2024 Vol. 45, No. 2
Article Contents

MEI Shijia, JIANG Yuehua, YANG Hai, ZHOU Quanping, CHEN Zi, JIA Zhengyang, JIN Yang, ZHANG Hong, ZHANG Bo. 2024. Deformation and seepage characteristics of the bank collapse site based on WFBG technology—a case study of Zhinan Village, Yangzhong. East China Geology, 45(2): 228-239. doi: 10.16788/j.hddz.32-1865/P.2024.02.008
Citation: MEI Shijia, JIANG Yuehua, YANG Hai, ZHOU Quanping, CHEN Zi, JIA Zhengyang, JIN Yang, ZHANG Hong, ZHANG Bo. 2024. Deformation and seepage characteristics of the bank collapse site based on WFBG technology—a case study of Zhinan Village, Yangzhong. East China Geology, 45(2): 228-239. doi: 10.16788/j.hddz.32-1865/P.2024.02.008

Deformation and seepage characteristics of the bank collapse site based on WFBG technology—a case study of Zhinan Village, Yangzhong

More Information
  • The riverbank collapse poses a serious threat to the safety of urban areas and critical infrastructures along the Yangtze River. At present, the commonly used monitoring techniques expose some problems, such as limited parameters and low monitoring frequency. To improve the effectiveness of riverbank collapse monitoring and early warning, a real-time monitoring approach based on weak fiber Bragg grating (WFBG) technology is introduced. This method employs weak fiber brag grating sensors as measuring units, and then utilizes time-division/wavelength-division hybrid multiplexing demodulation techniques together with some relevant conversion formulas to distinguish groundwater flow velocities under active heat source. A real-time monitoring system of riverbank collapse site can be set up for collecting multiple parameters simultaneously, including strain, temperature, displacement, flow velocity, and so on. We analyzed the monitoring data of WD02 borehole, which was located at the Zhinan Village riverbank collapse site in Yangzhong City. The results showed that there were two abnormal flow velocity zones at the depth of 20~30 m and 62~80 m, where the follow velocities reached 2.98×10-6 m/s and 3.4×10-6 m/s, respectively, nearly twice of the values observed in adjacent layers. Consequently, it is necessary to pay more attention to these two abnormal zones. Typical practice case shows that this technology has the advantages of accurate positioning, abundant data collecting and real-time monitoring even under extreme weather conditions. This research provides a cutting-edge and reliable alternative solution for the monitoring and early warning of riverbank collapse disasters.
  • 加载中
  • [1] 夏军强, 邓珊珊. 冲积河流崩岸机理、数值模拟及预警技术研究进展[J]. 长江科学院院报, 2021, 38(11): 1-10.

    Google Scholar

    XIA J Q, DENG S S. Review on bank erosion processes in alluvial rivers: mechanism, modelling and early-warning[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(11): 1-10.

    Google Scholar

    [2] 姜月华, 程和琴, 周权平, 等. 重大水利工程对长江中下游干流河槽和岸线地质环境影响研究[J]. 中国地质, 2021, 48(6): 1681-1696.

    Google Scholar

    JIANG Y H, CHENG H Q, ZHOU Q P, et al. The influence of major water conservancy projects on the geological environment of channel and shoreline in the middle and lower reaches of the Yangtze River[J]. Geology in China, 2021, 48(6): 1681-1696.

    Google Scholar

    [3] 许全喜, 董炳江, 袁晶, 等. 三峡工程运用后长江中下游河道冲刷特征及其影响[J]. 湖泊科学, 2023, 35(2): 650-661.

    Google Scholar

    XU Q X, DONG B J, YUAN J, et al. Scouring effect of the middle and lower reaches of the Yangtze River and its impact after the impoundment of the Three Gorges Project[J]. Journal of Lake Sciences, 2023, 35(2): 650-661.

    Google Scholar

    [4] 刘世振, 冯国正, 张亭, 等. 一种基于水-雨-工情的新型堤防崩岸综合监测技术应用及探讨[J]. 水利水电技术(中英文), 2022, 53(S1): 107-110.

    Google Scholar

    LIU S Z, FENG G Z, ZHANG T, et al. Application and discussion of a new comprehensive monitoring technology for bank collapse monitoring based on hydrological condition and rain conditions and engineering conditions[J]. Water Resources and Hydropower Engineering, 2022, 53(S1): 107-110.

    Google Scholar

    [5] 李洁, 夏军强, 张晓雷, 等. 黄河下游准平衡状态下平滩流量及面积与水沙条件的关系[J]. 泥沙研究, 2015, 40(5): 37-43.

    Google Scholar

    LI J, XIA J Q, ZHANG X L, et al. Relationships between bankfull discharge-area and flow-sediment condition in Lower Yellow River under quasi equili-brium[J]. Journal of Sediment Research, 2015, 40(5): 37-43.

    Google Scholar

    [6] 冯传勇, 郑亚慧, 周儒夫. 长江中下游崩岸监测技术应用研究[J]. 水利水电快报, 2018, 39(3): 47-50, 52.

    Google Scholar

    FENG C Y, ZHENG Y H, ZHOU R F. Application research on bank collapse monitoring technology in the middle and lower reaches of the Yangtze River[J]. Express Water Resources & Hydropower Information, 2018, 39(3): 47-50, 52.

    Google Scholar

    [7] 邓宇, 赖修蔚, 郭亮. 长江中下游崩岸监测及分析研究[J]. 人民长江, 2018, 49(15): 13-17.

    Google Scholar

    DENG Y, LAI X W, GUO L. Monitoring and analysis of bank collapse in middle and lower reaches of Yangtze River[J]. Yangtze River, 2018, 49(15): 13-17.

    Google Scholar

    [8] 高超. 基于MSS/TM/ETM图像的长江马芜铜段江心洲演化研究[J]. 遥感技术与应用, 2012, 27(1): 135-141.

    Google Scholar

    GAO C. Study on channel islands in Ma-Wu-Tong section of Yangtze River based on MSS/TM/ETM remote sensing image[J]. Remote Sensing Technology and Application, 2012, 27(1): 135-141.

    Google Scholar

    [9] ZOLINA T, STRELKOV S, KUPCHIKOVA N, et al. Monitoring of the collapse of the shores of reservoirs and the technology of their surface and deep fixing[C]. E3S Web of Conferences, 2020, 157: 02011.

    Google Scholar

    [10] 靳婷婷, 段学军, 邹辉. 岸线资源利用变化与影响因素——以长江南京段为例[J]. 华东地质, 2021, 42(1): 9-20.

    Google Scholar

    JIN T T, DUAN X J, ZOU H. Change and influencing factors of shoreline resources utilization in the Nanjing section of the Yangtze River[J]. East China Geology, 2021, 42(1): 9-20.

    Google Scholar

    [11] HEMMELDER S, MARRA W, MARKIES H, et al. Monitoring river morphology & bank erosion using UAV imagery—a case study of the river Buëch, Hautes-Alpes, France[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73: 428-437.

    Google Scholar

    [12] 刘世振, 樊小涛, 冯国正, 等. 现代高时空分辨率崩岸应急监测技术研究进展与展望[J]. 长江科学院院报, 2019, 36(10): 85-88, 93.

    Google Scholar

    LIU S Z, FAN X T, FENG G Z, et al. Modern emergency monitoring technology for bank collapse with high spatio-temporal resolution: review and pros-pect[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 85-88, 93.

    Google Scholar

    [13] 白宇, 郑志忠, 修连存, 等. 无人机高光谱遥感技术在自然资源调查中的应用进展[J]. 华东地质, 2022, 43(4): 527-538.

    Google Scholar

    BAI Y, ZHENG Z Z, XIU L C, et al. UAV hyperspectral remote sensing technology and its application progress in natural resources survey[J]. East China Geology, 2022, 43(4): 527-538.

    Google Scholar

    [14] LYONS N J, STAREK M J, WEGMANN K W, et al. Bank erosion of legacy sediment at the transition from vertical to lateral stream incision[J]. Earth Surface Processes and Landforms, 2015, 40(13): 1764-1778.

    Google Scholar

    [15] 胡维忠. 长江中下游干流河道崩岸状况及其防治[J]. 长江技术经济, 2020, 4(1): 17-20.

    Google Scholar

    HU W Z. Bank collapse and its prevention in the main stream of the middle and lower reaches of the Yangtze River[J]. Technology and Economy of Changjiang, 2020, 4(1): 17-20.

    Google Scholar

    [16] 张燕君, 谢晓鹏, 毕卫红. 基于弱光栅的高速高复用分布式温度传感网络[J]. 中国激光, 2013, 40(4): 0405006. ZHANG Y J, XIE X P, BI W H. High-speed high-multiplexing distributed temperature sensor network based on weak-reflection fiber gratings[J]. Chinese Journal of Lasers, 2013, 40(4): 0405006.

    Google Scholar

    [17] 陈考奎, 李院峰, 周次明, 等. 基于弱光纤布拉格光栅阵列的桥梁应变测量[J]. 激光与光电子学进展, 2022, 59(7): 0706003. CHEN K K, LI Y F, ZHOU C M, et al. Bridge strain measurement based on weak fiber Bragg grating array[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0706003.

    Google Scholar

    [18] 廖令军, 莫成, 岳琪迪, 等. 基于弱光栅技术的基坑围护结构变形自动化监测研究[J]. 建筑结构, 2021, 51(S1): 1963-1969.

    Google Scholar

    LIAO L J, MO C, YUE Q D, et al. Research on deformation automatic monitoring of foundation pit retaining structure based on weak FBG[J]. Building Structure, 2021, 51(S1): 1963-1969.

    Google Scholar

    [19] ZHANG C, TAO Y, TONG X L, et al. Application of the encapsulation technology of WFBG distributed array sensors in track monitoring system[C]//26th International Conference on Optical Fiber Sensors. Lausanne: Optica Publishing Group, 2018: WF39.

    Google Scholar

    [20] 亓乐, 孟志浩, 孙长帅, 等. 基于弱光栅技术的钢管桩静载荷试验[J]. 建筑结构, 2021, 51(S2): 1645-1650.

    Google Scholar

    QI L, MENG Z H, SUN C S, et al. Static load test of steel pipe pile based on weak-reflection fiber grat-ings[J]. Building Structure, 2021, 51(S2): 1645-1650.

    Google Scholar

    [21] WANG X C, YAN Z J, WANG F, et al. A distributed and key-position fiber sensing system based on LPFG and WFBG assisted OTDR[C]//Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 2014. Barcelona: Optica Publishing Group, 2014: BW3D.7.

    Google Scholar

    [22] YE X, ZHU H H, WANG J, et al. Subsurface multi-physical monitoring of a reservoir landslide with the fiber-optic nerve system[J]. Geophysical Research Letters, 2022, 49(11): e2022GL098211.

    Google Scholar

    [23] 何健辉, 张进才, 陈勇, 等. 基于弱光栅技术的地面沉降自动化监测系统[J]. 水文地质工程地质, 2021, 48(1): 146-153.

    Google Scholar

    HE J H, ZHANG J C, CHEN Y, et al. Automatic land subsidence monitoring system based on weak-reflection fiber gratings[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 146-153.

    Google Scholar

    [24] DE MOURA C C, DE OLIVEIRA V, KALINOWSKI H J. Characterization of encapsulated temperature sensors based on Bragg gratings[C]//26th International Conference on Optical Fiber Sensors. Lausanne: Optica Publishing Group, 2018: ThE30.

    Google Scholar

    [25] YAN J F, SHI B, ZHU H H, et al. A quantitative monitoring technology for seepage in slopes using DTS[J]. Engineering Geology, 2015, 186: 100-104.

    Google Scholar

    [26] 戚海博, 顾凯, 张博, 等. 基于单孔热响应测试的地下水渗流场评价——以扬中指南村崩岸场地为例[J]. 工程地质学报, 2022, 30(5): 1713-1720.

    Google Scholar

    QI H B, GU K, ZHANG B, et al. Evaluation of groundwater flow field based on single-borehole thermal response test——a case study of Zhinan village bank collapse site[J]. Journal of Engineering Geology, 2022, 30(5): 1713-1720.

    Google Scholar

    [27] 段超喆, 施斌, 曹鼎峰, 等. 一种准分布式内加热刚玉管FBG渗流速率监测方法[J]. 防灾减灾工程学报, 2018, 38(3): 504-510.

    Google Scholar

    DUAN C Z, SHI B, CAO D F, et al. A quasi-distributed seepage velocity monitoring method using FBG embedded in internal heated alundum tube[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(3): 504-510.

    Google Scholar

    [28] 朱鸿鹄, 殷建华, 张林, 等. 大坝模型试验的光纤传感变形监测[J]. 岩石力学与工程学报, 2008, 27(6): 1188-1194.

    Google Scholar

    ZHU H H, YIN J H, ZHANG L, et al. Deformation monitoring of dam model test by optical fiber sen-sors[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1188-1194.

    Google Scholar

    [29] 何斌, 徐剑飞, 何宁, 等. 分布式光纤传感技术在高面板堆石坝内部变形监测中的应用[J]. 岩土工程学报, 2023, 45(3): 627-633.

    Google Scholar

    HE B, XU J F, HE N, et al. Application of inner deformation monitoring of concrete face rockfill dams based on distributed optical fiber technology[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 627-633.

    Google Scholar

    [30] 刘春, 施斌, 吴静红, 等. 排灌水条件下砂黏土层变形响应模型箱试验[J]. 岩土工程学报, 2017, 39(9): 1746-1752.

    Google Scholar

    LIU C, SHI B, WU J H, et al. Model box tests on response of deformation of sand and clay layer under draining-recharging condition[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1746-1752.

    Google Scholar

    [31] 张荫民, 祝连庆, 骆飞, 等. 单FBG双波长掺铒光纤激光器的设计与实验研究[J]. 半导体光电, 2014, 35(5): 789-792.

    Google Scholar

    ZHANG Y M, ZHU L Q, LUO F, et al. Design and experimental study of dual-wavelength erbium-doped fiber laser using single fiber Bragg grating[J]. Semiconductor Optoelectronics, 2014, 35(5): 789-792.

    Google Scholar

    [32] 卢毅, 施斌, 席均, 等. 基于BOTDR的地裂缝分布式光纤监测技术研究[J]. 工程地质学报, 2014, 22(1): 8-13.

    Google Scholar

    LU Y, SHI B, XI J, et al. Field study of BOTDR-based distributed monitoring technology for ground fissures[J]. Journal of Engineering Geology, 2014, 22(1): 8-13.

    Google Scholar

    [33] DIAO N R, LI Q Y, FANG Z H. Heat transfer in ground heat exchangers with groundwater advec-tion[J]. International Journal of Thermal Sciences, 2004, 43(12): 1203-1211.

    Google Scholar

    [34] ZHANG W K, YANG H X, GUO X Q, et al. Investigation on groundwater velocity based on the finite line heat source seepage model[J]. International Journal of Heat and Mass Transfer, 2016, 99: 391-401.

    Google Scholar

    [35] BAKKER M, CALJÉ R, SCHAARS F, et al. An active heat tracer experiment to determine groundwater velocities using fiber optic cables installed with direct push equipment[J]. Water Resources Research, 2015, 51(4): 2760-2772.

    Google Scholar

    [36] 杨达源, 黄贤金, 施利锋, 等. 1973~2017年扬中市江岸冲淤遥感监测及古河道塌江分析[J]. 长江流域资源与环境, 2018, 27(12): 2796-2804.

    Google Scholar

    YANG D Y, HUANG X J, SHI L F, et al. Erosion and siltation monitoring along the river bank of Yangzhong City during 1973-2017 by remote sensing and analyzing the bank collapse[J]. Resources and Environment in the Yangtze Basin, 2018, 27(12): 2796-2804.

    Google Scholar

    [37] 于俊杰, 王明路, 魏乃颐, 等. 镇江扬中地区工程地质条件及其评价[J]. 地质学刊, 2013, 37(1): 127-131.

    Google Scholar

    YU J J, WANG M L, WEI N Y, et al. On engineering geological conditions and evaluation of Yangzhong area in Zhenjiang[J]. Journal of Geology, 2013, 37(1): 127-131.

    Google Scholar

    [38] 赵维阳, 胡勇, 张胡. 长江下游过江隧道工程河段极限冲刷深度研究[J]. 水运工程, 2023(1): 120-126.

    Google Scholar

    ZHAO W Y, HU Y, ZHANG H. Maximum scouring depth for river reach of underwater tunnel project in lower reaches of the Yangtze River[J]. Port & Waterway Engineering, 2023(1): 120-126.

    Google Scholar

    [39] 姚仕明, 胡呈维, 渠庚. 三峡水库下游河道演变与生态治理研究进展[J]. 长江科学院院报, 2021, 38(10): 16-26.

    Google Scholar

    YAO S M, HU C W, QU G. Research advances in river evolution and ecological regulation in the downstream of the Three Gorges Reservoir[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(10): 16-26.

    Google Scholar

    [40] 栾华龙, 刘同宦, 高华峰, 等. 新水沙情势下长江中下游干流岸线保护研究——以扬中市2017年江堤崩岸治理为例[J]. 人民长江, 2019, 50(8): 14-19.

    Google Scholar

    LUAN H L, LIU T H, GAO H F, et al. River bank protection of middle and lower reaches of Yangtze River under new flow and sediment condition: case of levee collapse in Yangzhong City in 2017[J]. Yangtze River, 2019, 50(8): 14-19.

    Google Scholar

    [41] 李强, 王乃茹, 曹双, 等. 长江中下游岸滩稳定性评价指标体系构建及应用[J]. 人民长江, 2022, 53(8): 1-8.

    Google Scholar

    LI Q, WANG N R, CAO S, et al. Establishment of beach stability evaluation index system for middle and lower reaches of Changjiang River and its appli-cation[J]. Yangtze River, 2022, 53(8): 1-8.

    Google Scholar

    [42] 潘杰, 杨冬, 朱探, 等. 超临界压力水在垂直上升内螺纹管中的传热特性[J]. 化工学报, 2011, 62(2): 307-314.

    Google Scholar

    PAN J, YANG D, ZHU T, et al. Heat transfer characteristics of supercritical pressure water in vertical upward rifled tube[J]. CIESC Journal, 2011, 62(2): 307-314.

    Google Scholar

    [43] 殷术贵, 郭伟科, 黄栋, 等. 流延薄膜传热特性及冷却水量设计的仿真研究[J]. 华南理工大学学报(自然科学版), 2021, 49(12): 23-34.

    Google Scholar

    YIN S G, GUO W K, HUANG D, et al. Simulation study on heat transfer characteristics and cooling water design for the casting film[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(12): 23-34.

    Google Scholar

    [44] 罗龙洪, 苏长城, 应强, 等. 长江扬中河段指南村窝崩应急治理及效果分析[J]. 江苏水利, 2020(2): 25-28.

    Google Scholar

    LUO L H, SU C C, YING Q, et al. Emergency treatment and effect analysis of arc collapsing in Zhinan Village, Yangzhong Reach of the Yangtze River[J]. Jiangsu Water Resources, 2020(2): 25-28.

    Google Scholar

    [45] 周侗, 陈伟伦, 王俊, 等. 波动水位影响下的滨岸稳定性预警技术研究[J]. 中国农村水利水电, 2023(12): 77-84, 93.

    Google Scholar

    ZHOU T, CHEN W L, WANG J, et al. Research on forewarning technology of estuary riverbank stability under the influence of fluctuating river level[J]. China Rural Water and Hydropower, 2023(12): 77-84, 93.

    Google Scholar

    [46] 孙启航, 夏军强, 邓珊珊, 等. 基于圆弧与平面滑动模式的上荆江崩岸过程模拟对比分析[J]. 应用基础与工程科学学报, 2023, 31(1): 38-51.

    Google Scholar

    SUN Q H, XIA J Q, DENG S S, et al. Comparison of simulated bank erosion processes in the upper Jingjiang reach using the circular and planar sliding modes[J]. Journal of Basic Science and Engineering, 2023, 31(1): 38-51.

    Google Scholar

    [47] 徐富刚, 杨斌, 黎良辉, 等. 水流作用下临水岸坡稳定性计算模型[J]. 中国农村水利水电, 2020(1): 169-175, 180.

    Google Scholar

    XU F G, YANG B, LI L H, et al. Model for the stability calculation of waterside slope under water flow[J]. China Rural Water and Hydropower, 2020(1): 169-175, 180.

    Google Scholar

    [48] 李诺, 夏军强, 邓珊珊, 等. 长江中游荆江河段典型断面崩岸预警方法及应用[J]. 人民长江, 2023, 54(3): 9-15.

    Google Scholar

    LI N, XIA J Q, DENG S S, et al. Study on early-warning method of bank collapse at typical sections of Jingjiang Reach of Middle Yangtze River and its application[J]. Yangtze River, 2023, 54(3): 9-15.

    Google Scholar

    [49] 黎良辉, 罗星, 赵旭, 等. 降雨条件下临水岸坡失稳试验[J]. 南水北调与水利科技(中英文), 2021, 19(4): 758-767.

    Google Scholar

    LI L H, LUO X, ZHAO X, et al. Experiment on water bank instability under rainfall[J]. South-to-North Water Transfers and Water Science & Technology, 2021, 19(4): 758-767.

    Google Scholar

    [50] 况卫明, 黎良辉, 赖敬飞, 等. 水位骤变条件下河流崩岸模型试验及机理研究[J]. 水电能源科学, 2021, 39(1): 130-133.

    Google Scholar

    KUANG W M, LI L H, LAI J F, et al. Model test and mechanism study of river bank collapse at sudden change of water level[J]. Water Resources and Power, 2021, 39(1): 130-133.

    Google Scholar

    [51] 张家豪, 周丰年, 程和琴, 等. 多模态传感器系统在河槽边坡地貌测量中的应用[J]. 测绘通报, 2018(3): 102-107.

    Google Scholar

    ZHANG J H, ZHOU F N, CHENG H Q, et al. Application of multimodal sensor system in channel slope topographic surveying[J]. Bulletin of Surveying and Mapping, 2018(3): 102-107.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(257) PDF downloads(32) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint