochemistry and petrology of listvenite in the Samail ophiolite,Sultanate of Oman:Complete carbonation of peridotite during ophiolite emplacement[J].Geochim Cosmochim Acta,2015,160:70-90.

    Google Scholar

    [43] Kelemen P B,Manning C E.Reevaluating carbon fluxes in subduction zones,what goes down,mostly comes up[J].Proc Natl Acad Sci USA,2015,112(30):E3997-E4006.

    Google Scholar

    [44] Beinlich A,Plümper O,Müller I A,et al.Ultramafic rock carbonation: constraints from listvenite core BT1B,Oman drilling pro-ject[J].J Geophys Res:Solid Earth,2020,125(6):e2019JB019060.

    Google Scholar

    [45] Menzel M D,Urai J L,de Obeso J C,et al.Brittle deformation of carbonated peridotite:insights from listvenites of the Samail ophiolite (Oman drilling project hole BT1B)[J].J Geophys Res:Solid Earth,2020,125(10):e2020JB020199.

    Google Scholar

    [46] Hansen L D.Geological setting of listwanite,Atlin,BC:implications for carbon diozide sequestration and lode-gold mineraliza-tion[M].Vancouver:University of British Columbia,2005.

    Google Scholar

    [47] Zhang L,Yang J S,Robinson P T,et al.Origin of listwanite in the luobusa ophiolite,Xizang:implications for chromite stability in hydrothermal systems[J].Acta Geol Sin (Engl Ed),2015,89(2):402-417.

    Google Scholar

    [48] Qiu T,Zhu Y F.Chromian spinels in highly altered ultramafic rocks from the Sartohay ophiolitic mélange,Xinjiang,NW Chi-na[J].J Asian Earth Sci,2018,159:155-184.

    Google Scholar

    [49] Halls C,Zhao R.Listvenite and related rocks:perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun,Co.Mayo,Republic of Ireland[J].Miner Depos,1995,30(3-4):303-313.

    Google Scholar

    [50] Uçurum A.Listwaenites in Turkey:perspectives on formation and precious metal concentration with reference to occurrences in east-central Anatolia[J].Ofioliti,2000,25(1):15-29.

    Google Scholar

    [51] Qiu T,Zhu Y F.Listwaenite in the Sartohay ophiolitic mélange (Xinjiang,China):A genetic model based on petrology,U-Pb chronology and trace element geochemistry[J].Lithos,2018,302-303:427-446.

    Google Scholar

    [52] Nicolas A,Boudier E,Ildefonse B,et al.Accretion of Oman and united Arab emirates ophiolite-discussion of a new structural map[J].Mar Geophys Res,2000,21(3-4):147-180.

    Google Scholar

    [53] 邱添,朱永峰.新疆萨尔托海糜棱岩化石英菱镁岩元素地球化学特征及其对金成矿作用的贡献[J].岩石学报,2017,33(12):3829-3841.

    Google Scholar

    [58] Qiu T,Zhu Y F.Element geochemical characteristics of mylonitized listwaenite and its contribution to gold mineralization in Sartohay,Xinjiang[J].Acta Petrol Sin,2017,33(12):3829-3841.

    Google Scholar

    [54] Oelkers E H.An experimental study of forsterite dissolution rates as a function of temperature and aqueous Mg and Si concentra-tions[J].Chem Geol,2001,175(3-4):485-494.

    Google Scholar

    [55] Oelkers E H,Gislason S R.The mechanism,rates and consequences of basaltic glass dissolution:I.An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al,Si and oxalic acid concentration at 25℃ and pH=3 and 11[J].Geochim Cosmochim Acta,2001,65(21):3671-3681.

    Google Scholar

    [56] Rimstidt J D,Brantley S L,Olsen A A.Systematic review of forsterite dissolution rate data[J].Geochim Cosmochim Acta,2012,99:159-178.

    Google Scholar

    [57] Gudbrandsson S,Wolff-Boenisch D,Gislason S R,et al.Experimental determination of plagioclase dissolution rates as a function of its composition and pH at 22℃[J].Geochim Cosmochim Acta,2014,139:154-172.

    Google Scholar

    [58] Andreani M,Luquot L,Gouze P,et al.Experimental study of carbon sequestration reactions controlled by the percolation of CO2-rich brine through peridotites[J].Environ Sci Technol,2009,43(4):1226-1231.

    Google Scholar

    [59] Kelemen P B,Hirth G.Reaction-driven cracking during retrograde metamorphism:Olivine hydration and carbonation[J].Earth Planet Sci Lett,2012,345-348:81-89.

    Google Scholar

    [60] Godard M,Luquot L,Andreani M,et al.Incipient hydration of mantle lithosphere at ridges:A reactive-percolation experi-ment[J].Earth Planet Sci Lett,2013,371-372:92-102.

    Google Scholar

    [61] Farough A,Moore D E,Lockner D A,et al.Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions:An experimental study[J].Geochem,Geophys,Geosyst,2016,17(1):44-55.

    Google Scholar

    [62] Oelkers E H,Declercq J,Saldi G D,et al.Olivine dissolution rates:A critical review[J].Chem Geol,2018,500:1-19.

    Google Scholar

    [63] van Noort R,Wolterbeek T K T,Drury M R,et al.The force of crystallization and fracture propagation during in-situ carbonation of peridotite[J].Minerals,2017,7(10):190.

    Google Scholar

    [64] Crawshaw J P,Boek E.Reviews in mineralogy and geochemis-try[M]//DePaolo D J,Cole D R,Navrotsky A,et al.Geochemistry of Geologic CO2 Sequestration. Chantilly,Virginia:Mineralogical Society of America and the Geochemical Society,2013:305-360.

    Google Scholar

    [65] Sanna A,Uibu M,Caramanna G,et al.A review of mineral carbonation technologies to sequester CO2[J].Chem Soc Rev,2014,43(23):8049-8080.

    Google Scholar

    [66] Wilson S A,Dipple G M,Power I M,et al.Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits:examples from the Clinton Creek and Cassiar chrysotile deposits,Cana-da[J].Econ Geol,2009,104(1):95-112.

    Google Scholar

    [67] Harrison A L,Power I M,Dipple G M.Accelerated carbonation of brucite in mine tailings for carbon sequestration[J].Environ Sci Technol,2012,47(1):126-134.

    Google Scholar

    [68] Mervine E M,Wilson S A,Power I M,et al.Potential for offsetting diamond mine carbon emissions through mineral carbonation of processed kimberlite:an assessment of De Beers mine sites in South Africa and Canada[J].Mineral Petrol,2018,112(2):755-765.

    Google Scholar

    [69] Oskierski H C,Dlugogorski B Z,Jacobsen G.Sequestration of atmospheric CO2 in chrysotile mine tailings of the Woodsreef Asbestos Mine,Australia:quantitative mineralogy,isotopic fingerprinting and carbonation rates[J].Chem Geol,2013,358:156-169.

    Google Scholar

    [70] Wilson S A,Harrison A L,Dipple G M,et al.Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine,Western Australia:Rates,controls and prospects for carbon neutral mining[J].Int J Greenh Gas Control,2014,25:121-140.

    Google Scholar

    [71] Gras A,Beaudoin G,Molson J,et al.Isotopic evidence of passive mineral carbonation in mine wastes from the Dumont Nickel Project (Abitibi,Quebec)[J].Int J Greenh Gas Control,2017,60:10-23.

    Google Scholar

    [72] Turvey C C,Wilson S A,Hamilton J L,et al.Field-based accounting of CO2 sequestration in ultramafic mine wastes using portable X-ray diffraction[J].Am Mineral,2017,102(6):1302-1310.

    Google Scholar

    [73] Matter J M,Stute M,Snæbjörnsdóttir S Ó,et al.Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions[J].Science,2016,352(6291):1312-1314.

    Google Scholar

    [74] Von Strandmann P A E P,Burton K W,Snæbjörnsdóttir S Ó,et al.Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes[J].Nat Commun,2019,10(1):1983.

    Google Scholar

    [75] Gunnarsson I,Aradóttir E S,Oelkers E H,et al.The rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur at the CarbFix2 site[J].Int J Greenh Gas Control,2018,79:117-126.

    Google Scholar

    [76] Sigfússon B,Arnarson M P,Snæbjörnsdóttir S Ó,et al.Reducing emissions of carbon dioxide and hydrogen sulphide at Hellisheidi power plant in 2014-2017 and the role of CarbFix in achieving the 2040 Iceland climate goals[J].Energy Procedia,2018,146:135-145.

    Google Scholar

    [77] Clark D E,Gunnarsson I,Aradóttir E S,et al.The chemistry and potential reactivity of the CO2-H2S charged injected waters at the basaltic CarbFix2 site,Iceland[J].Energy Procedia,2018,146:121-128.

    Google Scholar

    [78] McGrail B P,Spane F A,Amonette J E,et al.Injection and monitoring at the Wallula basalt pilot project[J].Energy Procedia,2014,63:2939-2948.

    Google Scholar

    [79] McGrail B P,Schaef H T,Spane F A,et al.Wallula Basalt Pilot demonstration project:post-injection results and conclusions[J].Energy Procedia,2017,114:5783-5790.

    Google Scholar

    [80] Snæbjörnsdóttir S Ó,Oelkers E H,Mesfin K,et al.The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland[J].Int J Greenh Gas Control,2017,58:87-102.

    Google Scholar

    [81] Goldberg D S,Lackner K S,Han P,et al.Co-location of air capture,subseafloor CO2 sequestration,and energy production on the Kerguelen plateau[J].Environ Sci Technol,2013,47(13):7521-7529.

    Google Scholar

    [82] Goldberg D,Lackner K.Creating negative emissions at remote CO2 sequestration sites[J].Greenh Gases:Sci Technol,2015,5(3):238-240.

    Google Scholar

    [83] Gutknecht V,Snæbjörnsdóttir S Ó,Sigfússon B,et al.Creating a carbon dioxide removal solution by combining rapid mineralization of CO2 with direct air capture[J].Energy Procedia,2018,146:129-134.

    Google Scholar

    [84] Goldberg D,Aston L,Bonneville A,et al.Geological storage of CO2 in sub-seafloor basalt:the CarbonSAFE pre-feasibility study offshore Washington State and British Columbia[J].Energy Procedia,2018,146:158-165.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1564) PDF downloads(192) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint