2024 Vol. 45, No. 4
Article Contents

CHEN Jianuo, SUN Gaoyuan, WEN Yongxiang, LI Siqi, WANG Xinyu, LIU Kai, JIANG Ren, ZHOU Xiaohua. 2024. Grain sizes characteristics of sediments from QDQ2 borehole in the Yangtze River Delta since the Late Pleistocene and their paleoenvironmental significance. East China Geology, 45(4): 466-477. doi: 10.16788/j.hddz.32-1865/P.2024.21.019
Citation: CHEN Jianuo, SUN Gaoyuan, WEN Yongxiang, LI Siqi, WANG Xinyu, LIU Kai, JIANG Ren, ZHOU Xiaohua. 2024. Grain sizes characteristics of sediments from QDQ2 borehole in the Yangtze River Delta since the Late Pleistocene and their paleoenvironmental significance. East China Geology, 45(4): 466-477. doi: 10.16788/j.hddz.32-1865/P.2024.21.019

Grain sizes characteristics of sediments from QDQ2 borehole in the Yangtze River Delta since the Late Pleistocene and their paleoenvironmental significance

More Information
  • This study analyzes the samples from QDQ2 borehole of the Qidong area, Jiangsu Province, to investigate the sedimentary evolution of the Yangtze River Delta since the Late Pleistocene and its implications for the paleoenvironment. Grain size analysis was performed on the borehole sediments to reconstruct their evolutionary characteristics. The results indicate that the sediments predominantly consist of silt and clay, with fine-grained size and poor sorting. AMS14C dating suggests that the sediment at the depth of 117 m, 86 m and 40 m is approximately 40 057 cal yr B.P., 36 105 cal yr B.P. and 10 112 cal yr B.P.years old, respectively. Based on comparisons with the lithology, grain size characteristics, and dating results of other boreholes in the region, the strata of QDQ2 borehole include, from bottom to top, Upper Pleistocene strata (128.2~50.56 m) and Holocene strata (50.56~0 m). The lower part of the Upper Pleistocene (128.2~108.85 m) is primarily composed of well-sorted silt, with a unimodal grain-size frequency curve. The middle part (108.85~73.45 m) contains medium to coarse sand, exhibiting predominantly bimodal or multimodal frequency curves. The upper part (73.45~50.56 m) is dominated by silt, showing unimodal or bimodal frequency distributions, while the Holocene strata (50.56~0 m) consist mainly of silt with low sand content. The study identifies at least two significant fluctuations of regional sea-level. The first regression occurred during the early Late Pleistocene (108.85~73.45 m), followed by a rapid transgression (75~50.56 m). A subsequent regional regression took place at the latest of Late Pleistocene (LGM) (52.56~50.56 m), leading to the present geomorphic pattern. These findings provide valuable insights into the sedimentary evolution of the Yangtze River Delta since the Late Pleistocene.

  • 加载中
  • [1] CHAPPELL J, OMURA A, ESAT T, MCCULLOCH M, PANDOLFI J, OTA Y, PILLANS B. 1996. Reconciliaion of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records[J]. Earth and Planetary Science Letters,141(1-4):227-236. doi: 10.1016/0012-821X(96)00062-3

    CrossRef Google Scholar

    [2] DE HAAS T, PIERIK H J, VAN DER SPEK A J F, COHEN K M, VAN MAANEN B, KLEINHANS M G. 2018. Holocene evolution of tidal systems in the Netherlands: effects of rivers, coastal boundary conditions, eco-engineering species, inherited relief and human interference[J]. Earth-Science Reviews,177:139-163. doi: 10.1016/j.earscirev.2017.10.006

    CrossRef Google Scholar

    [3] FAN T L, FAN Y X. 2010. A comparison of grain size expression methods: a case study[J]. Gansu Geology,19(2):32-37 (in Chinese with English abstract).

    Google Scholar

    [4] FOLK R L, WARD W C. 1957. Brazos River bar: a study in the significance of grain size parameters[J]. Journal of Sedimentary Research,27(1):3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D

    CrossRef Google Scholar

    [5] GAO L, LONG H. 2023. Luminescence chronology constraints on the sedimentary stratigraphy of the Yangtze River delta since MIS5[J]. Quaternary Sciences,43(1):33-45 (in Chinese with English abstract).

    Google Scholar

    [6] GAO L, LONG H, HOU Y D, FENG Y Y. 2022. Chronology constraints on the complex sedimentary stratigraphy of the paleo-Yangtze incised valley in China[J]. Quaternary Science Reviews,287:107573. doi: 10.1016/j.quascirev.2022.107573

    CrossRef Google Scholar

    [7] GAO L, LONG H, TAMURA T, HOU Y D, SHEN J. 2021. A~130ka terrestrial-marine interaction sedimentary history of the northern Jiangsu coastal plain in China[J]. Marine Geology,435:106455. doi: 10.1016/j.margeo.2021.106455

    CrossRef Google Scholar

    [8] GAO L, LONG H, TAMURA T, YE L T, HOU Y D, SHEN J. 2020. Refined chronostratigraphy of a late Quaternary Sedimentary sequence from the Yangtze River delta based on K-feldspar luminescence dating[J]. Marine Geology,427:106271. doi: 10.1016/j.margeo.2020.106271

    CrossRef Google Scholar

    [9] GAO L, LONG H, ZHANG P, TAMURA T, FENG W L, MEI Q Q. 2019. The sedimentary evolution of Yangtze River delta since MIS3: a new chronology evidence revealed by OSL dating[J]. Quaternary Geochronology,49:153-158. doi: 10.1016/j.quageo.2018.03.010

    CrossRef Google Scholar

    [10] HOITINK A J F, NITTROUER J A, PASSALACQUA P, SHAW J B, LANGENDOEN E J, HUISMANS Y, VAN MAREN D S. 2020. Resilience of river deltas in the Anthropocene[J]. Journal of Geophysical Research: Earth Surface,125(3):e2019JF005201. doi: 10.1029/2019JF005201

    CrossRef Google Scholar

    [11] HUANG X Y, GAO M S, HOU G H, ZHANG G, DANG X Z. 2021. Grain size characteristics and seasonal variation of the Ninghai-Xishuanghe lobe tidal flat sediments in southern Yellow River Delta[J]. East China Geology,42(2):229-238 (in Chinese with English abstract).

    Google Scholar

    [12] HUANG X Y, GAO M S, HOU G H, ZHANG G, DANG X Z. 2023. Grain size characteristics and environmental response of marine sediments in Laizhou Bay[J]. East China Geology,44(4):402-414 (in Chinese with English abstract).

    Google Scholar

    [13] IPCC. 2013. Summary for policymakers[C]//Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 2013. Cambridge: Cambridge University Press.

    Google Scholar

    [14] JACOBS M B, HAYS J D. 1972. Paleo-climatic events indicated by mineralogical changes in deep-sea sediments[J]. Journal of Sedimentary Research,42(4):889-898.

    Google Scholar

    [15] JIA J J, GAO S, XUE Y Z. 2002. Grain-size parameters derived from graphic and moment methods: a comparative study[J]. Oceanologia et Limnologia Sinica,33(6):577-582 (in Chinese with English abstract).

    Google Scholar

    [16] JIANG R, YU J J, LAO J X, ZENG J W, PENG B. 2015. Characteristics and implications of the quaternary magnetostratigraphy in borehole ZKA4 from the northern flank of Yangtze River Delta[J]. Geological Survey of China,2(7):30-34 (in Chinese with English abstract).

    Google Scholar

    [17] JIANG J J. 2013. Contrast of stratum division and constructive analysis of fault activities about Quaternary layers in Suzhou City area. China University of Geosciences (Beijing) (in Chinese with English abstract

    Google Scholar

    [18] JIANG Y H, ZHOU Q P, NI H Y, CHEN L D, CHENG H Q, LEI M T, GE W Y, MA T, SHI B, CHENG Z Y, DUAN X J, SU J W, ZHU J Q, XIU L C, XIANG F, ZHU Z M, FENG N Q, XIE Z S, TAN J M, PENG K, GUO S Q, FU Y P, REN H Y, SUN J P, YANG Q, ZHU J L, WANG D H, LI M H, LIU G N, FAN C Z, WANG X F, SHI Y J, WANG H M, DONG X Z, CHEN H Y, HAO S F, DENG Y M, LI Y, XIAO Z Y, YANG H, LIU L, JIN Y, ZHANG H, MEI S J, QI Q J, LÜ J S, HOU L L, CHEN G, CHEN Z, JIA Z Y. 2023. Progress of environmental geological investigation and research in the Yangtze River Economic Zone[J]. East China Geology,44(3):239-261 (in Chinese with English abstract).

    Google Scholar

    [19] KRUMBEIN W C. 1934. Size frequency distributions of sediments[J]. Journal of Sedimentary Research,4(2):65-77.

    Google Scholar

    [20] LI G X, LI P, LIU Y, QIAO L L, MA Y Y, XU J S, YANG Z G. 2014. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum[J]. Earth-Science Reviews,139:390-405. doi: 10.1016/j.earscirev.2014.09.007

    CrossRef Google Scholar

    [21] LIU X M, LUO Y. 2013. Application of grain size analysis in sediments research[J]. Experimental Technology and Management,30(8):20-23 (in Chinese with English abstract).

    Google Scholar

    [22] LIU J S, XU H Z, JIANG Y M, WANG J, HE X J. 2020. Mesozoic and Cenozoic basin structure and tectonic evolution in the East China Sea basin[J]. Acta Geologica Sinica,94(3):675-691 (in Chinese with English abstract).

    Google Scholar

    [23] LIU X G, YANG J W, HU L, XIA B, SUN F R, WANG J, DONG J L. 2023. Research on quaternary multiple stratigraphic division of ZKA02 in the north flank of the Yangtze River Delta[J]. Journal of Stratigraphy,47(1):49-58 (in Chinese with English abstract).

    Google Scholar

    [24] MIAO Q Y, ZHU Z G, CHEN H G, ZONG K H, LUO D, WU J Q, PAN M B. 2017. Classification of Quaternary stratigraphic structures and comparison of sedimentary characteristics on both sides of the Yangtze River in the Zhenjiang area[J]. East China Geology, 38(3): 175-183. (in Chinese with English abstract

    Google Scholar

    [25] MIAO W D, LI S J, FENG J S, GAO L, E J. 2016. Stratigraphic division of NB5 core in the Yangtze delta area and its environmental change information[J]. Geology in China,43(6):2022-2035 (in Chinese with English abstract).

    Google Scholar

    [26] MIAO W D, LI S J, WANG R H. 2008. Stratigraphic and paleomagnetic characteristics revealed by the J9 hole in the north flank of the Yangtze River delta[J]. Geology in China,35(3):489-495 (in Chinese with English abstract).

    Google Scholar

    [27] OGBE O B. 2021. Reservoir sandstone grain-size distributions: implications for sequence stratigraphic and reservoir depositional modelling in Otovwe field, onshore Niger Delta Basin, Nigeria[J]. Journal of Petroleum Science and Engineering,203:108639. doi: 10.1016/j.petrol.2021.108639

    CrossRef Google Scholar

    [28] SONG B, LI Z, SAITO Y, OKUNO J, LI Z, LU A Q, HUA D, LI J, LI Y X, NAKASHIMA R. 2013. Initiation of the Changjiang (Yangtze) delta and its response to the mid-Holocene sea level change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 388: 81-97.

    Google Scholar

    [29] SPRATT R M, LISIECKI L E. 2016. A Late Pleistocene sea level stack[J]. Climate of the Past,12(4):1079-1092. doi: 10.5194/cp-12-1079-2016

    CrossRef Google Scholar

    [30] UDDEN J A. 1898. The mechanical composition of wind deposits[M]. Augustana: Augustana Library Publications, 1-69.

    Google Scholar

    [31] WANG T. 2010. Environmental changes and effects of human activities in Nantong area, Jiangsu Province of China SINCE 7000 a BP[J]. Resources and Environment in the Yangtze Basin,19(S2):193-202 (in Chinese with English abstract).

    Google Scholar

    [32] WANG Z Q. 2016. Stratigraphic subdivision and transgressions analysis of quaternary in south Jiangsu province[D]. Beijing: China University of Geosciences (Beijing) (in Chinese with English abstract).

    Google Scholar

    [33] WANG Y, GUO B Y, GUO D F, ZHANG B, SU J W, DAI J C. 2023. Quaternary sedimentary characteristics and paleochannel evolution in the Anqing valley of the Yangtze River[J]. East China Geology,44(3):300-312 (in Chinese with English abstract).

    Google Scholar

    [34] WANG Z H, JONES B G, CHEN T, ZHAO B C, ZHAN Q. 2013. A raised OIS 3 sea level recorded in coastal sediments, southern Changjiang delta plain, China[J]. Quaternary Research,79(3):424-438. doi: 10.1016/j.yqres.2013.03.002

    CrossRef Google Scholar

    [35] WANG P X, MIN Q B, BIAN Y H, CHENG X R. 1981. Strata of quaternary transgressions in East China: a preliminary study[J]. Acta Geologica Sinica,55(1):1-13 (in Chinese with English abstract).

    Google Scholar

    [36] WANG J T, WANG P X. 1980. Relationship between sea-level changes and climatic fluctuations in East China since late Pleistocene[J]. Acta Geographica Sinica,35(4):299-312 (in Chinese with English abstract).

    Google Scholar

    [37] WANG H, ZHENG X, QIAN P, WU C, RENG S F, ZHAO Q. 2021. An overview on the First Hard Soil Layer(FHSL) of the Late Pleistocene in the Yangtze River Delta[J]. Quaternary Sciences,41(6):1771-1780 (in Chinese with English abstract).

    Google Scholar

    [38] WEI Z X. 2004. Quaternary environmental evolution in eastern Yangtze Delta: coupling of neotectonic movement, paleoclimate and sea-level fluctuation[D]. Shanghai: East China Normal University (in Chinese with English abstract).

    Google Scholar

    [39] WENTWORTH C K. 1922. A scale of grade and class terms for clastic sediments[J]. The Journal of Geology,30(5):377-392. doi: 10.1086/622910

    CrossRef Google Scholar

    [40] XU L Q, XU F, ZHOU T F. 2015. Grain-size features of lacustrine sediments from Chaohu Lake and its sedimentary Implications[J]. Scientia Geographica Sinica,35(10):1318-1324 (in Chinese with English abstract).

    Google Scholar

    [41] YAN L. 2012. Grain size distribution and its environmental significance of Nanton since the quaternary[D]. Beijing: China University of Geosciences (Beijing) (in Chinese with English abstract).

    Google Scholar

    [42] YUE Y F, TANG L C, YU K F, HUANG R Y. 2024. Coral records of mid-Holocene sea-level highstands and climate responses in the northern South China Sea[J]. Acta Oceanologica Sinica,43(2):43-57. doi: 10.1007/s13131-023-2264-9

    CrossRef Google Scholar

    [43] ZHANG X, DALRYMPLE R W, LIN C M. 2018. Facies and stratigraphic architecture of the late Pleistocene to early Holocene tide-dominated paleo-Changjiang (Yangtze River) delta[J]. GSA Bulletin,130(3-4):455-483. doi: 10.1130/B31663.1

    CrossRef Google Scholar

    [44] ZHANG W, DU D D, LI Z W, WU W Y, LI X J, BAI Y H. 2022. Grain size characteristics of sediments in sandy land around the Poyang Lake and its influencing factors[J]. Journal of Desert Research,42(5):122-132 (in Chinese with English abstract).

    Google Scholar

    [45] ZHANG J Q, TANG L L, ZHOU H. 2008. The response to the variety of paleoclimate and sea level in the East China Sea after the late Pleistocence[J]. Transactions of Oceanology and Limnology,(1):25-31 (in Chinese with English abstract).

    Google Scholar

    [46] ZHANG X N, ZHANG H C, CHANG F Q, XIE P, LI H Y, WU H, OUYANG C T, LIU F W, PENG W, ZHANG Y, LIU Q, DUAN L Z, ASHRAF U. 2021. Long-range transport of Aeolian deposits during the last 32 kyr inferred from rare earth elements and grain-size analysis of sediments from Lake Lugu, Southwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 567: 110248.

    Google Scholar

    [47] ZHAO X T, GENG X S, ZHANG J W. 1979. Sea level changes of the eastern China during the past 20000 years[J]. Acta Oceanologica Sinica,1(2):269-281 (in Chinese with English abstract).

    Google Scholar

    [48] ZHAO B C, WANG Z H, CHEN J, CHEN Z Y. 2008. Marine sediment records and relative sea level change during late Pleistocene in the Changjiang delta area and adjacent continental shelf[J]. Quaternary International,186(1):164-172. doi: 10.1016/j.quaint.2007.08.006

    CrossRef Google Scholar

    [49] 姜佳佳. 2013. 苏州地区第四纪地层划分对比与断裂构造活动性分析[D]. 北京:中国地质大学(北京).

    Google Scholar

    [50] 范天来, 范育新. 2010. 频率分布曲线和概率累积曲线在沉积物粒度数据分析中应用的对比[J]. 甘肃地质,19(2):32-37. doi: 10.11928/j.issn.1001-7410.2023.01.03

    CrossRef Google Scholar

    [51] 高磊, 隆浩. 2023. MIS5以来长江三角洲地区沉积环境演变的光释光年代证据[J]. 第四纪研究,43(1):33-45.

    Google Scholar

    [52] 黄学勇, 高茂生, 侯国华, 张戈, 党显璋. 2021. 黄河三角洲南部宁海—西双河叶瓣潮滩沉积物粒度特征与季节变化分析[J]. 华东地质,42(2):229-238.

    Google Scholar

    [53] 黄学勇, 高茂生, 侯国华, 张戈, 党显璋. 2023. 莱州湾海洋沉积物粒度特征及其环境响应分析[J]. 华东地质,44(4):402-414. doi: 10.3321/j.issn:0029-814X.2002.06.002

    CrossRef Google Scholar

    [54] 贾建军, 高抒, 薛允传. 2002. 图解法与矩法沉积物粒度参数的对比[J]. 海洋与湖沼,33(6):577-582.

    Google Scholar

    [55] 蒋仁, 于俊杰, 劳金秀, 曾建威, 彭博. 2015. 长江三角洲北翼ZKA4钻孔剖面第四纪磁性地层特征及其意义[J]. 中国地质调查,2(7):30-34.

    Google Scholar

    [56] 姜月华, 周权平, 倪化勇, 陈立德, 程和琴, 雷明堂, 葛伟亚, 马腾, 施斌, 程知言, 段学军, 苏晶文, 朱锦旗, 修连存, 向芳, 朱志敏, 冯乃琦, 谢忠胜, 谭建民, 彭轲, 郭盛乔, 伏永朋, 任海彦, 孙建平, 杨强, 朱继良, 王东辉, 李明辉, 刘广宁, 范晨子, 王新峰, 史玉金, 王寒梅, 董贤哲, 陈焕元, 郝社峰, 邓娅敏, 李云, 肖则佑, 杨海, 刘林, 金阳, 张鸿, 梅世嘉, 齐秋菊, 吕劲松, 侯莉莉, 陈刚, 陈孜, 贾正阳. 2023. 长江经济带环境地质调查研究进展[J]. 华东地质,44(3):239-261.

    Google Scholar

    [57] 刘秀明, 罗祎. 2013. 粒度分析在沉积物研究中的应用[J]. 实验技术与管理,30(8):20-23. doi: 10.3969/j.issn.1002-4956.2013.08.007

    CrossRef Google Scholar

    [58] 刘金水, 许怀智, 蒋一鸣, 王军, 何新建. 2020. 东海盆地中、新生代盆架结构与构造演化[J]. 地质学报,94(3):675-691. doi: 10.3969/j.issn.0001-5717.2020.03.001

    CrossRef Google Scholar

    [59] 苗巧银,朱志国, 陈火根, 宗开红, 骆丁, 武健强, 潘明宝. 2017. 镇江地区长江南北两岸第四纪地层结构划分与沉积特征对比[J].华东地质, 38(3): 175-183.

    Google Scholar

    [60] 缪卫东, 李世杰, 冯金顺, 高立, 鄂建. 2016. 长江三角洲NB5孔第四纪地层划分及环境变化信息[J]. 中国地质,43(6):2022-2035. doi: 10.12029/gc20160613

    CrossRef Google Scholar

    [61] 王涛. 2010. 近7000年来南通地区环境演变及人类活动影响[J]. 长江流域资源与环境,19(S2):193-202.

    Google Scholar

    [62] 王子奇. 2016. 苏南地区第四纪地层划分与海侵事件分析[D]. 北京: 中国地质大学(北京).

    Google Scholar

    [63] 王毅, 郭炳跃, 郭东峰, 张斌, 苏晶文, 戴俊成. 2023. 长江安庆段河谷区第四系沉积特征与古河道演化[J]. 华东地质,44(3):300-312.

    Google Scholar

    [64] 汪品先, 闵秋宝, 卞云华, 成鑫荣. 1981. 我国东部第四纪海侵地层的初步研究[J]. 地质学报,55(1):1-13.

    Google Scholar

    [65] 王靖泰, 汪品先. 1980. 中国东部晚更新世以来海面升降与气候变化的关系[J]. 地理学报,35(4):299-312. doi: 10.3321/j.issn:0375-5444.1980.04.003

    CrossRef Google Scholar

    [66] 王辉, 郑祥民, 钱鹏, 吴超, 任少芳, 赵庆. 2021. 长江三角洲晚更新世第一硬土层研究进展[J]. 第四纪研究,41(6):1771-1780. doi: 10.11928/j.issn.1001-7410.2021.06.22

    CrossRef Google Scholar

    [67] 魏子新. 2004. 长江三角洲东部第四纪沉积环境演化: 新构造运动、古气候与海平面变化的耦合作用[D]. 上海: 华东师范大学.

    Google Scholar

    [68] 徐利强, 徐芳, 周涛发. 2015. 巢湖沉积物粒度特征及其沉积学意义[J]. 地理科学,35(10):1318-1324.

    Google Scholar

    [69] 颜乐. 2012. 南通市第四纪沉积物粒度特征及沉积环境分析[D]. 北京: 中国地质大学(北京).

    Google Scholar

    [70] 张雯, 杜丁丁, 李志文, 吴汪洋, 李向洁, 白永会. 2022. 鄱阳湖沙地沉积物粒度特征及其影响因素[J]. 中国沙漠,42(5):122-132.

    Google Scholar

    [71] 张军强, 唐璐璐, 邹昊. 2008. 晚更新世以来古气候与海平面变化在东海地区的响应[J]. 海洋湖沼通报,(1):25-31. doi: 10.3969/j.issn.1003-6482.2008.01.004

    CrossRef Google Scholar

    [72] 赵希涛, 耿秀山, 张景文. 1979. 中国东部20000年来的海平面变化[J]. 海洋学报,1(2):269-281.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(150) PDF downloads(20) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint