2024 Vol. 45, No. 2
Article Contents

WANG Danyang, LI Mengxing, WANG Quan, WANG Lijuan. 2024. Magmatic response to lithospheric thinning of the North China Craton—evidence from the Daqingshan granite. East China Geology, 45(2): 173-186. doi: 10.16788/j.hddz.32-1865/P.2024.02.003
Citation: WANG Danyang, LI Mengxing, WANG Quan, WANG Lijuan. 2024. Magmatic response to lithospheric thinning of the North China Craton—evidence from the Daqingshan granite. East China Geology, 45(2): 173-186. doi: 10.16788/j.hddz.32-1865/P.2024.02.003

Magmatic response to lithospheric thinning of the North China Craton—evidence from the Daqingshan granite

More Information
  • The magmatic activities of the Yanshan period in North China Craton are an ideal carrier for studying the mechanism of craton destruction. In this paper, the Daqingshan granite was selected for LA-ICP-MS zircon U-Pb dating and geochemical analysis to investigate the rock genesis and its implications for the Mesozoic tectonic-magmatic evolution in the northern margin of the central North China Craton. The results show that the granite consists mainly of phenocryst adamellite, with a zircon U-Pb age of (139±1) Ma (MSWD=0.28, N=12), indicating an early Cretaceous magmatic event. The geochemistry of the genesis indicates that it is highly silicic, alkali-rich, relatively potassium-rich, peraluminous, and magnesium-titanium-phosphorus-calcium poor. The genesis was classified as a highly differentiated type I granite of peraluminous for the results of NK/A, saturation temperature of zircon and the value of P2O5, Zr and FeOT. The granite is enriched in large ion lithophile elements (Rb, Th, K) and depleted in high field-strength elements (Ba, Sr, P, Ti). The total rare earth element contents are low (ΣREE ranges from 84.5×10-6 to 216.0×10-6), with a strong fractionation between light and heavy rare earth elements and significant negative Eu anomalies (δEu=0.08~0.56), showing a four-group pattern. The genesis exhibits obvious characteristics of crustal source and intrusion age coincides with the peak period of magmatic activity in the North China Craton, representing a shallow magma response to craton thinning, closely related to the retreat of the ancient Pacific plate.
  • 加载中
  • [1] 翟明国.华北克拉通的形成演化与成矿作用[J].矿床地质, 2010, 29(1):24-36.

    Google Scholar

    ZHAI M G. Tectonic evolution and metallogenesis of North China Craton[J]. Mineral Deposits, 2010, 29(1):24-36.

    Google Scholar

    [2] 朱日祥,徐义刚,朱光,等.华北克拉通破坏[J].中国科学:地球科学, 2012, 42(8):1135-1159. ZHU R X, XU Y G, ZHU G, et al. Destruction of the North China Craton[J]. Science China:Earth Science, 2012, 55(10):1565-1587.

    Google Scholar

    [3] 赵越,陈斌,张拴宏,等.华北克拉通北缘及邻区前燕山期主要地质事件[J].中国地质, 2010, 37(4):900-915.

    Google Scholar

    ZHAO Y, CHEN B, ZHANG S H, et al. Pre-Yanshanian geological events in the northern margin of the North China Craton and its adjacent areas[J]. Geology in China, 2010, 37(4):900-915.

    Google Scholar

    [4] 朱日祥,陈凌,吴福元,等.华北克拉通破坏的时间、范围与机制[J].中国科学:地球科学, 2011, 41(5):583-592. ZHU R X, CHEN L, WU F Y, et al. Timing, scale and mechanism of the destruction of the North China Craton[J]. Science China:Earth Science, 2011, 54(6):789-797.

    Google Scholar

    [5] 吴福元,徐义刚,高山,等.华北岩石圈减薄与克拉通破坏研究的主要学术争论[J].岩石学报, 2008, 24(6):1145-1174.

    Google Scholar

    WU F Y, XU Y G, GAO S, et al. Lithospheric thinning and destruction of the North China Craton[J]. Acta Petrologica Sinica, 2008, 24(6):1145-1174.

    Google Scholar

    [6] 徐义刚,李洪颜,庞崇进,等.论华北克拉通破坏的时限[J].科学通报, 2009, 54(14):1974-1989. XU Y G, LI H Y, PANG C J, et al. On the timing and duration of the destruction of the North China Craton[J]. Chinese Science Bulletin, 2009, 54(19):3379-3396.

    Google Scholar

    [7] 孙金凤,杨进辉.华北东部早白垩世A型花岗岩与克拉通破坏[J].地球科学-中国地质大学学报, 2009, 34(1):137-147.

    Google Scholar

    SUN J F, YANG J H. Early Cretaceous A-type granites in the Eastern North China Block with relation to destruction of the craton[J]. Earth Science-Journal of China University of Geosciences, 2009, 34(1):137-147.

    Google Scholar

    [8] 陈斌,田伟,翟明国,等.太行山和华北其它地区中生代岩浆作用的锆石U-Pb年代学和地球化学特征及其岩浆成因和地球动力学意义[J].岩石学报, 2005, 21(1):13-24.

    Google Scholar

    CHEN B, TIAN W, ZHAI M G, et al. Zircon U-Pb geochronology and geochemistry of the Mesozoic magmatism in the Taihang Mountains and other places of the North China Craton, with implications for petrogenesis and geodynamic setting[J]. Acta Petrologica Sinica, 2005, 21(1):13-24.

    Google Scholar

    [9] 陈斌,刘超群,田伟.太行山中生代岩浆作用过程中的壳幔岩浆混合作用:岩石学和地球化学证据[J].地学前缘, 2006, 13(2):140-147.

    Google Scholar

    CHEN B, LIU C Q, TIAN W. Magma-mixing between-mantle and crustal-derived melts in the process of Mesozoic magmatism, Taihangshan:constraints from petrology and geochemistry[J]. Earth Science Frontiers, 2006, 13(2):140-147.

    Google Scholar

    [10] 郑永飞,徐峥,赵子福,等.华北中生代镁铁质岩浆作用与克拉通减薄和破坏[J].中国科学:地球科学, 2018, 48(4):379-414. ZHENG Y F, XU Z, ZHAO Z F, et al. Mesozoic mafic magmatism in North China:implications for thinning and destruction of cratonic lithosphere[J]. Science China Earth Sciences, 2018, 61(4):353-385.

    Google Scholar

    [11] 刘璐璐,苏尚国,王娜,等.华北克拉通减薄过程中岩浆深部过程及浅部响应:以河北武安坦岭杂岩体为例[J].岩石学报, 2019, 35(9):2873-2892.

    Google Scholar

    LIU L L, SU S G, WANG N, et al. Deep magmatic processes and shallow responses during the lithospheric thinning of North China Craton:taking Tanling intrusive complex as an example[J]. Acta Petrologica Sinica, 2019, 35(9):2873-2892.

    Google Scholar

    [12] 张波,苏尚国,莫宣学,等.华北克拉通减薄的岩浆岩响应:来自河北武安洪山含霓石斑状正长岩的证据[J].地学前缘, 2020, 27(3):168-181.

    Google Scholar

    ZHANG B, SU S G, MO X X, et al. Magmatic response to lithospheric thinning of the North China Craton:evidence from porphyritic aegirite-bearing syenite in Wu'an, Hebei, China[J]. Earth Science Frontiers, 2020, 27(3):168-181.

    Google Scholar

    [13] 蒋俊毅,苏尚国,崔晓亮,等.早白垩世华北克拉通东部岩石圈减薄过程和机制:来自河北西石门杂岩体的证据[J].岩石学报, 2020, 36(2):356-390.

    Google Scholar

    JIANG J Y, SU S G, CUI X L, et al. The processes and mechanism of lithospheric thinning in eastern North China Craton during Early Cretaceous:evidence from Xishimen Complex, Hebei Province[J]. Acta Petrologica Sinica, 2020, 36(2):356-390.

    Google Scholar

    [14] 刘红涛,孙世华,刘建明,等.华北克拉通北缘中生代高锶花岗岩类:地球化学与源区性质[J].岩石学报, 2002, 18(3):257-274.

    Google Scholar

    LIU H T, SUN S H, LIU J M, et al. The Mesozoic high-Sr granitoids in the northern marginal region of North China Craton:geochemistry and source region[J]. Acta Petrologica Sinica, 2002, 18(3):257-274.

    Google Scholar

    [15] 李猛兴.晋蒙地区西施沟复式岩体锆石U-Pb年龄、地球化学特征及岩石成因[J].地质与勘探, 2019, 55(3):765-778.

    Google Scholar

    LI M X. Zircon U-Pb ages, geochemical characteristics and petrogenesis of the Xishigou complex pluton across the border between Shanxi and Inner Mongolia[J]. Geology and Exploration, 2019, 55(3):765-778.

    Google Scholar

    [16] 王亚莹,蔡剑辉,阎国翰,等.山西临县紫金山碱性杂岩体SHRIMP锆石U-Pb年龄、地球化学特征和Sr-Nd-Hf同位素研究[J].岩石矿物学杂志, 2014, 33(6):1052-1072.

    Google Scholar

    WANG Y Y, CAI J H, YAN G H, et al. SHRIMP zircon U-Pb age, geochemistry and Sr-Nd-Hf isotopic characteristics of the Zijinshan alkaline complex in Linxian County, Shanxi Province[J]. Acta Petrologica et Mineralogica, 2014, 33(6):1052-1072.

    Google Scholar

    [17] 李瑞玲,段超,陈志宽,等.太行山北段赤瓦屋铜钨矿化区花岗质岩石的锆石U-Pb年龄及其地质意义[J].中国地质, 2016, 43(5):1761-1770.

    Google Scholar

    LI R L, DUAN C, CHEN Z K, et al. Zircon U-Pb age of granitoid from the Chiwawu Cu-W occurence Northern Taihang Mountain and its implications[J]. Geology in China, 2016, 43(5):1761-1770.

    Google Scholar

    [18] 张立中,陈蕾,王国平,等.石榴石U-Pb定年对山西义兴寨金矿床角砾岩筒时间的限制和金矿成因的指示[J].地球科学, 2020, 45(1):108-117.

    Google Scholar

    ZHANG L Z, CHEN L, WANG G P, et al. Garnet U-Pb dating constraints on the timing of breccia pipes formation and genesis of gold mineralization in Yixingzhai gold deposit, Shanxi Province[J]. Earth Science, 2020, 45(1):108-117.

    Google Scholar

    [19] 徐雨,刘彬,马昌前,等.北羌塘北缘多彩三叠纪高硅花岗岩的成因及其构造意义[J].岩石矿物学杂志, 2022, 41(6):1061-1079.

    Google Scholar

    XU Y, LIU B, MA C Q, et al. Petrogenesis and tectonic implications of the Duocai Triassic high-silica granites from the northern part of North Qiangtang terrane[J]. Acta Petrologica et Mineralogica, 2022, 41(6):1061-1079.

    Google Scholar

    [20] 李怀坤,朱士兴,相振群,等.北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束[J].岩石学报, 2010, 26(7):2131-2140.

    Google Scholar

    LI H K, ZHU S X, XIANG Z Q, et al. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing:further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton[J]. Acta Petrologica Sinica, 2010, 26(7):2131-2140.

    Google Scholar

    [21] 张靖怡,张舒,张赞赞,等.北淮阳东端牛王寨岩体年代学及地球化学研究:对大别造山带早白垩世深部地质过程的制约[J].华东地质, 2022, 43(2):141-153.

    Google Scholar

    ZHANG J Y, ZHANG S, ZHANG Z Z, et al. Geochronology and geochemistry of Niuwangzhai pluton in east end of North Huaiyang:constraints on deep geological process of Dabie Orogen in Early Cretaceous[J]. East China Geology, 2022, 43(2):141-153.

    Google Scholar

    [22] 于长琦,贺根文,周兴华,等.赣南银坑晚白垩世早期安山玢岩年代学及地球化学特征[J].华东地质, 2020, 41(4):339-350.

    Google Scholar

    YU C Q, HE G W, ZHOU X H, et al. Chronology and geochemistry of the early stage of Late Cretaceous andesitic porphyrite in Yinkeng area, Southern Jiangxi Province[J]. East China Geology, 2020, 41(4):339-350.

    Google Scholar

    [23] GEISLER T, SCHALTEGGER U, TOMASCHEK F. Re-equilibration of zircon in aqueous fluids and melts[J]. Elements, 2007, 3(1):43-50.

    Google Scholar

    [24] LE MAITRE R W, STRECKEISEN A, ZANETTIN B, et al. Igneous rocks:a classification and glossary of terms[J]. 2nd ed. Cambridge:Cambridge University Press, 2002:33-39.

    Google Scholar

    [25] MORRISON G W. Characteristics and tectonic setting of the shoshonite rock association[J]. Lithos, 1980, 13(1):97-108.

    Google Scholar

    [26] MANIAR P D, PICCOLI P M. Tectonic discrimination of granitoids[J]. GSA Bulletin, 1989, 101(5):635-643.

    Google Scholar

    [27] SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345.

    Google Scholar

    [28] 张富臣.内蒙古集宁小大青山花岗岩体年代学、地球化学特征及其地质意义[D].北京:中国地质大学(北京), 2019. ZHANG F C. Geochronology, geochemistry and geological significance of the Xiaodaqingshan granites in Jining, Inner Mongolia[D]. Beijing:China University of Geosciences (Beijing), 2019.

    Google Scholar

    [29] 杨进辉,许蕾,孙金凤,等.华北克拉通破坏与岩浆-成矿的深部动力学过程[J].中国科学:地球科学, 2021, 51(9):1401-1419. YANG J H, XU L, SUN J F, et al. Geodynamics of decratonization and related magmatism and mineralization in the North China Craton[J]. Science China:Earth Sciences, 2021, 64(9):1409-1427.

    Google Scholar

    [30] 叶枫,董国臣,任建勋,等.山西黄榆沟岩体锆石U-Pb年代学、地球化学特征及其地质意义[J].现代地质, 2021, 35(3):787-797.

    Google Scholar

    YE F, DONG G C, REN J X, et al. Zircon U-Pb geochronology, geochemical characteristics and geological significance of Huangyugou intrusion, Shanxi Province[J]. Geoscience, 2021, 35(3):787-797.

    Google Scholar

    [31] 邱慧远,崔邢涛,邱铁栋,等.内蒙古曹四夭钼矿区花岗斑岩地球化学特征及地质意义[J].地质找矿论丛, 2018, 33(2):221-234.

    Google Scholar

    QIU H Y, CUI X T, QIU T D, et al. The geochemistry feature and geological significance of granitic porphyry in Caosiyao molybdenum deposit, central Inner Mongolia, China[J]. Contributions to Geology and Mineral Resources Research, 2018, 33(2):221-234.

    Google Scholar

    [32] 陈春良,江思宏,梁清玲,等.河北雾灵山杂岩体锆石Hf同位素特征及其区域对比研究[J].现代地质, 2014, 28(4):663-673.

    Google Scholar

    CHEN C L, JIANG S H, LIANG Q L, et al. The Hf isotopic characteristics of the zircons from Wulingshan complex in Hebei and regional comparative study[J]. Geoscience, 2014, 28(4):663-673.

    Google Scholar

    [33] 吴福元,刘小驰,纪伟强,等.高分异花岗岩的识别与研究[J].中国科学:地球科学, 2017, 47(7):745-765. WU F Y, LIU X C, JI W Q, et al. Highly fractionated granites:recognition and research[J]. Science China Earth Sciences, 2017, 60(7):1201-1219.

    Google Scholar

    [34] SYLÜESTER P J. Post-collisional alkaline granites[J]. The Journal of Geology, 1989, 97(3):261-280.

    Google Scholar

    [35] GAO P, ZHENG Y F, ZHAO Z F. Distinction between S-type and peraluminous I-type granites:zircon versus whole-rock geochemistry[J]. Lithos, 2016, 258/259:77-91.

    Google Scholar

    [36] KING P L, WHITE A J R, CHAPPELL B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia[J]. Journal of Petrology, 1997, 38(3):371-391.

    Google Scholar

    [37] WHALEN J B, CURRIE K L, CHAPPELL B W. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4):407-419.

    Google Scholar

    [38] WATSON E B, HARRISON T M. Zircon saturation revisited:temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983, 64(2):295-304.

    Google Scholar

    [39] RAPP R P, SHIMIZU N, NORMAN M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constraints at 3.8 GPa[J]. Chemical Geology, 1999, 160(4):335-356.

    Google Scholar

    [40] TAYLOR S R, MCLENNAN S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2):241-265.

    Google Scholar

    [41] CHAPPELL B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3):535-551.

    Google Scholar

    [42] WU F Y, JAHN B M, WILDE S A, et al. Highly fractionated I-type granites in NE China (I):geochronology and petrogenesis[J]. Lithos, 2003, 66(3/4):241-273.

    Google Scholar

    [43] 吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217-1238.

    Google Scholar

    WU F Y, LI X H, YANG J H, et al. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, 23(6):1217-1238.

    Google Scholar

    [44] 周玉,周雄,张贻,等.川西长征穹窿高分异花岗岩地球化学、锆石U-Pb定年、Lu-Hf同位素特征:对区域稀有金属成矿背景的限定[J].矿床地质, 2019, 38(4):815-836.

    Google Scholar

    ZHOU Y, ZHOU X, ZHANG Y, et al. Geochemistry, zircon geochronology and Lu-Hf isotopic characteristics of highly fractionated granite from Changzheng dome in western Sichuan and their constraint on mineralization setting of rare metal deposit[J]. Mineral Deposits, 2019, 38(4):815-836.

    Google Scholar

    [45] PEARCE J A, HARRIS N B W, TINDLE A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4):956-983.

    Google Scholar

    [46] BATCHELOR R A, BOWDEN P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1/4):43-55.

    Google Scholar

    [47] BROWN G C, NORDIN G L. An epizootic model of an insect-fungal pathogen system[J]. Bulletin of Mathematical Biology, 1982, 44(5):731-739.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(296) PDF downloads(107) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint