2025 Vol. 46, No. 2
Article Contents

XU Dengcai, ZHANG Taili, HEI Lisha, WANG Yiming. 2025. Study on rainfall threshold of geological disasters based on effective rainfall model in Wenzhou City. East China Geology, 46(2): 252-267. doi: 10.16788/j.hddz.32-1865/P.2025.02.012
Citation: XU Dengcai, ZHANG Taili, HEI Lisha, WANG Yiming. 2025. Study on rainfall threshold of geological disasters based on effective rainfall model in Wenzhou City. East China Geology, 46(2): 252-267. doi: 10.16788/j.hddz.32-1865/P.2025.02.012

Study on rainfall threshold of geological disasters based on effective rainfall model in Wenzhou City

More Information
  • Wenzhou is located in the coastal area of southeast China, where frequent occurrences of extreme rainfall have resulted in a high incidence of geological disasters over the years. This study collects the historical geological disasters and rainfall data of Wenzhou (a total of 2692 geological disaster samples, of which 2 615 are accurately dated to the month, spanning from 1905 to 2023) to analyze the development, spatio-temporal distribution patterns of geological disasters, and their relationship with rainfall. Based on the effective rainfall model, we statistically analyzed the rainfall thresholds of different types of geological disasters in Wenzhou. The results show that the geological disasters in Wenzhou are mainly classified into two categories: the cluster disasters triggered by typhoon-rainstorm and the single-point sudden disasters. Among them, the cluster disasters triggered by typhoon-rainstorm is closely related to typhoon rainstorm activities, and strongly correlated with rainfall extreme, while the single-point sudden geological disasters has less correlation with heavy rainfall. The statistical analysis derives the intensity–duration (I-D) curves of rainfall thresholds at various probabilities for cluster landslide and debris flow disasters triggered by typhoon-rainstorm in Wenzhou. Additionally, it recommends rainfall-threshold values for different types of geological disasters in Wenzhou. This study provides theoretical support and scientific evidence for early warning of geological disasters in Wenzhou, which has significant practical importance and application value.

  • 加载中
  • [1] ALVIOLI M, GUZZETTI F, ROSSI M. 2014. Scaling properties of rainfall induced landslides predicted by a physically based model[J]. Geomorphology,213:38-47. doi: 10.1016/j.geomorph.2013.12.039

    CrossRef Google Scholar

    [2] BAO Q Y, MA T H, LI C J, WANG B X. 2016. Rainfall intensity-duration thresholds for the initiation of landslides in 62 hilly and mountainous counties of Zhejiang Province[J]. Bulletin of Science and Technology,32(5):48-55,95 (in Chinese with English abstract).

    Google Scholar

    [3] BORDONI M, CORRADINI B, LUCCHELLI L, VALENTINO R, BITTELLI M, VIVALDI V, MEISINA C. 2019. Empirical and physically based thresholds for the occurrence of shallow landslides in a prone area of Northern Italian Apennines[J]. Water,11(12):2653. doi: 10.3390/w11122653

    CrossRef Google Scholar

    [4] CAINE N. 1980. The rainfall intensity: duration control of shallow landslides and debris flows[J]. Geografiska Annaler. Series A, Physical Geography, 62(1-2): 23-27.

    Google Scholar

    [5] CAMPBELL R H. 1975. Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, southern California[M]. Washington: US Government Printing Office.

    Google Scholar

    [6] ENDO T. 1969. Probable distribution of the amount of rainfall causing landslides[R]. Sapporo: Annual Report of the Hokkaido Branch, Government Forest Experiment Station, 122-136.

    Google Scholar

    [7] FUSCO F, DE VITA P, MIRUS B B, BAUM R L, ALLOCCA V, TUFANO R, DI CLEMENTE E, CALCATERRA D. 2019. Physically based estimation of rainfall thresholds triggering shallow landslides in volcanic slopes of Southern Italy[J]. Water,11(9):1915. doi: 10.3390/w11091915

    CrossRef Google Scholar

    [8] GIANNECCHINI R, GALANTI Y, AVANZI G D A, BARSANTI M. 2016. Probabilistic rainfall thresholds for triggering debris flows in a human-modified landscape[J]. Geomorphology,257:94-107. doi: 10.1016/j.geomorph.2015.12.012

    CrossRef Google Scholar

    [9] GONG X F. 2004. The current situation, characteristics and causes of debris flows in the northern mountainous area of Yueqing City[J]. Zhejiang Land & Resources,(10):38-42 (in Chinese).

    Google Scholar

    [10] GUO X J, CUI P, LI Y, MA L, GE Y G, MAHONEY W B. 2016. Intensity–duration threshold of rainfall-triggered debris flows in the Wenchuan earthquake affected area, China[J]. Geomorphology,253:208-216. doi: 10.1016/j.geomorph.2015.10.009

    CrossRef Google Scholar

    [11] GUZZETTI F, PERUCCACCI S, ROSSI M, STARK C P. 2008. The rainfall intensity–duration control of shallow landslides and debris flows: an update[J]. Landslides,5(1):3-17. doi: 10.1007/s10346-007-0112-1

    CrossRef Google Scholar

    [12] HAN S, HUI S J, SUN Q, ZHANG S, SHI L, ZHANG Y, ZHU Q W. 2023. Research on ecological restoration technology of high-steep slopes of abandoned mines based on geological safety evaluation[J]. East China Geology,44(2):216-227 (in Chinese with English abstract).

    Google Scholar

    [13] MA T H, LI C J, SUN L L, LI W, HE C F. 2011. Rainfall intensity-duration thresholds for landslides in Zhejiang region, China[J]. The Chinese Journal of Geological Hazard and Control,22(2):20-25 (in Chinese with English abstract).

    Google Scholar

    [14] MARIN R J, GARCÍA E F, ARISTIZÁBAL E. 2020. Effect of basin morphometric parameters on physically-based rainfall thresholds for shallow landslides[J]. Engineering Geology,278:105855. doi: 10.1016/j.enggeo.2020.105855

    CrossRef Google Scholar

    [15] MARIN R J, VELÁSQUEZ M F. 2020. Influence of hydraulic properties on physically modelling slope stability and the definition of rainfall thresholds for shallow landslides[J]. Geomorphology,351:106976. doi: 10.1016/j.geomorph.2019.106976

    CrossRef Google Scholar

    [16] MARINO P, PERES D J, CANCELLIERE A, GRECO R, BOGAARD T A. 2020. Soil moisture information can improve shallow landslide forecasting using the hydrometeorological threshold approach[J]. Landslides,17(9):2041-2054. doi: 10.1007/s10346-020-01420-8

    CrossRef Google Scholar

    [17] NAPOLITANO E, FUSCO F, BAUM R L, GODT J W, DE VITA P. 2016. Effect of antecedent-hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (southern Italy)[J]. Landslides,13(5):967-983. doi: 10.1007/s10346-015-0647-5

    CrossRef Google Scholar

    [18] ONODERA T, YOSHINAKA R, KAZAMA H. 1974. Slope failures caused by heavy rainfall in Japan[J]. Journal of the Japan Society of Engineering Geology,15(4):191-200. doi: 10.5110/jjseg.15.191

    CrossRef Google Scholar

    [19] PAPA M N, MEDINA V, CIERVO F, BATEMAN A. 2013. Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems[J]. Hydrology and Earth System Sciences,17(10):4095-4107. doi: 10.5194/hess-17-4095-2013

    CrossRef Google Scholar

    [20] SENOO K, HARAGUCHI K, KIKUI T, YOSHIDA S. 2001. On the theme and improvement of standard rainfall for warning and evacuation from sediment disasters[J]. Journal of the Japan Society of Erosion Control Engineering, 53(6): 37-44 (in Japanese with English abstract).

    Google Scholar

    [21] SUN L Y, ZHANG H H, QIU C J, YANG Z B, ZHANG C X, ZHANG B, ZHANG T L. 2024. Temporal variability of influence factors weights and rainfall thresholds of geological hazards in Ningbo City[J]. East China Geology,45(2):218-227 (in Chinese with English abstract).

    Google Scholar

    [22] SUN Q, ZHANG T L, WU J B, WANG H S, ZHU Y H, HAN S. 2021. Application of shallow landslide stability model to landslide prediction in the Linxi River basin of southern Zhejiang[J]. East China Geology,42(4):383-389 (in Chinese with English abstract).

    Google Scholar

    [23] TAN W P. 1989. Distribution characters of critical rainfall line for the debris flow gully[J]. Bulletin of Soil and Water Conservation,9(6):21-26 (in Chinese with English abstract).

    Google Scholar

    [24] TANG R J, XU G L, TANG Z Q. 2019. Study on critical rainfall of grouped slope debris flows in Wenzhou[J]. The Chinese Journal of Geological Hazard and Control,30(3):60-66 (in Chinese with English abstract).

    Google Scholar

    [25] WANG Y M, YUAN M H, YIN K L, GONG X F. 2011. Analysis on the critical rainfall for the outbreak of debris flow in Southeast mountain area of Zhejiang Province[J]. The Chinese Journal of Geological Hazard and Control,22(3):21-26 (in Chinese with English abstract).

    Google Scholar

    [26] WANG H S, WU J B, ZHANG T L, SUN Q, LI Y.2020. Dynamic assesment of geohazard susceptibility based on the SHALSTAB model[J]. East China Geology, 41(1): 88-95(in Chinese with English Abstract).

    Google Scholar

    [27] WU Y M, LAN H X, GAO X, LI L P, YANG Z H. 2015. A simplified physically based coupled rainfall threshold model for triggering landslides[J]. Engineering Geology,195:63-69. doi: 10.1016/j.enggeo.2015.05.022

    CrossRef Google Scholar

    [28] WU J B, WANG H S, ZHANG T L, SUN Q, ZHU Y H. 2021. Analysis and prediction of the groundwater dynamics of landslide induced by typhoon rainstorm[J]. East China Geology,42(4):390-397 (in Chinese with English abstract).

    Google Scholar

    [29] YUAN L X, CUI X, WANG Z P, LI Y S. 2009. Cause mechanism of Xianrentan debris flow in Yueqing City, Zhejiang Province[J]. Journal of Natural Disasters,18(2):150-154 (in Chinese with English abstract).

    Google Scholar

    [30] ZHANG G R, CHEN L X, DONG Z X. 2011. Real-time warning system of regional landslides supported by WEBGIS and its application in Zhejiang Province, China[J]. Procedia Earth and Planetary Science,2:247-254. doi: 10.1016/j.proeps.2011.09.040

    CrossRef Google Scholar

    [31] 鲍其云, 麻土华, 李长江, 王保欣. 2016. 浙江62个丘陵山区县引发滑坡的降雨强度——历时阈值[J]. 科技通报,32(5):48-55,95. doi: 10.3969/j.issn.1001-7119.2016.05.010

    CrossRef Google Scholar

    [32] 龚新法. 2004. 乐清市北部山区泥石流现状特征及成因[J]. 浙江国土资源,(10):38-42. doi: 10.3969/j.issn.1672-6960.2004.10.015

    CrossRef Google Scholar

    [33] 韩帅, 惠淑君, 孙强, 张帅, 时磊, 张颖, 朱庆伟. 2023. 基于地质安全评价的废弃矿山高陡边坡生态修复技术研究[J]. 华东地质,44(2):216-227.

    Google Scholar

    [34] 瀬尾克美, 原口勝則, 菊井稔宏, 吉田真也. 2001. 在滑坡和疏散下的标准降雨的问题和改进[J]. 砂防学会誌,53(6):37-44.

    Google Scholar

    [35] 麻土华, 李长江, 孙乐玲, 李炜, 何彩芬. 2011. 浙江地区引发滑坡的降雨强度-历时关系[J]. 中国地质灾害与防治学报,22(2):20-25. doi: 10.3969/j.issn.1003-8035.2011.02.004

    CrossRef Google Scholar

    [36] 孙丽影, 张弘怀, 邱昌骏, 杨珍斌, 张长响, 张斌, 张泰丽. 2024. 宁波地质灾害影响因子权重的时变性与雨量阈值研究[J]. 华东地质,45(2):218-227.

    Google Scholar

    [37] 孙强, 张泰丽, 伍剑波, 王赫生, 朱延辉, 韩帅. 2021. SHALSTAB模型在浙南林溪流域滑坡预测中的应用[J]. 华东地质,42(4):383-389.

    Google Scholar

    [38] 谭万沛. 1989. 泥石流沟的临界雨量线分布特征[J]. 水土保持通报,9(6):21-26.

    Google Scholar

    [39] 汤人杰, 徐光黎, 汤忠强. 2019. 温州群发性坡面泥石流临界雨量研究[J]. 中国地质灾害与防治学报,30(3):60-66.

    Google Scholar

    [40] 王一鸣, 袁民豪, 殷坤龙, 龚新法. 2011. 浙东南山丘区泥石流爆发的临界雨量分析[J]. 中国地质灾害与防治学报,22(3):21-26. doi: 10.3969/j.issn.1003-8035.2011.03.005

    CrossRef Google Scholar

    [41] 王赫生, 伍剑波, 张泰丽, 孙 强, 李 燕.2020. 基于SHALSTAB模型的地质灾害易发性动态评价[J]. 华东地质, 41(1): 88-95.

    Google Scholar

    [42] 伍剑波, 王赫生, 张泰丽, 孙强, 朱延辉. 2021. 台风暴雨型滑坡地下水位动态特征及预测[J]. 华东地质,42(4):390-397.

    Google Scholar

    [43] 袁丽侠, 崔星, 王州平, 李永生. 2009. 浙江乐清仙人坦泥石流的形成机制[J]. 自然灾害学报,18(2):150-154. doi: 10.3969/j.issn.1004-4574.2009.02.024

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(18)

Tables(8)

Article Metrics

Article views(376) PDF downloads(42) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint