[1]
|
夏军强, 邓珊珊. 冲积河流崩岸机理、数值模拟及预警技术研究进展[J]. 长江科学院院报, 2021, 38(11): 1-10.
Google Scholar
XIA J Q, DENG S S. Review on bank erosion processes in alluvial rivers: mechanism, modelling and early-warning[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(11): 1-10.
Google Scholar
|
[2]
|
姜月华, 程和琴, 周权平, 等. 重大水利工程对长江中下游干流河槽和岸线地质环境影响研究[J]. 中国地质, 2021, 48(6): 1681-1696.
Google Scholar
JIANG Y H, CHENG H Q, ZHOU Q P, et al. The influence of major water conservancy projects on the geological environment of channel and shoreline in the middle and lower reaches of the Yangtze River[J]. Geology in China, 2021, 48(6): 1681-1696.
Google Scholar
|
[3]
|
许全喜, 董炳江, 袁晶, 等. 三峡工程运用后长江中下游河道冲刷特征及其影响[J]. 湖泊科学, 2023, 35(2): 650-661.
Google Scholar
XU Q X, DONG B J, YUAN J, et al. Scouring effect of the middle and lower reaches of the Yangtze River and its impact after the impoundment of the Three Gorges Project[J]. Journal of Lake Sciences, 2023, 35(2): 650-661.
Google Scholar
|
[4]
|
刘世振, 冯国正, 张亭, 等. 一种基于水-雨-工情的新型堤防崩岸综合监测技术应用及探讨[J]. 水利水电技术(中英文), 2022, 53(S1): 107-110.
Google Scholar
LIU S Z, FENG G Z, ZHANG T, et al. Application and discussion of a new comprehensive monitoring technology for bank collapse monitoring based on hydrological condition and rain conditions and engineering conditions[J]. Water Resources and Hydropower Engineering, 2022, 53(S1): 107-110.
Google Scholar
|
[5]
|
李洁, 夏军强, 张晓雷, 等. 黄河下游准平衡状态下平滩流量及面积与水沙条件的关系[J]. 泥沙研究, 2015, 40(5): 37-43.
Google Scholar
LI J, XIA J Q, ZHANG X L, et al. Relationships between bankfull discharge-area and flow-sediment condition in Lower Yellow River under quasi equili-brium[J]. Journal of Sediment Research, 2015, 40(5): 37-43.
Google Scholar
|
[6]
|
冯传勇, 郑亚慧, 周儒夫. 长江中下游崩岸监测技术应用研究[J]. 水利水电快报, 2018, 39(3): 47-50, 52.
Google Scholar
FENG C Y, ZHENG Y H, ZHOU R F. Application research on bank collapse monitoring technology in the middle and lower reaches of the Yangtze River[J]. Express Water Resources & Hydropower Information, 2018, 39(3): 47-50, 52.
Google Scholar
|
[7]
|
邓宇, 赖修蔚, 郭亮. 长江中下游崩岸监测及分析研究[J]. 人民长江, 2018, 49(15): 13-17.
Google Scholar
DENG Y, LAI X W, GUO L. Monitoring and analysis of bank collapse in middle and lower reaches of Yangtze River[J]. Yangtze River, 2018, 49(15): 13-17.
Google Scholar
|
[8]
|
高超. 基于MSS/TM/ETM图像的长江马芜铜段江心洲演化研究[J]. 遥感技术与应用, 2012, 27(1): 135-141.
Google Scholar
GAO C. Study on channel islands in Ma-Wu-Tong section of Yangtze River based on MSS/TM/ETM remote sensing image[J]. Remote Sensing Technology and Application, 2012, 27(1): 135-141.
Google Scholar
|
[9]
|
ZOLINA T, STRELKOV S, KUPCHIKOVA N, et al. Monitoring of the collapse of the shores of reservoirs and the technology of their surface and deep fixing[C]. E3S Web of Conferences, 2020, 157: 02011.
Google Scholar
|
[10]
|
靳婷婷, 段学军, 邹辉. 岸线资源利用变化与影响因素——以长江南京段为例[J]. 华东地质, 2021, 42(1): 9-20.
Google Scholar
JIN T T, DUAN X J, ZOU H. Change and influencing factors of shoreline resources utilization in the Nanjing section of the Yangtze River[J]. East China Geology, 2021, 42(1): 9-20.
Google Scholar
|
[11]
|
HEMMELDER S, MARRA W, MARKIES H, et al. Monitoring river morphology & bank erosion using UAV imagery—a case study of the river Buëch, Hautes-Alpes, France[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73: 428-437.
Google Scholar
|
[12]
|
刘世振, 樊小涛, 冯国正, 等. 现代高时空分辨率崩岸应急监测技术研究进展与展望[J]. 长江科学院院报, 2019, 36(10): 85-88, 93.
Google Scholar
LIU S Z, FAN X T, FENG G Z, et al. Modern emergency monitoring technology for bank collapse with high spatio-temporal resolution: review and pros-pect[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(10): 85-88, 93.
Google Scholar
|
[13]
|
白宇, 郑志忠, 修连存, 等. 无人机高光谱遥感技术在自然资源调查中的应用进展[J]. 华东地质, 2022, 43(4): 527-538.
Google Scholar
BAI Y, ZHENG Z Z, XIU L C, et al. UAV hyperspectral remote sensing technology and its application progress in natural resources survey[J]. East China Geology, 2022, 43(4): 527-538.
Google Scholar
|
[14]
|
LYONS N J, STAREK M J, WEGMANN K W, et al. Bank erosion of legacy sediment at the transition from vertical to lateral stream incision[J]. Earth Surface Processes and Landforms, 2015, 40(13): 1764-1778.
Google Scholar
|
[15]
|
胡维忠. 长江中下游干流河道崩岸状况及其防治[J]. 长江技术经济, 2020, 4(1): 17-20.
Google Scholar
HU W Z. Bank collapse and its prevention in the main stream of the middle and lower reaches of the Yangtze River[J]. Technology and Economy of Changjiang, 2020, 4(1): 17-20.
Google Scholar
|
[16]
|
张燕君, 谢晓鹏, 毕卫红. 基于弱光栅的高速高复用分布式温度传感网络[J]. 中国激光, 2013, 40(4): 0405006. ZHANG Y J, XIE X P, BI W H. High-speed high-multiplexing distributed temperature sensor network based on weak-reflection fiber gratings[J]. Chinese Journal of Lasers, 2013, 40(4): 0405006.
Google Scholar
|
[17]
|
陈考奎, 李院峰, 周次明, 等. 基于弱光纤布拉格光栅阵列的桥梁应变测量[J]. 激光与光电子学进展, 2022, 59(7): 0706003. CHEN K K, LI Y F, ZHOU C M, et al. Bridge strain measurement based on weak fiber Bragg grating array[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0706003.
Google Scholar
|
[18]
|
廖令军, 莫成, 岳琪迪, 等. 基于弱光栅技术的基坑围护结构变形自动化监测研究[J]. 建筑结构, 2021, 51(S1): 1963-1969.
Google Scholar
LIAO L J, MO C, YUE Q D, et al. Research on deformation automatic monitoring of foundation pit retaining structure based on weak FBG[J]. Building Structure, 2021, 51(S1): 1963-1969.
Google Scholar
|
[19]
|
ZHANG C, TAO Y, TONG X L, et al. Application of the encapsulation technology of WFBG distributed array sensors in track monitoring system[C]//26th International Conference on Optical Fiber Sensors. Lausanne: Optica Publishing Group, 2018: WF39.
Google Scholar
|
[20]
|
亓乐, 孟志浩, 孙长帅, 等. 基于弱光栅技术的钢管桩静载荷试验[J]. 建筑结构, 2021, 51(S2): 1645-1650.
Google Scholar
QI L, MENG Z H, SUN C S, et al. Static load test of steel pipe pile based on weak-reflection fiber grat-ings[J]. Building Structure, 2021, 51(S2): 1645-1650.
Google Scholar
|
[21]
|
WANG X C, YAN Z J, WANG F, et al. A distributed and key-position fiber sensing system based on LPFG and WFBG assisted OTDR[C]//Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 2014. Barcelona: Optica Publishing Group, 2014: BW3D.7.
Google Scholar
|
[22]
|
YE X, ZHU H H, WANG J, et al. Subsurface multi-physical monitoring of a reservoir landslide with the fiber-optic nerve system[J]. Geophysical Research Letters, 2022, 49(11): e2022GL098211.
Google Scholar
|
[23]
|
何健辉, 张进才, 陈勇, 等. 基于弱光栅技术的地面沉降自动化监测系统[J]. 水文地质工程地质, 2021, 48(1): 146-153.
Google Scholar
HE J H, ZHANG J C, CHEN Y, et al. Automatic land subsidence monitoring system based on weak-reflection fiber gratings[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 146-153.
Google Scholar
|
[24]
|
DE MOURA C C, DE OLIVEIRA V, KALINOWSKI H J. Characterization of encapsulated temperature sensors based on Bragg gratings[C]//26th International Conference on Optical Fiber Sensors. Lausanne: Optica Publishing Group, 2018: ThE30.
Google Scholar
|
[25]
|
YAN J F, SHI B, ZHU H H, et al. A quantitative monitoring technology for seepage in slopes using DTS[J]. Engineering Geology, 2015, 186: 100-104.
Google Scholar
|
[26]
|
戚海博, 顾凯, 张博, 等. 基于单孔热响应测试的地下水渗流场评价——以扬中指南村崩岸场地为例[J]. 工程地质学报, 2022, 30(5): 1713-1720.
Google Scholar
QI H B, GU K, ZHANG B, et al. Evaluation of groundwater flow field based on single-borehole thermal response test——a case study of Zhinan village bank collapse site[J]. Journal of Engineering Geology, 2022, 30(5): 1713-1720.
Google Scholar
|
[27]
|
段超喆, 施斌, 曹鼎峰, 等. 一种准分布式内加热刚玉管FBG渗流速率监测方法[J]. 防灾减灾工程学报, 2018, 38(3): 504-510.
Google Scholar
DUAN C Z, SHI B, CAO D F, et al. A quasi-distributed seepage velocity monitoring method using FBG embedded in internal heated alundum tube[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(3): 504-510.
Google Scholar
|
[28]
|
朱鸿鹄, 殷建华, 张林, 等. 大坝模型试验的光纤传感变形监测[J]. 岩石力学与工程学报, 2008, 27(6): 1188-1194.
Google Scholar
ZHU H H, YIN J H, ZHANG L, et al. Deformation monitoring of dam model test by optical fiber sen-sors[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1188-1194.
Google Scholar
|
[29]
|
何斌, 徐剑飞, 何宁, 等. 分布式光纤传感技术在高面板堆石坝内部变形监测中的应用[J]. 岩土工程学报, 2023, 45(3): 627-633.
Google Scholar
HE B, XU J F, HE N, et al. Application of inner deformation monitoring of concrete face rockfill dams based on distributed optical fiber technology[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 627-633.
Google Scholar
|
[30]
|
刘春, 施斌, 吴静红, 等. 排灌水条件下砂黏土层变形响应模型箱试验[J]. 岩土工程学报, 2017, 39(9): 1746-1752.
Google Scholar
LIU C, SHI B, WU J H, et al. Model box tests on response of deformation of sand and clay layer under draining-recharging condition[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1746-1752.
Google Scholar
|
[31]
|
张荫民, 祝连庆, 骆飞, 等. 单FBG双波长掺铒光纤激光器的设计与实验研究[J]. 半导体光电, 2014, 35(5): 789-792.
Google Scholar
ZHANG Y M, ZHU L Q, LUO F, et al. Design and experimental study of dual-wavelength erbium-doped fiber laser using single fiber Bragg grating[J]. Semiconductor Optoelectronics, 2014, 35(5): 789-792.
Google Scholar
|
[32]
|
卢毅, 施斌, 席均, 等. 基于BOTDR的地裂缝分布式光纤监测技术研究[J]. 工程地质学报, 2014, 22(1): 8-13.
Google Scholar
LU Y, SHI B, XI J, et al. Field study of BOTDR-based distributed monitoring technology for ground fissures[J]. Journal of Engineering Geology, 2014, 22(1): 8-13.
Google Scholar
|
[33]
|
DIAO N R, LI Q Y, FANG Z H. Heat transfer in ground heat exchangers with groundwater advec-tion[J]. International Journal of Thermal Sciences, 2004, 43(12): 1203-1211.
Google Scholar
|
[34]
|
ZHANG W K, YANG H X, GUO X Q, et al. Investigation on groundwater velocity based on the finite line heat source seepage model[J]. International Journal of Heat and Mass Transfer, 2016, 99: 391-401.
Google Scholar
|
[35]
|
BAKKER M, CALJÉ R, SCHAARS F, et al. An active heat tracer experiment to determine groundwater velocities using fiber optic cables installed with direct push equipment[J]. Water Resources Research, 2015, 51(4): 2760-2772.
Google Scholar
|
[36]
|
杨达源, 黄贤金, 施利锋, 等. 1973~2017年扬中市江岸冲淤遥感监测及古河道塌江分析[J]. 长江流域资源与环境, 2018, 27(12): 2796-2804.
Google Scholar
YANG D Y, HUANG X J, SHI L F, et al. Erosion and siltation monitoring along the river bank of Yangzhong City during 1973-2017 by remote sensing and analyzing the bank collapse[J]. Resources and Environment in the Yangtze Basin, 2018, 27(12): 2796-2804.
Google Scholar
|
[37]
|
于俊杰, 王明路, 魏乃颐, 等. 镇江扬中地区工程地质条件及其评价[J]. 地质学刊, 2013, 37(1): 127-131.
Google Scholar
YU J J, WANG M L, WEI N Y, et al. On engineering geological conditions and evaluation of Yangzhong area in Zhenjiang[J]. Journal of Geology, 2013, 37(1): 127-131.
Google Scholar
|
[38]
|
赵维阳, 胡勇, 张胡. 长江下游过江隧道工程河段极限冲刷深度研究[J]. 水运工程, 2023(1): 120-126.
Google Scholar
ZHAO W Y, HU Y, ZHANG H. Maximum scouring depth for river reach of underwater tunnel project in lower reaches of the Yangtze River[J]. Port & Waterway Engineering, 2023(1): 120-126.
Google Scholar
|
[39]
|
姚仕明, 胡呈维, 渠庚. 三峡水库下游河道演变与生态治理研究进展[J]. 长江科学院院报, 2021, 38(10): 16-26.
Google Scholar
YAO S M, HU C W, QU G. Research advances in river evolution and ecological regulation in the downstream of the Three Gorges Reservoir[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(10): 16-26.
Google Scholar
|
[40]
|
栾华龙, 刘同宦, 高华峰, 等. 新水沙情势下长江中下游干流岸线保护研究——以扬中市2017年江堤崩岸治理为例[J]. 人民长江, 2019, 50(8): 14-19.
Google Scholar
LUAN H L, LIU T H, GAO H F, et al. River bank protection of middle and lower reaches of Yangtze River under new flow and sediment condition: case of levee collapse in Yangzhong City in 2017[J]. Yangtze River, 2019, 50(8): 14-19.
Google Scholar
|
[41]
|
李强, 王乃茹, 曹双, 等. 长江中下游岸滩稳定性评价指标体系构建及应用[J]. 人民长江, 2022, 53(8): 1-8.
Google Scholar
LI Q, WANG N R, CAO S, et al. Establishment of beach stability evaluation index system for middle and lower reaches of Changjiang River and its appli-cation[J]. Yangtze River, 2022, 53(8): 1-8.
Google Scholar
|
[42]
|
潘杰, 杨冬, 朱探, 等. 超临界压力水在垂直上升内螺纹管中的传热特性[J]. 化工学报, 2011, 62(2): 307-314.
Google Scholar
PAN J, YANG D, ZHU T, et al. Heat transfer characteristics of supercritical pressure water in vertical upward rifled tube[J]. CIESC Journal, 2011, 62(2): 307-314.
Google Scholar
|
[43]
|
殷术贵, 郭伟科, 黄栋, 等. 流延薄膜传热特性及冷却水量设计的仿真研究[J]. 华南理工大学学报(自然科学版), 2021, 49(12): 23-34.
Google Scholar
YIN S G, GUO W K, HUANG D, et al. Simulation study on heat transfer characteristics and cooling water design for the casting film[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(12): 23-34.
Google Scholar
|
[44]
|
罗龙洪, 苏长城, 应强, 等. 长江扬中河段指南村窝崩应急治理及效果分析[J]. 江苏水利, 2020(2): 25-28.
Google Scholar
LUO L H, SU C C, YING Q, et al. Emergency treatment and effect analysis of arc collapsing in Zhinan Village, Yangzhong Reach of the Yangtze River[J]. Jiangsu Water Resources, 2020(2): 25-28.
Google Scholar
|
[45]
|
周侗, 陈伟伦, 王俊, 等. 波动水位影响下的滨岸稳定性预警技术研究[J]. 中国农村水利水电, 2023(12): 77-84, 93.
Google Scholar
ZHOU T, CHEN W L, WANG J, et al. Research on forewarning technology of estuary riverbank stability under the influence of fluctuating river level[J]. China Rural Water and Hydropower, 2023(12): 77-84, 93.
Google Scholar
|
[46]
|
孙启航, 夏军强, 邓珊珊, 等. 基于圆弧与平面滑动模式的上荆江崩岸过程模拟对比分析[J]. 应用基础与工程科学学报, 2023, 31(1): 38-51.
Google Scholar
SUN Q H, XIA J Q, DENG S S, et al. Comparison of simulated bank erosion processes in the upper Jingjiang reach using the circular and planar sliding modes[J]. Journal of Basic Science and Engineering, 2023, 31(1): 38-51.
Google Scholar
|
[47]
|
徐富刚, 杨斌, 黎良辉, 等. 水流作用下临水岸坡稳定性计算模型[J]. 中国农村水利水电, 2020(1): 169-175, 180.
Google Scholar
XU F G, YANG B, LI L H, et al. Model for the stability calculation of waterside slope under water flow[J]. China Rural Water and Hydropower, 2020(1): 169-175, 180.
Google Scholar
|
[48]
|
李诺, 夏军强, 邓珊珊, 等. 长江中游荆江河段典型断面崩岸预警方法及应用[J]. 人民长江, 2023, 54(3): 9-15.
Google Scholar
LI N, XIA J Q, DENG S S, et al. Study on early-warning method of bank collapse at typical sections of Jingjiang Reach of Middle Yangtze River and its application[J]. Yangtze River, 2023, 54(3): 9-15.
Google Scholar
|
[49]
|
黎良辉, 罗星, 赵旭, 等. 降雨条件下临水岸坡失稳试验[J]. 南水北调与水利科技(中英文), 2021, 19(4): 758-767.
Google Scholar
LI L H, LUO X, ZHAO X, et al. Experiment on water bank instability under rainfall[J]. South-to-North Water Transfers and Water Science & Technology, 2021, 19(4): 758-767.
Google Scholar
|
[50]
|
况卫明, 黎良辉, 赖敬飞, 等. 水位骤变条件下河流崩岸模型试验及机理研究[J]. 水电能源科学, 2021, 39(1): 130-133.
Google Scholar
KUANG W M, LI L H, LAI J F, et al. Model test and mechanism study of river bank collapse at sudden change of water level[J]. Water Resources and Power, 2021, 39(1): 130-133.
Google Scholar
|
[51]
|
张家豪, 周丰年, 程和琴, 等. 多模态传感器系统在河槽边坡地貌测量中的应用[J]. 测绘通报, 2018(3): 102-107.
Google Scholar
ZHANG J H, ZHOU F N, CHENG H Q, et al. Application of multimodal sensor system in channel slope topographic surveying[J]. Bulletin of Surveying and Mapping, 2018(3): 102-107.
Google Scholar
|