Citation: | XU Dengcai, ZHANG Taili, HEI Lisha, WANG Yiming. 2025. Study on rainfall threshold of geological disasters based on effective rainfall model in Wenzhou City. East China Geology, 46(2): 252-267. doi: 10.16788/j.hddz.32-1865/P.2025.02.012 |
Wenzhou is located in the coastal area of southeast China, where frequent occurrences of extreme rainfall have resulted in a high incidence of geological disasters over the years. This study collects the historical geological disasters and rainfall data of Wenzhou (a total of
[1] | ALVIOLI M, GUZZETTI F, ROSSI M. 2014. Scaling properties of rainfall induced landslides predicted by a physically based model[J]. Geomorphology,213:38-47. doi: 10.1016/j.geomorph.2013.12.039 |
[2] | BAO Q Y, MA T H, LI C J, WANG B X. 2016. Rainfall intensity-duration thresholds for the initiation of landslides in 62 hilly and mountainous counties of Zhejiang Province[J]. Bulletin of Science and Technology,32(5):48-55,95 (in Chinese with English abstract). |
[3] | BORDONI M, CORRADINI B, LUCCHELLI L, VALENTINO R, BITTELLI M, VIVALDI V, MEISINA C. 2019. Empirical and physically based thresholds for the occurrence of shallow landslides in a prone area of Northern Italian Apennines[J]. Water,11(12):2653. doi: 10.3390/w11122653 |
[4] | CAINE N. 1980. The rainfall intensity: duration control of shallow landslides and debris flows[J]. Geografiska Annaler. Series A, Physical Geography, 62(1-2): 23-27. |
[5] | CAMPBELL R H. 1975. Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, southern California[M]. Washington: US Government Printing Office. |
[6] | ENDO T. 1969. Probable distribution of the amount of rainfall causing landslides[R]. Sapporo: Annual Report of the Hokkaido Branch, Government Forest Experiment Station, 122-136. |
[7] | FUSCO F, DE VITA P, MIRUS B B, BAUM R L, ALLOCCA V, TUFANO R, DI CLEMENTE E, CALCATERRA D. 2019. Physically based estimation of rainfall thresholds triggering shallow landslides in volcanic slopes of Southern Italy[J]. Water,11(9):1915. doi: 10.3390/w11091915 |
[8] | GIANNECCHINI R, GALANTI Y, AVANZI G D A, BARSANTI M. 2016. Probabilistic rainfall thresholds for triggering debris flows in a human-modified landscape[J]. Geomorphology,257:94-107. doi: 10.1016/j.geomorph.2015.12.012 |
[9] | GONG X F. 2004. The current situation, characteristics and causes of debris flows in the northern mountainous area of Yueqing City[J]. Zhejiang Land & Resources,(10):38-42 (in Chinese). |
[10] | GUO X J, CUI P, LI Y, MA L, GE Y G, MAHONEY W B. 2016. Intensity–duration threshold of rainfall-triggered debris flows in the Wenchuan earthquake affected area, China[J]. Geomorphology,253:208-216. doi: 10.1016/j.geomorph.2015.10.009 |
[11] | GUZZETTI F, PERUCCACCI S, ROSSI M, STARK C P. 2008. The rainfall intensity–duration control of shallow landslides and debris flows: an update[J]. Landslides,5(1):3-17. doi: 10.1007/s10346-007-0112-1 |
[12] | HAN S, HUI S J, SUN Q, ZHANG S, SHI L, ZHANG Y, ZHU Q W. 2023. Research on ecological restoration technology of high-steep slopes of abandoned mines based on geological safety evaluation[J]. East China Geology,44(2):216-227 (in Chinese with English abstract). |
[13] | MA T H, LI C J, SUN L L, LI W, HE C F. 2011. Rainfall intensity-duration thresholds for landslides in Zhejiang region, China[J]. The Chinese Journal of Geological Hazard and Control,22(2):20-25 (in Chinese with English abstract). |
[14] | MARIN R J, GARCÍA E F, ARISTIZÁBAL E. 2020. Effect of basin morphometric parameters on physically-based rainfall thresholds for shallow landslides[J]. Engineering Geology,278:105855. doi: 10.1016/j.enggeo.2020.105855 |
[15] | MARIN R J, VELÁSQUEZ M F. 2020. Influence of hydraulic properties on physically modelling slope stability and the definition of rainfall thresholds for shallow landslides[J]. Geomorphology,351:106976. doi: 10.1016/j.geomorph.2019.106976 |
[16] | MARINO P, PERES D J, CANCELLIERE A, GRECO R, BOGAARD T A. 2020. Soil moisture information can improve shallow landslide forecasting using the hydrometeorological threshold approach[J]. Landslides,17(9):2041-2054. doi: 10.1007/s10346-020-01420-8 |
[17] | NAPOLITANO E, FUSCO F, BAUM R L, GODT J W, DE VITA P. 2016. Effect of antecedent-hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (southern Italy)[J]. Landslides,13(5):967-983. doi: 10.1007/s10346-015-0647-5 |
[18] | ONODERA T, YOSHINAKA R, KAZAMA H. 1974. Slope failures caused by heavy rainfall in Japan[J]. Journal of the Japan Society of Engineering Geology,15(4):191-200. doi: 10.5110/jjseg.15.191 |
[19] | PAPA M N, MEDINA V, CIERVO F, BATEMAN A. 2013. Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems[J]. Hydrology and Earth System Sciences,17(10):4095-4107. doi: 10.5194/hess-17-4095-2013 |
[20] | SENOO K, HARAGUCHI K, KIKUI T, YOSHIDA S. 2001. On the theme and improvement of standard rainfall for warning and evacuation from sediment disasters[J]. Journal of the Japan Society of Erosion Control Engineering, 53(6): 37-44 (in Japanese with English abstract). |
[21] | SUN L Y, ZHANG H H, QIU C J, YANG Z B, ZHANG C X, ZHANG B, ZHANG T L. 2024. Temporal variability of influence factors weights and rainfall thresholds of geological hazards in Ningbo City[J]. East China Geology,45(2):218-227 (in Chinese with English abstract). |
[22] | SUN Q, ZHANG T L, WU J B, WANG H S, ZHU Y H, HAN S. 2021. Application of shallow landslide stability model to landslide prediction in the Linxi River basin of southern Zhejiang[J]. East China Geology,42(4):383-389 (in Chinese with English abstract). |
[23] | TAN W P. 1989. Distribution characters of critical rainfall line for the debris flow gully[J]. Bulletin of Soil and Water Conservation,9(6):21-26 (in Chinese with English abstract). |
[24] | TANG R J, XU G L, TANG Z Q. 2019. Study on critical rainfall of grouped slope debris flows in Wenzhou[J]. The Chinese Journal of Geological Hazard and Control,30(3):60-66 (in Chinese with English abstract). |
[25] | WANG Y M, YUAN M H, YIN K L, GONG X F. 2011. Analysis on the critical rainfall for the outbreak of debris flow in Southeast mountain area of Zhejiang Province[J]. The Chinese Journal of Geological Hazard and Control,22(3):21-26 (in Chinese with English abstract). |
[26] | WANG H S, WU J B, ZHANG T L, SUN Q, LI Y.2020. Dynamic assesment of geohazard susceptibility based on the SHALSTAB model[J]. East China Geology, 41(1): 88-95(in Chinese with English Abstract). |
[27] | WU Y M, LAN H X, GAO X, LI L P, YANG Z H. 2015. A simplified physically based coupled rainfall threshold model for triggering landslides[J]. Engineering Geology,195:63-69. doi: 10.1016/j.enggeo.2015.05.022 |
[28] | WU J B, WANG H S, ZHANG T L, SUN Q, ZHU Y H. 2021. Analysis and prediction of the groundwater dynamics of landslide induced by typhoon rainstorm[J]. East China Geology,42(4):390-397 (in Chinese with English abstract). |
[29] | YUAN L X, CUI X, WANG Z P, LI Y S. 2009. Cause mechanism of Xianrentan debris flow in Yueqing City, Zhejiang Province[J]. Journal of Natural Disasters,18(2):150-154 (in Chinese with English abstract). |
[30] | ZHANG G R, CHEN L X, DONG Z X. 2011. Real-time warning system of regional landslides supported by WEBGIS and its application in Zhejiang Province, China[J]. Procedia Earth and Planetary Science,2:247-254. doi: 10.1016/j.proeps.2011.09.040 |
[31] | 鲍其云, 麻土华, 李长江, 王保欣. 2016. 浙江62个丘陵山区县引发滑坡的降雨强度——历时阈值[J]. 科技通报,32(5):48-55,95. doi: 10.3969/j.issn.1001-7119.2016.05.010 |
[32] | 龚新法. 2004. 乐清市北部山区泥石流现状特征及成因[J]. 浙江国土资源,(10):38-42. doi: 10.3969/j.issn.1672-6960.2004.10.015 |
[33] | 韩帅, 惠淑君, 孙强, 张帅, 时磊, 张颖, 朱庆伟. 2023. 基于地质安全评价的废弃矿山高陡边坡生态修复技术研究[J]. 华东地质,44(2):216-227. |
[34] | 瀬尾克美, 原口勝則, 菊井稔宏, 吉田真也. 2001. 在滑坡和疏散下的标准降雨的问题和改进[J]. 砂防学会誌,53(6):37-44. |
[35] | 麻土华, 李长江, 孙乐玲, 李炜, 何彩芬. 2011. 浙江地区引发滑坡的降雨强度-历时关系[J]. 中国地质灾害与防治学报,22(2):20-25. doi: 10.3969/j.issn.1003-8035.2011.02.004 |
[36] | 孙丽影, 张弘怀, 邱昌骏, 杨珍斌, 张长响, 张斌, 张泰丽. 2024. 宁波地质灾害影响因子权重的时变性与雨量阈值研究[J]. 华东地质,45(2):218-227. |
[37] | 孙强, 张泰丽, 伍剑波, 王赫生, 朱延辉, 韩帅. 2021. SHALSTAB模型在浙南林溪流域滑坡预测中的应用[J]. 华东地质,42(4):383-389. |
[38] | 谭万沛. 1989. 泥石流沟的临界雨量线分布特征[J]. 水土保持通报,9(6):21-26. |
[39] | 汤人杰, 徐光黎, 汤忠强. 2019. 温州群发性坡面泥石流临界雨量研究[J]. 中国地质灾害与防治学报,30(3):60-66. |
[40] | 王一鸣, 袁民豪, 殷坤龙, 龚新法. 2011. 浙东南山丘区泥石流爆发的临界雨量分析[J]. 中国地质灾害与防治学报,22(3):21-26. doi: 10.3969/j.issn.1003-8035.2011.03.005 |
[41] | 王赫生, 伍剑波, 张泰丽, 孙 强, 李 燕.2020. 基于SHALSTAB模型的地质灾害易发性动态评价[J]. 华东地质, 41(1): 88-95. |
[42] | 伍剑波, 王赫生, 张泰丽, 孙强, 朱延辉. 2021. 台风暴雨型滑坡地下水位动态特征及预测[J]. 华东地质,42(4):390-397. |
[43] | 袁丽侠, 崔星, 王州平, 李永生. 2009. 浙江乐清仙人坦泥石流的形成机制[J]. 自然灾害学报,18(2):150-154. doi: 10.3969/j.issn.1004-4574.2009.02.024 |
Seasonal rainfall of Wenzhou (1956–2013)
Topography of Wenzhou
Geological structures of Wenzhou
Engineering geology of Wenzhou
Geological hazards distribution (a) and density of geological hazard points (b) in Wenzhou
Density of landslide occurrences (a) and density of debris flow occurrences caused by typhoon and rainstorm (b)
Monthly distribution of typhoon/rainstorm-induced geo-hazard clusters
Density of single-point sudden geo-hazard in Wenzhou
Monthly distribution of single-point sudden geo-hazard
The relationship between single-point sudden landslide disaster and rainfall extremes in Wenzhou
The relationship between landslide clusters and rainfall extremes in Wenzhou
The relationship between debris flow clusters and rainfall extremes
The maximum 1-hour rainfall contour line (a),the maximum 3-hour rainfall contour line (b) and the maximum process rainfall contour line and the geological disaster distribution (c) during the Typhoon Saomai
The maximum 1-hour rainfall contour line (a) , the maximum 3-hour rainfall contour line (b) and the maximum process rainfall contour line and the geological disaster distribution (c) during the Typhoon Morakot
The maximum 1-hour rainfall contour line (a) , the maximum 3-hour rainfall contour line (b) and the maximum process rainfall contour line and the geological disaster distribution (c) during the Typhoon Lekima
Thiessen polygon distribution of rainfall stations for Typhoon Saomai (a) , Typhoon Morakot (b) and Typhoon Lekima (c)
I-D fitting curve based on effective rainfall amount (blue line is landslide I-D curve, red line is debris flow I-D curve)
I-D curves of different probabilities based on effective rainfall model (the left picture is landslide, and the right is debris flow)