2024 Vol. 45, No. 4
Article Contents

LI Jiayue, LI Wenbiao, ZHANG Pengfei, CHEN Guohui, WANG Jun, LIU Lingqi. 2024. Isotope fractionation during the formation-decomposition of natural gas hydrate and its energy-environmental implications. East China Geology, 45(4): 387-401. doi: 10.16788/j.hddz.32-1865/P.2024.34.005
Citation: LI Jiayue, LI Wenbiao, ZHANG Pengfei, CHEN Guohui, WANG Jun, LIU Lingqi. 2024. Isotope fractionation during the formation-decomposition of natural gas hydrate and its energy-environmental implications. East China Geology, 45(4): 387-401. doi: 10.16788/j.hddz.32-1865/P.2024.34.005

Isotope fractionation during the formation-decomposition of natural gas hydrate and its energy-environmental implications

More Information
  • This review provides a comprehensive analysis of the research progress concerning isotopic fractionation during the formation and decomposition of natural gas hydrates, focusing on three aspects: research methodologies, isotopic fractionation effects, and their energy-environmental significance. The study posits that the primary research methods for isotope fractionation effect in the formation/decomposition process of natural gas hydrates were mainly experimental simulation and natural observation. These methods reveal significant isotopic compositional differences in fluids at various depths within the hydrate system, which are closely associated with the isotopic fractionation effects occurring during hydrate formation/decomposition. The formation/decomposition process of hydrates involves the superposition of several physicochemical processes, including dissolution/desorption, phase transition, fluid transport within porous media, and oxidative consumption. The phase transition process is temperature-controlled and represents a thermodynamic fractionation effect, while the dissolution/desorption, fluid transport, and oxidative consumption processes are primarily governed by environmental factors such as the pore structure of the porous media, temperature, pressure, oxygen content, and are time-dependent, representing a kinetic fractionation effect. Currently, the isotopic fractionation effects during hydrate formation/decomposition have been preliminarily applied to hydrate exploration signs, gas source identification, hydrocarbon accumulation mechanism studies, and resource assessment. They also provide new perspectives for explaining the rise in atmospheric methane concentrations and the isotopic shifts towards lighter values, as well as the rapid negative isotopic excursions during global warming periods in geological history. However, existing research has mainly focused on the phenomenological observation and qualitative analysis of isotopic fractionation during hydrate formation/decomposition. In the future, numerical simulation and molecular dynamics simulation should be used to supplement the research methods of isotope fractionation effect of hydrate, and the characteristics, influencing factors, mechanism and quantitative characterization of isotope fractionation in the formation/decomposition process of gas hydrate should be systematically studied.

  • 加载中
  • [1] BEERLING D J, BERNER R A. 2002. Biogeochemical constraints on the Triassic-Jurassic boundary carbon cycle event[J]. Global Biogeochemical Cycles,16(3):1036.

    Google Scholar

    [2] BLACKBURN T J, OLSEN P E, BOWRING S A, MCLEAN N M, KENT D V, PUFFER J, MCHONE G, RASBURY E T, ET-TOUHAMI M. 2013. Zircon U-Pb geochronology links the end-Triassic extinction with the central Atlantic magmatic province[J]. Science,340(6135):941-945. doi: 10.1126/science.1234204

    CrossRef Google Scholar

    [3] BREY T, MACKENSEN A. 1997. Stable isotopes prove shell growth bands in the Antarctic bivalve Laternula elliptica to be formed annually[J]. Polar Biology,17(5):465-468. doi: 10.1007/s003000050143

    CrossRef Google Scholar

    [4] BURGESS S D, BOWRING S A. 2015. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction[J]. Science Advances,1(7):e1500470. doi: 10.1126/sciadv.1500470

    CrossRef Google Scholar

    [5] HOFMAN D, BUTLER J, CONWAY T,DLUGOKENCKY E, Elkins J, Masarie K. 2008. The NOAA annual greenhouse gas index (AGGI)[J]. Earth System Research Laboratory.

    Google Scholar

    [6] CAI L, SU J W, LI Z, SHI H F, WANG R, YANG Y, DING Y. 2023. Study on the chemical characteristics and hydrogeochemistry process of groundwater in the upper reaches of Xin'an River Basin[J]. East China Geology,44(3):262-272 (in Chinese with English abstract).

    Google Scholar

    [7] CARVAJAL-ORTIZ H, PRATT L M. 2013. Influences of salinity and temperature on the stable isotopic composition of methane and hydrogen sulfide trapped in pressure-vessel hydrates[J]. Geochimica et Cosmochimica Acta,118:72-84. doi: 10.1016/j.gca.2013.05.013

    CrossRef Google Scholar

    [8] CHEN Y F. 2018. Study on methane oxidation rate and carbon isotope fractionation in Bohai Sea sediments[D]. Qingdao: Qingdao University (in Chinese with English abstract).

    Google Scholar

    [9] CHEN M, CAO Z M, YE Y G, LIU C L. 2005. Hydrogen and oxygen isotopic fractionation of gas hydrate formation: experimental study[J]. Geochimica,34(6):605-611 (in Chinese with English abstract).

    Google Scholar

    [10] CHEN M, DENG X B, LIU C L, REN H B, YIN X J, LI J X, QI H S, ZHANG A M. 2018. Experimental study on carbon isotopic composition changes during the formation of gas hydrates[J]. Geoscience,32(1):205-212 (in Chinese with English abstract).

    Google Scholar

    [11] CHONG Z R, YANG S H B, BABU P, LINGA P, LI X S. 2016. Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied Energy,162:1633-1652. doi: 10.1016/j.apenergy.2014.12.061

    CrossRef Google Scholar

    [12] CLAYPOOL G E, KVENVOLDEN K A. 1983. Methane and other hydrocarbon gases in marine sediment[J]. Annual Review of Earth and Planetary Sciences,11:299-327. doi: 10.1146/annurev.ea.11.050183.001503

    CrossRef Google Scholar

    [13] COLEMAN D D, RISATTI J B, SCHOELL M. 1981. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria[J]. Geochimica et Cosmochimica Acta,45(7):1033-1037. doi: 10.1016/0016-7037(81)90129-0

    CrossRef Google Scholar

    [14] COURTILLOT V E, RENNE P R. 2003. On the ages of flood basalt events[J]. Comptes Rendus. Géoscience,335(1):113-140.

    Google Scholar

    [15] CRAIG H, GORDON L I, HORIBE Y. 1963. Isotopic exchange effects in the evaporation of water: 1. Low‐temperature experimental results[J]. Journal of Geophysical Research,68(17):5079-5087. doi: 10.1029/JZ068i017p05079

    CrossRef Google Scholar

    [16] DAI J X. 1992. Identification of various alkane gases[J]. Science in China Series B-Chemistry, Life Sciences & Earth Sciences, 35(10): 1246-1257.

    Google Scholar

    [17] DAI J X, NI Y Y, HUANG S P, PENG W L, HAN W X, GONG D Y, WEI W. 2017. Genetic types of gas hydrates in China[J]. Petroleum Exploration and Development,44(6):837-848 (in Chinese with English abstract

    Google Scholar

    [18] DAVIDSON D W, LEAIST D G, HESSE R. 1983. Oxygen-18 enrichment in the water of a clathrate hydrate[J]. Geochimica et Cosmochimica Acta,47(12):2293-2295. doi: 10.1016/0016-7037(83)90053-4

    CrossRef Google Scholar

    [19] DICKENS G R, O'NEIL J R, REA D K, OWEN R M. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene[J]. Paleoceanography,10(6):965-971. doi: 10.1029/95PA02087

    CrossRef Google Scholar

    [20] FENG L, PALMER P I, ZHU S H, PARKER R J, LIU Y. 2022. Tropical methane emissions explain large fraction of recent changes in global atmospheric methane growth rate[J]. Nature Communications,2022,13(1):1378.

    Google Scholar

    [21] FROITZHEIM N, MAJKA J, ZASTROZHNOV D. 2021. Methane release from carbonate rock formations in the Siberian permafrost area during and after the 2020 heat wave[J]. Proceedings of the National Academy of Sciences of the United States of America,118(32):e2107632118.

    Google Scholar

    [22] FU X T, WANG Z P, LU S F. 1996. Mechanisms and solubility equations of gas dissolving in water[J]. Science in China (Series B),39(5):500-508.

    Google Scholar

    [23] FU X T, WANG Z P, LU S F, ZHU X H. 2000. Mechanism of natural gas dissolving in brines and the dissolving equation[J]. Acta Petrolei Sinica,21(3):89-94 (in Chinese with English abstract).

    Google Scholar

    [24] GAT J R. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle[J]. Annual Review of Earth and Planetary Sciences,24:225-262. doi: 10.1146/annurev.earth.24.1.225

    CrossRef Google Scholar

    [25] GUO P, LIU S X, DU J F. 2006. Development of natural gas hydrate reservoirs[M]. Beijing: Petroleum Industry Press, 38-39 (in Chinese).

    Google Scholar

    [26] HESSE R, HARRISON W E. 1981. Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins[J]. Earth and Planetary Science Letters,55(3):453-462. doi: 10.1016/0012-821X(81)90172-2

    CrossRef Google Scholar

    [27] HU Y, XIA B, ZHANG X L, GUO F, SHI Q H. 2012. Geological and geochemical features and exploration progress of gas hydrate[J]. Marine Geology Frontiers,28(6):27-34 (in Chinese with English abstract).

    Google Scholar

    [28] JIANG G Q, KENNEDY M J, CHRISTIE-BLICK N. 2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates[J]. Nature,426(6968):822-826. doi: 10.1038/nature02201

    CrossRef Google Scholar

    [29] KENDER S, BOGUS K, PEDERSEN G K, DYBKJÆR K, MATHER T A, MARIANI E, RIDGWELL A, RIDING J B, WAGNER T, HESSELBO S P, LENG M J. 2021. Paleocene/Eocene carbon feedbacks triggered by volcanic activity[J]. Nature Communications,12(1):5186. doi: 10.1038/s41467-021-25536-0

    CrossRef Google Scholar

    [30] KINNAMAN F S, VALENTINE D L, TYLER S C. 2007. Carbon and hydrogen isotope fractionation associated with the aerobic microbial oxidation of methane, ethane, propane and butane[J]. Geochimica et Cosmochimica Acta,71(2):271-283. doi: 10.1016/j.gca.2006.09.007

    CrossRef Google Scholar

    [31] LAI H F, FANG Y X, KUANG Z G, XING D H, LI X, KANG D J, REN J F, LIANG J Q, LU J. 2021. Molecular and carbon isotopic characteristics during natural gas hydrate decomposition: insights from a stepwise depressurization experiment on a pressure core[J]. Energy & Fuels,35(19):15579-15588.

    Google Scholar

    [32] LAI H F, KUANG Z G, FANG Y X, XU C L, REN J F, LIANG J Q, LU J A. 2024. Origin and genetic mechanisms of hydrocarbon gas sources of the highly saturated gas hydrate deposits in the northern South China Sea[J]. Geoscience Frontiers, 1-26, doi: 10.13745/j.esf.sf.2024.6.53 (in Chinese with English abstract).

    Google Scholar

    [33] LI M C, FAN S S, ZHAO J Z. 2007. Impact of porous medium on gas hydrate[J]. Geophysical Prospecting for Petroleum,46(1):13-15 (in Chinese with English abstract).

    Google Scholar

    [34] LI W B, LI J Q, LU S F, CHEN G H, PANG X T, ZHANG P F, HE T H. 2022a. Evaluation of gas-in-place content and gas-adsorbed ratio using carbon isotope fractionation model: a case study from Longmaxi shales in Sichuan Basin, China[J]. International Journal of Coal Geology,249:103881. doi: 10.1016/j.coal.2021.103881

    CrossRef Google Scholar

    [35] LI W B, LU S F, LI J Q, FENG W J, ZHANG P F, WANG J, WANG Z Y, LI X. 2022b. Concentration loss and diffusive fractionation of methane during storage: implications for gas sampling and isotopic analysis[J]. Journal of Natural Gas Science and Engineering,101:104562. doi: 10.1016/j.jngse.2022.104562

    CrossRef Google Scholar

    [36] LI W B, LU S F, LI J Q, WEI Y B, ZHAO S X, ZHANG P F, WANG Z Y, LI X, WANG J. 2022. Research progress on isotopic fractionation in the process of shale gas/coalbed methane migration[J]. Petroleum Exploration and Development,49(5):929-942 (in Chinese with English abstract).

    Google Scholar

    [37] LI W B, LU S F, LI J Q, ZHANG P F, WANG S Y, FENG W J, WEI Y B. 2020. Carbon isotope fractionation during shale gas transport: mechanism, characterization and significance[J]. Science in China: Earth Sciences,50(4):553-569 (in Chinese with English abstract).

    Google Scholar

    [38] LI W B, LU S F, LI J Q, ZHANG P F, WANG S Y, FENG W J, WEI Y B. 2020. Carbon isotope fractionation during shale gas transport: mechanism, characterization and significance[J]. Science China Earth Sciences,63(5):674-689. doi: 10.1007/s11430-019-9553-5

    CrossRef Google Scholar

    [39] LIANG J Z, FENG J C, ZHANG H, ZHANG S. 2024. Advances in deep-sea scientific experiment equipment[J]. Strategic Study of CAE,26(2):23-37 (in Chinese with English abstract). doi: 10.15302/J-SSCAE-2024.02.004

    CrossRef Google Scholar

    [40] LI Y M. 1998. Geochemical study of methane in natural gas hydrate [J]. Natural Gas Geoscience, 9(3-4): 9-18. (in Chinese)

    Google Scholar

    [41] LIU Z F, HU X M. 2003. Extreme climates events in the cretaceous and paleogene[J]. Advance in Earth Sciences,18(5):681-690 (in Chinese with English abstract).

    Google Scholar

    [42] LIU C L, MENG Q G. 2016. Gas hydrates experiment and testing technologies[M]. Beijing: Science Press (in Chinese).

    Google Scholar

    [43] LIU C L, YE Y G, SUN S C, CHEN Q, MENG Q G, HU G W. 2013. Experimental studies on the P-T stability conditions and influencing factors of gas hydrate in different systems[J]. Science China Earth Sciences, 56(4): 594-600

    Google Scholar

    [44] LIU T, WU T, FANG C G, ZHANG C C, SHAO W, LIAO S B. 2023. Overpressure characteristics and genesis of the Triassic gas reservoirs in Wuwei Depression of Lower Yangtze Region[J]. East China Geology,44(4):415-423 (in Chinese with English abstract).

    Google Scholar

    [45] LU Z L, LING H F, JIANG S Y, YANG J H, NI P. 2003. Application of stable isotopes to the geochemical explorations for gas hydrate in the Blake Ridge sea area[J]. Marine Geology Letters,19(2):28-32 (in Chinese with English abstract).

    Google Scholar

    [46] MAEKAWA T. 2004. Experimental study on isotopic fractionation in water during gas hydrate formation[J]. Geochemical Journal,38(2):129-138. doi: 10.2343/geochemj.38.129

    CrossRef Google Scholar

    [47] MAKOGON Y F. 2010. Natural gas hydrates - A promising source of energy[J]. Journal of Natural Gas Science and Engineering,2(1):49-59. doi: 10.1016/j.jngse.2009.12.004

    CrossRef Google Scholar

    [48] MATSUMOTO R, BOROWSKI W S. 2000. Gas hydrate estimates from newly determined oxygen isotopic fractionation (αGH-IW) and δ18O anomalies of the interstitial waters: leg 164, Blake Ridge[C]//Proceedings of the Ocean Drilling Program: Scientific Results. College Station, 59-66. http://www-odp.tamu.edu/publications/164_SR/VOLUME/CHAPTERS/SR164_06.

    Google Scholar

    [49] MCCARTHY J J, CANZIANI O F, LEARY N A, DOKKEN D J, WHITE K S. 2001. Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 191-205

    Google Scholar

    [50] MCELWAIN J C, BEERLING D J, WOODWARD F I. 1999. Fossil plants and global warming at the Triassic-Jurassic boundary[J]. Science,285(5432):1386-1390. doi: 10.1126/science.285.5432.1386

    CrossRef Google Scholar

    [51] NING F L, JIANG G S, ZHANG L, WU X, DOU B, ZHANG J M. 2008. Development of experimental equipments for gas hydrate research[J]. Offshore Oil,28(2):68-72 (in Chinese with English abstract).

    Google Scholar

    [52] OREMLAND R S, DES MARAIS D J. 1983. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada: an alkaline, meromictic lake[J]. Geochimica et Cosmochimica Acta,47(12):2107-2114. doi: 10.1016/0016-7037(83)90035-2

    CrossRef Google Scholar

    [53] PAULL C K, DILLON W P. 2001. Natural gas hydrates: occurrence, distribution, and detection: occurrence, distribution, and detection[M]. Washington: American Geophysical Union.

    Google Scholar

    [54] PENG X D, XU J L, FANG C G, SHEN S H, ZHANG C C. 2022. Sequence stratigraphic characteristics and shale gas exploration prospect of Middle Permian Qixia Formation in the Xuancheng-Guangde Basin[J]. East China Geology,43(2):154-166 (in Chinese with English abstract).

    Google Scholar

    [55] QI R R, QIN X W, LU C, MA C, MAO W J, ZHANG W T. 2022. Experimental study on the isothermal adsorption of methane gas in natural gas hydrate argillaceous silt reservoir[J]. Advances in Geo-Energy Research,6(2):143-156. doi: 10.46690/ager.2022.02.06

    CrossRef Google Scholar

    [56] QIN S F, TANG X Y, SONG Y, WANG H Y. 2006. Distribution and fractionation mechanism of stable carbon isotope of coalbed methane[J]. Science in China Series D: Earth Sciences,49(12):1252-1258. doi: 10.1007/s11430-006-2036-3

    CrossRef Google Scholar

    [57] RICE A L, BUTENHOFF C L, TEAMA D G, RÖGER F H, KHALIL M A K, RASMUSSEN R A. 2016. Atmospheric methane isotopic record favors fossil sources flat in 1980s and 1990s with recent increase[J]. Proceedings of the National Academy of Sciences of the United States of America,113(39):10791-10796.

    Google Scholar

    [58] RUHL M, BONIS N R, REICHART G J, DAMSTÉ J S S, KÜRSCHNER W M. 2011. Atmospheric carbon injection linked to end-Triassic mass extinction[J]. Science,333(6041):430-434. doi: 10.1126/science.1204255

    CrossRef Google Scholar

    [59] SAUNOIS M, STAVERT A R, POULTER B, BOUSQUET P, CANADELL J G, JACKSON R B, RAYMOND P A, DLUGOKENCKY E J, HOUWELING S, PATRA P K, CIAIS P, ARORA V K, BASTVIKEN D, BERGAMASCHI P, BLAKE D R, BRAILSFORD G, BRUHWILER L, CARLSON K M, CARROL M, CASTALDI S, CHANDRA N, CREVOISIER C, CRILL P M, COVEY K, CURRY C L, ETIOPE G, FRANKENBERG C, GEDNEY N, HEGGLIN M I, HÖGLUND-ISAKSSON L, HUGELIUS G, ISHIZAWA M, ITO A, JANSSENS-MAENHOUT G, JENSEN K M, JOOS F, KLEINEN T, KRUMMEL P B, LANGENFELDS R L, LARUELLE G G, LIU L, MACHIDA T, MAKSYUTOV S, MCDONALD K C, MCNORTON J, MILLER P A, MELTON J R, MORINO I, MÜLLER J, MURGUIA-FLORES F, NAIK V, NIWA Y, NOCE S, O'DOHERTY S, PARKER R J, PENG C H, PENG S S, PETERS G P, PRIGENT C, PRINN R, RAMONET M, REGNIER P, RILEY W J, ROSENTRETER J A, SEGERS A, SIMPSON I J, H SHI, SMITH S J, STEELE L P, THORNTON B F, TIAN H Q, TOHJIMA Y, TUBIELLO F N, TSURUTA A, VIOVY N, VOULGARAKIS A, WEBER T S, VAN WEELE M, VAN DER WERF G R, WEISS R F, WORTHY D, WUNCH D, YIN Y, YOSHIDA Y, ZHANG W X, ZHANG Z, ZHAO Y H, ZHENG B, ZHU Q, ZHU Q, ZHUANG Q L. 2019. The global methane budget 2000-2017[J]. Earth System Science Data Discussions, 1-136, doi: 10.5194/essd-2019-128.

    Google Scholar

    [60] SCHAEFER H, FLETCHER S E M, VEIDT C, LASSEY K R, BRAILSFORD G W, BROMLEY T M, WHITE J W. 2016. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4[J]. Science,352(6281):80-84. doi: 10.1126/science.aad2705

    CrossRef Google Scholar

    [61] SHAW D G, ALPERIN M J, REEBURGH W S, MCINTOSH D J. 1984. Biogeochemistry of acetate in anoxic sediments of Skan Bay, Alaska[J]. Geochimica et Cosmochimica Acta,48(9):1819-1825. doi: 10.1016/0016-7037(84)90035-8

    CrossRef Google Scholar

    [62] SLOAN JR E D. 1991. Natural gas hydrates[J]. Journal of Petroleum Technology,43(12):1414-1417. doi: 10.2118/23562-PA

    CrossRef Google Scholar

    [63] SVENSEN H. 2012. Bubbles from the deep[J]. Nature,483(7390):413-415. doi: 10.1038/483413a

    CrossRef Google Scholar

    [64] THAKRE N, JANA K A. 2021. Physical and molecular insights to Clathrate hydrate thermodynamics[J]. Renewable and Sustainable Energy Reviews,135:110150. doi: 10.1016/j.rser.2020.110150

    CrossRef Google Scholar

    [65] TINIVELLA U, GIUSTINIANI M, DE LA CRUZ VARGAS CORDERO I, VASILEV A. 2019. Gas hydrate: environmental and climate impacts[J]. Geosciences,9(10):443. doi: 10.3390/geosciences9100443

    CrossRef Google Scholar

    [66] TOLLEFSON J. 2022. Scientists raise alarm over ‘dangerously fast’ growth in atmospheric methane[J]. Nature, doi: 10.1038/d41586-022-00312-2.

    Google Scholar

    [67] UREY H C. 1947. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society (Resumed), 562-581.

    Google Scholar

    [68] WANG H H. 2020. Study on the structural design and optimization of deep-sea cold spring thermal insulation and pressure retaining sampler[D]. Qingdao: Qingdao University of Science and Technology (in Chinese with English abstract).

    Google Scholar

    [69] XIA X Y, TANG Y C. 2012. Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/desorption[J]. Geochimica et Cosmochimica Acta,77:489-503. doi: 10.1016/j.gca.2011.10.014

    CrossRef Google Scholar

    [70] YANG T, JIANG S Y, GE L, YANG J H, WU N Y, ZHANG G X, LIU J, CHEN D H. 2013. Geochemistry of pore waters from HQ-1PC of the Qiongdongnan Basin, northern South China Sea, and its implications for gas hydrate exploration[J]. Science China Earth Sciences,56(4):521-529. doi: 10.1007/s11430-012-4560-7

    CrossRef Google Scholar

    [71] YANG J H, JIANG S Y, LING H F. 2001. Origin of natural gas hydrate and its carbon isotope identification mark[J]. Marine Geology Letters, 17(8): 1-4 (in Chinese).

    Google Scholar

    [72] YANG T, JIANG S Y, YANG J H, LU G, WU N Y, LIU J, CHEN D H. 2008. Dissolved inorganic carbon (DIC) and its carbon isotopic composition in sediment pore waters from the Shenhu area, northern South China Sea[J]. Journal of Oceanography,64(2):303-310. doi: 10.1007/s10872-008-0024-2

    CrossRef Google Scholar

    [73] YANG T, XUE Z C, YANG J H, JIANG S Y. 2003. Oxygen and hydrogen isotopic compositions of pore water from marine sediments in the northern South China Sea[J]. Acta Geoscientia Sinica,24(6):511-514 (in Chinese with English abstract).

    Google Scholar

    [74] YANG T, YE H, LAI Y J. 2017. Pore water geochemistry of the gas hydrate bearing zone on northern slope of the South China Sea[J]. Marine Geology & Quaternary Geology,37(5):48-58 (in Chinese with English abstract).

    Google Scholar

    [75] YAO B, ROSS K, ZHU J J, IGUSKY K, SONG R P, DAMASSA T. 2016. Opportunities to enhance non-carbon dioxide greenhouse gas mitigation in China[R]. Washington: World Resources Institute (in Chinese).

    Google Scholar

    [76] ZACHOS J C, RÖHL U, SCHELLENBERG S A, SLUIJS A, HODELL D A, KELLY D C, THOMAS E, NICOLO M, RAFFI I, LOURENS L J, MCCARREN H, KROON D. 2005. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum[J]. Science,308(5728):1611-1615. doi: 10.1126/science.1109004

    CrossRef Google Scholar

    [77] ZHANG X B, XU Y C, LIU W H, SHEN P, JI L M, MA L Y. 2002. A discussion of formation mechanism and its significance of characteristics of chemical composition and isotope of water-dissolved gas in Turpan-Hami Basin[J]. Acta Sedimentologica Sinica,20(4):705-709 (in Chinese with English abstract).

    Google Scholar

    [78] 蔡磊, 苏晶文, 李状, 史洪峰, 王睿, 杨洋, 丁勇. 2023. 新安江流域上游地区地下水化学特征及水文地球化学作用研究[J]. 华东地质,44(3):262-272.

    Google Scholar

    [79] 陈敏, 曹志敏, 业渝光, 刘昌岭. 2005. 海洋天然气水合物氢氧同位素分馏初探[J]. 地球化学,34(6):605-611. doi: 10.3321/j.issn:0379-1726.2005.06.007

    CrossRef Google Scholar

    [80] 陈敏, 邓兴波, 刘昌岭, 任宏波, 尹希杰, 李佳宣, 戚洪帅, 张爱梅. 2018. 水合物生成过程中碳同位素组成变化的实验研究[J]. 现代地质,32(1):205-212.

    Google Scholar

    [81] 陈宇峰. 2018. 渤海沉积物中甲烷氧化速率及碳氢同位素分馏规律研究[D]. 青岛: 青岛大学.

    Google Scholar

    [82] 戴金星, 倪云燕, 黄士鹏, 彭威龙, 韩文学, 龚德瑜, 魏伟. 2017. 中国天然气水合物气的成因类型[J]. 石油勘探与开发,44(6):837-848 doi: 10.11698/PED.2017.06.01

    CrossRef Google Scholar

    [83] 付晓泰, 王振平, 卢双舫. 1996. 气体在水中的溶解机理及溶解度方程[J]. 中国科学(B辑 化学),26(2):124-130.

    Google Scholar

    [84] 付晓泰, 王振平, 卢双舫, 祝孝华. 2000. 天然气在盐溶液中的溶解机理及溶解度方程[J]. 石油学报,21(3):89-94. doi: 10.3321/j.issn:0253-2697.2000.03.018

    CrossRef Google Scholar

    [85] 郭平, 刘士鑫, 杜建芬. 2006. 天然气水合物气藏开发[M]. 北京: 石油工业出版社, 38-39.

    Google Scholar

    [86] 胡杨, 夏斌, 张晓磊, 郭峰, 施秋华. 2012. 天然气水合物地质地球化学特征及其勘查[J]. 海洋地质前沿,28(6):27-34.

    Google Scholar

    [87] 赖洪飞, 匡增桂, 方允鑫, 许辰璐, 任金锋, 梁金强, 陆敬安. 2024. 南海北部高饱和度水合物矿藏的烃类气体来源与成因机制[J]. 地学前缘, 1-26, doi: 10.13745/j.esf.sf.2024.6.53.

    Google Scholar

    [88] 李明川, 樊栓狮, 赵金洲. 2007. 多孔介质对天然气水合物形成的影响[J]. 石油物探,46(1):13-15. doi: 10.3969/j.issn.1000-1441.2007.01.002

    CrossRef Google Scholar

    [89] 李文镖, 卢双舫, 李俊乾, 魏永波, 赵圣贤, 张鹏飞, 王子轶, 李霄, 王峻. 2022. 页岩气/煤层气运移过程中的同位素分馏研究进展[J]. 石油勘探与开发,49(5):929-942. doi: 10.11698/PED.20220225

    CrossRef Google Scholar

    [90] 李文镖, 卢双舫, 李俊乾, 张鹏飞, 王思远, 冯文俊, 魏永波. 2020. 页岩气运移过程中的碳同位素分馏: 机理, 表征及意义[J]. 中国科学: 地球科学,50(4):553-569.

    Google Scholar

    [91] 李玉梅. 1998. 天然气水合物中甲烷的地球化学研究[J]. 天然气地球科学, 9(3-4): 9-18

    Google Scholar

    [92] 梁健臻, 冯景春, 张卉, 张偲. 2024. 深海科学实验装备发展研究[J]. 中国工程科学,26(2):23-37.

    Google Scholar

    [93] 刘志飞, 胡修棉. 2003. 白垩纪至早第三纪的极端气候事件[J]. 地球科学进展,18(5):681-690. doi: 10.3321/j.issn:1001-8166.2003.05.007

    CrossRef Google Scholar

    [94] 刘昌岭, 孟庆国. 2016. 天然气水合物实验测试技术[M]. 北京: 科学出版社.

    Google Scholar

    [95] 刘桃, 吴通, 方朝刚, 章诚诚, 邵威, 廖圣兵. 2023. 下扬子地区无为凹陷三叠系气藏超压特征及其成因分析[J]. 华东地质,44(4):415-423.

    Google Scholar

    [96] 陆尊礼, 凌洪飞, 蒋少涌, 杨竞红, 倪培. 2003. 稳定同位素在天然气水合物地球化学勘查中的应用简介——以“布莱克海隆”海区为例[J]. 海洋地质动态,19(2):28-32. doi: 10.3969/j.issn.1009-2722.2003.02.008

    CrossRef Google Scholar

    [97] 宁伏龙, 蒋国盛, 张凌, 吴翔, 窦斌, 张家铭. 2008. 天然气水合物实验装置及其发展趋势[J]. 海洋石油,28(2):68-72. doi: 10.3969/j.issn.1008-2336.2008.02.012

    CrossRef Google Scholar

    [98] 彭晓东, 徐锦龙, 方朝刚, 沈仕豪, 章诚诚. 2022. 宣广盆地中二叠世栖霞组层序地层特征及页岩气勘探前景[J]. 华东地质,43(2):154-166.

    Google Scholar

    [99] 秦胜飞, 唐修义, 宋岩, 王红岩. 2006. 煤层甲烷碳同位素分布特征及分馏机理[J]. 中国科学 D辑 地球科学,36(12):1092-1097.

    Google Scholar

    [100] 王洪浩. 2020. 深海冷泉保温保压取样器结构设计及优化研究[D]. 青岛: 青岛科技大学.

    Google Scholar

    [101] 杨涛, 蒋少涌, 葛璐, 杨競红, 吴能友, 张光学, 刘坚, 陈道华. 2013. 南海北部琼东南盆地HQ-1PC沉积物孔隙水的地球化学特征及其对天然气水合物的指示意义[J]. 中国科学: 地球科学,43(3):329-338.

    Google Scholar

    [102] 杨竞红, 蒋少涌, 凌洪飞. 2001. 天然气水合物的成因及其碳同位素判别标志[J]. 海洋地质动态,17(8):1-4. doi: 10.3969/j.issn.1009-2722.2001.08.001

    CrossRef Google Scholar

    [103] 杨涛, 薛紫晨, 杨竞红, 蒋少涌. 2003. 南海北部地区海洋沉积物中孔隙水的氢、氧同位素组成特征[J]. 地球学报,24(6):511-514. doi: 10.3321/j.issn:1006-3021.2003.06.005

    CrossRef Google Scholar

    [104] 姚波, ROSS K, 朱晶晶, IGUSKY K, 宋然平, DAMASSA T. 2016. 全面减排 迈向净零排放目标——中国非二氧化碳温室气体减排潜力研究[R]. 华盛顿: 世界资源研究所.

    Google Scholar

    [105] 张晓宝, 徐永昌, 刘文汇, 沈平, 吉利明, 马立元. 2002. 吐哈盆地水溶气组分与同位素特征形成机理及意义探讨[J]. 沉积学报,20(4):705-709. doi: 10.3969/j.issn.1000-0550.2002.04.027

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(554) PDF downloads(309) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint