[1]
|
CAMPBELL I H, TAYLOR S R. No water, no granites-No oceans, no continents[J]. Geophysical Research Letters, 1983, 10(11):1061-1064.
Google Scholar
|
[2]
|
GLAZNER A F, COLEMAN D S, BARTLEY J M. The tenuous connection between high-silica rhyolites and granodiorite plutons[J]. Geology, 2008, 36(2):183-186.
Google Scholar
|
[3]
|
CHEN S C, YU J J, BI M F. Extraction of fractionated interstitial melt from a crystal mush system generating the Late Jurassic high-silica granites from the Qitianling composite pluton, South China:implications for greisen-type tin mineralization[J]. Lithos, 2021, 382:105952.
Google Scholar
|
[4]
|
BACHMANN O, BERGANTZ G W. On the origin of crystal-poor rhyolites:extracted from batholithic crystal mushes[J]. Journal of Petrology, 2004, 45(8):1565-1582.
Google Scholar
|
[5]
|
CASHMAN K V, SPARKS R S J, BLUNDY J D. Vertically extensive and unstable magmatic systems:a unified view of igneous processes. Science, 2017, 355(6331):1-11.
Google Scholar
|
[6]
|
马昌前,李艳青.花岗岩体的累积生长与高结晶度岩浆的分异[J].岩石学报, 2017, 33(5):1479-1488.
Google Scholar
MA C Q, LI Y Q. Incremental growth of granitoid plutons and highly crystalline magmatic differentiation[J]. Acta Petrologica Sinica, 2017, 33(5):1479-1488.
Google Scholar
|
[7]
|
吴福元,刘小驰,纪伟强,等.高分异花岗岩的识别与研究[J].中国科学(地球科学), 2017, 47(7):745-765.
Google Scholar
WU F Y, LIU X C, JI W Q, et al. Highly fractionated granites:recognition and research[J]. Science China (Earth Sciences), 2017, 47(7):745-765.
Google Scholar
|
[8]
|
吴福元,郭春丽,胡方泱,等.南岭高分异花岗岩成岩与成矿[J].岩石学报, 2023, 39(1):1-36.
Google Scholar
WU F Y, GUO C L, HU F Y, et al. Petrogenesis of the highly fractionated granites and their mineralizations in Nanling Range[J]. Acta Petrologica Sinica, 2023, 39(1):1-36.
Google Scholar
|
[9]
|
THOMAS R, DAVIDSON P. Water in granite and pegmatite-forming melts[J]. Ore Geology Reviews, 2012, 46:32-46.
Google Scholar
|
[10]
|
EDMONDS M, WOODS A W. Exsolved volatiles in magma reservoirs[J]. Journal of Volcanology and Geothermal Research, 2018, 368:13-30.
Google Scholar
|
[11]
|
THOMAS R, DAVIDSON P, APPEL K. The enhanced element enrichment in the supercritical states of granite-pegmatite systems[J]. Acta Geochimica, 2019, 38:335-349.
Google Scholar
|
[12]
|
王国光,倪培,潘君屹.花岗质岩石相关成矿系统的流体作用[J].矿物岩石地球化学通报, 2020, 39(3):463-471.
Google Scholar
WANG G G, NI P, PAN J Y. Fluid characteristics of granite-related ore forming systems[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(3):463-471.
Google Scholar
|
[13]
|
AUDÉTAT A. The metal content of magmatic-hydrothermal fluids and its relationship to mineralization potential[J]. Economic Geology, 2019, 114(6):1033-1056.
Google Scholar
|
[14]
|
郭素淑,李曙光.淡色花岗岩的岩石学和地球化学特征及其成因[J].地学前缘, 2007, 14(6):290-298.
Google Scholar
GUO S S, LI S G. Petrological and geochemical constraints on the origin of leucogranites[J]. Earth Science Frontiers, 2007, 14(6):290-298.
Google Scholar
|
[15]
|
吴福元,刘志超,刘小驰,等.喜马拉雅淡色花岗岩[J].岩石学报, 2015, 31(1):1-36.
Google Scholar
WU F Y, LIU Z C, LIU X C, et al. Himalayan leucogranite:petrogenesis and implications to orogenesis and plateau uplift[J]. Acta Petrologica Sinica, 2015, 31(1):1-36.
Google Scholar
|
[16]
|
刘鹏,张德会,吴鸣谦,等.浅谈花岗岩浆热液的形成及成矿作用[J].地质论评, 2020, 66(3):699-719.
Google Scholar
LIU P, ZHANG D H, WU M Q, et al. Discussion on magma-hydrothermal formation and mineralization of granites[J]. Geological Review, 2020, 66(3):699-719.
Google Scholar
|
[17]
|
WU F Y, LIU X C, LIU Z C, et al. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization[J]. Lithos, 2020, 352/353:1-24
Google Scholar
|
[18]
|
CAO H W, PEI Q M, SANTOSH M, et al. Himalayan leucogranites:a review of geochemical and isotopic characteristics, timing of formation, genesis, and rare metal mineralization[J]. Earth-Science Reviews, 2022, 234:1-28.
Google Scholar
|
[19]
|
CANDELA P A. A review of shallow, ore-related granites:textures, volatiles, and ore metals[J]. Journal of Petrology, 1997, 38(12):1619-1633.
Google Scholar
|
[20]
|
WANG Z Q, CHEN B, MA X H. Petrogenesis of the Late Mesozoic Guposhan composite plutons from the Nanling Range, South China:implications for W-SN mineralization[J]. American Journal of Science, 2014, 314(1):235-277.
Google Scholar
|
[21]
|
SUN K K, CHEN B, DENG J. Biotite in highly evolved granites from the Shimensi W-Cu-Mo polymetallic ore deposit, China:insights into magma source and evolution[J]. Lithos, 2019, 350/351:105245.
Google Scholar
|
[22]
|
王汝成,谢磊,诸泽颖,等.云母:花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物[J].岩石学报, 2019, 35(1):69-75.
Google Scholar
WANG R C, XIE L, ZHU Z Y, et al. Micas:important indicators of granite-pegmatite-related rare-metal mineralization[J]. Acta Petrologica Sinica, 2019, 35(1):69-75.
Google Scholar
|
[23]
|
XIE L, WANG Z J, WANG R C, et al. Mineralogical constraints on the genesis of W-Nb-Ta mineralization in the Laiziling granite (Xianghualing district, South China)[J]. Ore Geology Reviews, 2018, 95:695-712.
Google Scholar
|
[24]
|
LI J, HUANG X L, FU Q, et al. Tungsten mineralization during the evolution of a magmatic-hydrothermal system:mineralogical evidence from the Xihuashan rare-metal granite in South China[J]. American Mineralogist, 2021, 106(3):443-460.
Google Scholar
|
[25]
|
YIN R, HUANG X L, WANG R C, et al. Rare-metal enrichment and Nb-Ta fractionation during magmatic-hydrothermal processes in rare-metal granites:evidence from zoned micas from the Yashan pluton, South China[J]. Journal of Petrology, 2022, 63(10):1-28.
Google Scholar
|
[26]
|
李洁,黄小龙.江西雅山花岗岩岩浆演化及其Ta-Nb富集机制[J].岩石学报, 2013, 29(12):4311-4322.
Google Scholar
LI J, HUANG X L. Mechanism of Ta-Nb enrichment and magmatic evolution in the Yashan granites, Jiangxi Province, South China[J]. Acta Petrologica Sinica, 2013, 29(12):4311-4322.
Google Scholar
|
[27]
|
ZHU J C, LI R K, LI F C, et al. Topaz-albite granites and rare-metal mineralization in the Limu district, Guangxi Province, southeast China[J]. Mineralium Deposita, 2001, 36:393-405.
Google Scholar
|
[28]
|
HUANG F F, WANG R C, XIE L, et al. Differentiated rare-element mineralization in an ongonite-topazite composite dike at the Xianghualing tin district, Southern China:an electron-microprobe study on the evolution from niobium-tantalum-oxides to cassiterite[J]. Ore Geology Reviews, 2015, 65:761-778.
Google Scholar
|
[29]
|
LEE C T A, MORTON D M. High silica granites:terminal porosity and crystal settling in shallow magma chambers[J]. Earth and Planetary Science Letters, 2015, 409:23-31.
Google Scholar
|
[30]
|
CHEN B, MA X H, WANG Z Q. Origin of the fluorine-rich highly differentiated granites from the Qianlishan composite plutons (South China) and implications for polymetallic mineralization[J]. Journal of Asian Earth Sciences, 2014, 93:301-314.
Google Scholar
|
[31]
|
孙建东,徐敏成,谭桂丽,等.赣东北黄山铌钽矿床成矿岩体地球化学特征及成矿意义[J].华东地质,2023,44(1):28-38.
Google Scholar
SUN J D,XU M C,TAN G L,et al.Geochemical characteristics and metallogenic significance of Huangshan Nb-Ta deposit in northeast Jiangxi Province[J].East China Geology,2023,44(1):28-38.
Google Scholar
|
[32]
|
王汝成,吴福元,谢磊,等.藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J].中国科学(地球科学), 2017, 47(8):871-880.
Google Scholar
WANG R C, WU F Y, XIE L, et al. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet[J]. Science China (Earth Sciences), 2017, 47(8):871-880.
Google Scholar
|
[33]
|
HALLIDAY A N, DAVIDSON J P, HILDRETH W, et al. Modelling the petrogenesis of high Rb/Sr silicic magmas[J]. Chemical Geology, 1991, 92(1/3):107-114.
Google Scholar
|
[34]
|
BAU M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems:evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect[J]. Contributions to Mineralogy and Petrology, 1996, 123(3):323-333.
Google Scholar
|
[35]
|
王烱辉,马星华,李毅,等.花岗质复式岩体成因及其与W-Mo成矿的关系——以广西油麻坡岩体为例[J].地质学报, 2014, 88(7):1219-1235.
Google Scholar
WANG J H, MA X H, LI Y, et al. Petrogenesis of granitic complexes and implications for the W-Mo mineralization:a case study from the Youmapo Pluton, Guangxi Province[J]. Acta Geologica Sinica, 2014, 88(7):1219-1235.
Google Scholar
|
[36]
|
JAHN B, WU F Y, CAPDEVILA R, et al. Highly evolved juvenile granites with tetrad REE patterns:the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China[J]. Lithos, 2001, 59(4):171-198.
Google Scholar
|
[37]
|
WU F Y, JAHN B, WILDE S A, et al. Highly fractionated I-type granites in NE China (I):geochronology and petrogenesis[J]. Lithos, 2003, 66(3-4):241-273.
Google Scholar
|
[38]
|
CHEN B, GU H O, CHEN Y J, et al. Lithium isotope behaviour during partial melting of metapelites from the Jiangnan Orogen, South China:implications for the origin of REE tetrad effect of F-rich granite and associated rare-metal mineralization[J]. Chemical Geology, 2018, 483:372-384.
Google Scholar
|
[39]
|
BALLOUARD C, POUJOL M, BOULVAIS P, et al. Nb-Ta fractionation in peraluminous granites:a marker of the magmatic-hydrothermal transition[J]. Geology, 2016, 44(3):231-234.
Google Scholar
|
[40]
|
GUO C L, CHEN Y C, ZENG Z L, et al. Petrogenesis of the Xihuashan granites in Southeastern China:constraints from geochemistry and in-situ analyses of zircon U-Pb-Hf-O isotopes[J]. Lithos, 2012, 148:209-227.
Google Scholar
|
[41]
|
陈伟,陈斌,孙克克.江西彭山锡多金属矿集区曾家垄锡矿相关的铝质花岗岩成因[J].地球化学, 2018, 47(5):554-574.
Google Scholar
CHEN W, CHEN B, SUN K K. Petrogenesis of the Zengjialong highly differentiated granite in the Pengshan Sn-polymetallic ore field, Jiangxi Province[J]. Geochimica, 2018, 47(5):554-574.
Google Scholar
|
[42]
|
WEINBERG R F. Himalayan leucogranites and migmatites:nature, timing and duration of anatexis[J]. Journal of Metamorphic Geology, 2016, 34(8):821-843.
Google Scholar
|
[43]
|
HOPKINSON T N, HARRIS N B W, WARREN C J, et al. The identification and significance of pure sediment-derived granites[J]. Earth and Planetary Science Letters, 2017, 467:57-63.
Google Scholar
|
[44]
|
曾令森,高利娥.喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩[J].岩石学报, 2017, 33(05):1420-1444.
Google Scholar
ZENG L S, GAO L E. Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt[J]. Acta Petrologica Sinica, 2017, 33(5):1420-1444.
Google Scholar
|
[45]
|
朱金初,王汝成,陆建军,等.湘南癞子岭花岗岩体分异演化和成岩成矿[J].高校地质学报, 2011, 17(3):381-392.
Google Scholar
ZHU J C, WANG R C, LU J J, et al. Fractionation, evolution, petrogenesis and mineralization of Laiziling granite pluton, Southern Hunan Province[J]. Geological Journal of China Universities, 2011, 17(3):381-392.
Google Scholar
|
[46]
|
周新民,陈培荣,徐夕生,等.南岭地区晚中生代花岗岩成因与岩石圈动力学演化[M].北京:科学出版社, 2007.ZHOU X M, CHEN P R, XU X S, et al. Gensis of Late Mesozoic granites and lithospheric dynamic evolution in Nanling area. Beijing:Science Press, 2007.
Google Scholar
|
[47]
|
GUO N X, ZHAO Z, GAO J F, et al. Magmatic evolution and W-Sn-U-Nb-Ta mineralization of the Mesozoic Jiulongnao granitic complex, Nanling Range, South China[J]. Ore Geology Reviews, 2018, 94:414-434.
Google Scholar
|
[48]
|
张旗.花岗质岩浆能够结晶分离和演化吗?[J].岩石矿物学杂志, 2012, 31(2):252-260.
Google Scholar
ZHANG Q. Could granitic magmas experience fractionation and evolution?[J]. Acta Petrologica et Mineralogica, 2012, 31(2):252-260.
Google Scholar
|
[49]
|
张旗,潘国强,李承东,等.花岗岩结晶分离作用问题——关于花岗岩研究的思考之二.岩石学报, 2007, 23(6):1239-1251
Google Scholar
.ZHANG Q, PAN G Q, LI C D, et al. Does fractional crystallization occur in granitic magma some crucial questions on granite study (2)[J]. Acta Petrologica Sinica, 2007, 23(6):1239-1251
Google Scholar
|
[50]
|
PUTIRKA K D, CANCHOLA J, RASH J, et al. Pluton assembly and the genesis of granitic magmas:insights from the GIC pluton in cross section, Sierra Nevada Batholith, California[J]. American Mineralogist, 2014, 99(7):1284-1303.
Google Scholar
|
[51]
|
FIEDRICH A M, BACHMAMANN O, ULMER P, et al. Mineralogical, geochemical, and textural indicators of crystal accumulation in the Adamello Batholith (Northern Italy)[J]. American Mineralogist, 2017, 102(12):2467-2483.
Google Scholar
|
[52]
|
GELMAN S E, DEERING C D, BACHMANN O, et al. Identifying the crystal graveyards remaining after large silicic eruptions[J]. Earth and Planetary Science Letters, 2014, 403:299-306.
Google Scholar
|
[53]
|
BARNES C G, ERNST W G, BERRY R, et al. Petrology and geochemistry of an upper crustal pluton:a view into crustal-scale magmatism during arc to retro-arc transition[J]. Journal of Petrology, 2016, 57(7):1361-1388.
Google Scholar
|
[54]
|
ANNEN C. From plutons to magma chambers:thermal constraints on the accumulation of eruptible silicic magma in the upper crust[J]. Earth and Planetary Science Letters, 2009, 284(3/4):409-416.
Google Scholar
|
[55]
|
HILDRETH W. Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters:several contiguous but discrete systems[J]. Journal of Volcanology and Geothermal Research, 2004, 136(3/4):169-198.
Google Scholar
|
[56]
|
DEERING C D, BACHMANN O. Trace element indicators of crystal accumulation in silicic igneous rocks[J]. Earth and Planetary Science Letters, 2010, 297(1/2):4-331.
Google Scholar
|
[57]
|
BACHMANN O, BERGANTZ G W. Rhyolites and their source mushes across tectonic settings[J]. Journal of Petrology, 2008, 49(12):2277-2285.
Google Scholar
|
[58]
|
HOLNESS M B. Melt segregation from silicic crystal mushes:a critical appraisal of possible mechanisms and their microstructural record[J]. Contributions to Mineralogy and Petrology, 2018, 173(6):48.
Google Scholar
|
[59]
|
ANDERSON J R A T, SWIHART G H, ARTIOLI G, et al. Segregation vesicles, gas filter-pressing, and igneous differentiation[J]. The Journal of Geology, 1984, 92(1):55-72.
Google Scholar
|
[60]
|
SISSON T W, BACON C R. Gas-driven filter pressing in magmas[J]. Geology, 1999, 27(7):613-616.
Google Scholar
|
[61]
|
BROWN M, SOLAR G S. Shear-zone systems and melts:feedback relations and self-organization in orogenic belts[J]. Journal of Structural Geology, 1998, 20(2/3):211-227.
Google Scholar
|
[62]
|
ROSENBERG C L. Deformation of partially molten granite:a review and comparison of experimental and natural case studies[J]. International Journal of Earth Sciences, 2001, 90:60-76.
Google Scholar
|
[63]
|
NASIPURI P, BHATTACHARYA A, SATYANARAYANAN M. Localized pluton deformation and linked focused flow of low-volume fraction residual melt in deforming plagioclase cumulates[J]. Bulletin, 2011, 123(3/4):669-680.
Google Scholar
|
[64]
|
WEBBER J R, KLEPEIS K A, WEBB L E, et al. Deformation and magma transport in a crystallizing plutonic complex, Coastal Batholith, central Chile[J]. Geosphere, 2015, 11(5):1401-1426.
Google Scholar
|
[65]
|
ALLAN A S R, BARKER S J, MILLET M A, et al. A cascade of magmatic events during the assembly and eruption of a super-sized magma body[J].Contrib Mineral Petrol, 2017,172:49
Google Scholar
|
[66]
|
LIU X C, KOHN M J, WANG J M, et al. Formation of lithium-rich pegmatites via rapid crystallization and shearing-case study from the South Tibetan Detachment, Himalaya[J]. Earth and Planetary Science Letters, 2024, 629:118598.
Google Scholar
|
[67]
|
STEPANOV A, MAVROGENES J A, MEFFRE S, et al. The key role of mica during igneous concentration of tantalum[J]. Contributions to Mineralogy and Petrology, 2014, 167(6):1-8.
Google Scholar
|
[68]
|
SUN K K, CHEN B, DENG J. Ore genesis of the Zhuxi supergiant W-Cu skarn polymetallic deposit, South China:evidence from scheelite geochemistry[J]. Ore Geology Reviews, 2019, 107:14-29.
Google Scholar
|
[69]
|
DUFEK J, BACHMANN O. Quantum magmatism:magmatic compositional gaps generated by melt-crystal dynamics[J]. Geology, 2010, 38(8):687-690.
Google Scholar
|
[70]
|
PETRELLI M, OMARI K E, SPINA L, et al. Timescales of water accumulation in magmas and implications for short warning times of explosive eruptions[J]. Nature Communications, 2018, 9(1):1-14.
Google Scholar
|
[71]
|
ZHAO P L, YUAN S D, WILLIAMS-JONES A E, et al. Temporal separation of W and Sn mineralization by temperature-controlled incongruent melting of a single protolith:evidence from the Wangxianling area, Nanling region, South China. Economic Geology, 2022, 117(3):667-682.
Google Scholar
|
[72]
|
IRBER W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4):489-508.
Google Scholar
|
[73]
|
LI J, HUANG X L, WEI G J, et al. Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in rare-metal granites[J]. Geochimica et Cosmochimica Acta, 2018, 240:64-79.
Google Scholar
|
[74]
|
KAMENETSKY M B, SOBOLEV A V, KAMENETSKY V S, et al. Kimberlite melts rich in alkali chlorides and carbonates:a potent metasomatic agent in the mantle[J]. Geology, 2004, 32(10):845-848.
Google Scholar
|
[75]
|
DENG G X, JIANG D S, ZHANG R Q, et al. Barium isotopes reveal the role of deep magmatic fluids in magmatic-hydrothermal evolution and tin enrichment in granites[J]. Earth and Planetary Science Letters, 2022, 594:1-10.
Google Scholar
|
[76]
|
FREZZOTTI M L, GHEZZO C, STEFANINI B. The calabona intrusive complex (Sardinia, Italy):evidence for a porphyry copper system[J]. Economic Geology, 1992, 87(2):425-436.
Google Scholar
|
[77]
|
ZHANG D H, AUDÉTAT A. Magmatic-hydrothermal evolution of the barren Huangshan pluton, Anhui Province, China:a melt and fluid inclusion study[J]. Economic Geology, 2018, 113(4):803-824.
Google Scholar
|
[78]
|
WHITNEY J A. The origin of granite:the role and source of water in the evolution of granitic magmas[J]. Geological Society of America Bulletin, 1988, 100(12):1886-1897.
Google Scholar
|
[79]
|
WATERS L E, LANGE R A. Why aplites freeze and rhyolites erupt:controls on the accumulation and eruption of high-SiO2(eutectic) melts[J]. Geology, 2017, 45(11):1019-1022.
Google Scholar
|
[80]
|
王德滋,彭亚鸣,袁朴.福建魁岐花岗岩的岩石学和地球化学特征及成因探讨[J].地球化学, 1985(3):197-205.
Google Scholar
WANG D Z, PENG Y M, YUAN P. Petrology, geochemistry and genesis of Kuiqi granite batholith[J]. Geochimica, 1985(3):197-205.
Google Scholar
|
[81]
|
徐夕生.华南花岗岩-火山岩成因研究的几个问题[J].高校地质学报, 2008, 14(3):283-294.
Google Scholar
XU X S. Several problems worthy to be noticed in the research of granites and volcanic rocks in SE China[J]. Geological Journal of China Universities, 2008, 14(3):283-294.
Google Scholar
|
[82]
|
黄小勇,张辉,唐勇,等.广西银屏富B花岗岩及其晶洞中电气石的化学组成特征以及对岩浆-热液演化的指示[J].矿物学报, 2008, 28(1):25-34.
Google Scholar
HUANG X Y, ZHANG H, TANG Y, et al. Chem-ical composition of tourmailines from the B-rich graniteand miarolitic cavities in Yinping, Guangxi and its implications for evolution of the magmatic hydrothermal system[J]. Acta Mineralogica Sinica, 2008, 28(1):25-34.
Google Scholar
|
[83]
|
LIU X H, LI B, LAI J Q, et al. Multistage in situ fractional crystallization of magma produced a unique rare metal enriched quartz-zinnwaldite-topaz rock[J]. Ore Geology Reviews, 2022, 151:105203.
Google Scholar
|
[84]
|
ZHOU J, JIANG Y H, XING G F, et al. Geochronology and petrogenesis of Cretaceous A-type granites from the NE Jiangnan Orogen, SE China[J]. International Geology Review, 2013, 55(11):1359-1383.
Google Scholar
|
[85]
|
XIANG L, ROMER R L, GLODNY J, et al. Li and B isotopic fractionation at the magmatic-hydrothermal transition of highly evolved granites[J]. Lithos, 2020, 376:105753.
Google Scholar
|
[86]
|
SONG S W, MAO J W, XIE G Q, et al. Petrogenesis of scheelite-bearing albitite as an indicator for the formation of a world-class scheelite skarn deposit:a case study of the Zhuxi tungsten deposit[J]. Economic Geology, 2021, 116(1):91-121.
Google Scholar
|
[87]
|
WATERS L E, LANGE R A. Why aplites freeze and rhyolites erupt:controls on the accumulation and eruption of high-SiO2(eutectic) melts[J]. Geology, 2017, 45(11):1019-1022.
Google Scholar
|
[88]
|
MVLLER A, SELTMANN R. The genetic significance of snowball quartz in high fractionated tin granites of the Krušne Hory/Erzgebirge[J]. Mineral deposits, 1999(1):409-412.
Google Scholar
|
[89]
|
YANG J, SIEBERT C, BARLING J, et al. Absence of molybdenum isotope fractionation during magmatic differentiation at Hekla volcano, Iceland[J]. Geochimica et Cosmochimica Acta, 2015, 162:126-136.
Google Scholar
|
[90]
|
李福春,朱金初,金章东,等.钠长石花岗岩中雪球结构形成机理的研究[J].岩石矿物学杂志, 2000, 19(1):27-35.
Google Scholar
LI F C, ZHU J C, JIN Z D, et al. Formation mechanism of snowball texture in albite granite[J]. Acta Petrologica et Mineralogica, 2000, 19(1):27-35.
Google Scholar
|
[91]
|
杨飞,武广,陈公正,等.维拉斯托稀有金属-锡多金属矿床铌铁矿族矿物特征及其对岩浆-热液演化的指示[J].矿床地质, 2023, 42(3):463-480.
Google Scholar
YANG F, WU G, CHEN G Z, et al. Compositional and textural variations of columbite group minerals from Weilasituo rare metal-tin polymetallic deposit:implications for tracing magmatic-hydrothermal evolution[J]. Mineral Deposits, 2023, 42(3):463-480.
Google Scholar
|
[92]
|
邹海波,徐洪武,周新民.钽花岗岩中雪球结构的成因研究[J].科学通报, 1991, 36(16):1245-1247.
Google Scholar
ZOU H B, XU H W, ZHOU X M. A study of the genesis of snowball structures in tantalum granites[J]. Chinese Science Bulletin, 1991, 36(16):1245-1247.
Google Scholar
|
[93]
|
WU M Q, SAMSON I M, ZHANG D H. Textural features and chemical evolution in Ta-Nb oxides:implications for deuteric rare-metal mineralization in the Yichun granite-marginal pegmatite, Southeastern China[J]. Economic Geology, 2018, 113(4):937-960.
Google Scholar
|
[94]
|
WANG D Z, LIU J J, CARRANZA E J M, et al. Formation and evolution of snowball quartz phenocrysts in the Dongping porphyritic granite, Hebei Province, China:insights from fluid inclusions, cathodoluminescence, trace elements, and crystal size distribution study[J]. Lithos, 2019, 340:239-254.
Google Scholar
|
[95]
|
LU T Y, HE Z Y, KLEMD R. Identifying crystal accumulation and melt extraction during formation of high-silica granite[J]. Geology, 2022, 50(2):216-221.
Google Scholar
|
[96]
|
POLLARD P J. The Yichun Ta-Sn-Li deposit, South China:evidence for extreme chemical fractionation in F-Li-P-rich magma[J]. Economic Geology, 2021, 116(2):453-469.
Google Scholar
|
[97]
|
SHANNON J R, WALKER B M, CARTEN R B, et al. Unidirectional solidification textures and their significance in determining relative ages of intrusions at the Henderson Mine, Colorado[J]. Geology, 1982, 10(6):293-297.
Google Scholar
|
[98]
|
YANG Z M, LU Y J, HOU Z Q, et al. High-Mg diorite from Qulong in southern Tibet:implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens[J]. Journal of Petrology, 2015, 56(2):227-254.
Google Scholar
|
[99]
|
HÖNIG S, LEICHMANN J, NOVAK M. Unidirectional solidification textures and garnet layering in Y-enriched garnet-bearing aplite-pegmatites in the Cadomian Brno Batholith, Czech Republic[J]. Journal of Geosciences, 2010, 55(2):113-129.
Google Scholar
|
[100]
|
SILLITOE R H. Porphyry copper systems. Economic Geology,2010, 105:3-41.
Google Scholar
|
[101]
|
MVLLER A, KIRWIN D, SELTMANN R. Textural characterization of unidirectional solidification textures related to Cu-Au deposits and their implication for metallogenesis and exploration[J]. Mineralium Deposita, 2023:1-25.
Google Scholar
|
[102]
|
PEPPARD D F, MASON G W, LEWEY S. A tetrad effect in the liquid-liquid extraction ordering of lanthanides (III)[J]. Journal of Inorganic and Nuclear Chemistry, 1969, 31(7):2271-2272.
Google Scholar
|
[103]
|
MASUDA A, IKEUCHI Y. Lanthanide tetrad effect observed in marine environment[J]. Geochemical Journal, 1979, 13(1):19-22.
Google Scholar
|
[104]
|
HIDAKA H, HOLLIGER P, SHIMIZU H, et al. Lanthanide tetrad effect observed in the Oklo and ordinary uraninites and its implication for their forming processes[J]. Geochemical Journal, 1992, 26(6):337-346.
Google Scholar
|
[105]
|
AKAGI T, SHABANI M B, MASUDA A. Lanthanide tetrad effect in kimuraite[CaY2(CO3)4·6H2O]:implication for a new geochemical index[J]. Geochimica et Cosmochimica Acta, 1993, 57(12):2899-2905.
Google Scholar
|
[106]
|
TAKAHASHI T, SUTHERLAND S C, SWEENEY C, et al. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2002, 49(9/10):1601-1622.
Google Scholar
|
[107]
|
赵振华.花岗岩中发现稀土元素四重分布效应的初步报道[J].地质地球化学, 1988(1):71-72.
Google Scholar
ZHAO Z H. A preliminary report on the discovery of the quadruple distribution effect of rare earth elements in granites[J]. Geological Geochemistry, 1988(1):71-72.
Google Scholar
|
[108]
|
赵振华,包志伟,乔玉楼.一种特殊的"M "与" W"复合型稀土元素四分组效应:以水泉沟碱性正长岩为例[J].科学通报, 2010, 55(15):1474-1488.
Google Scholar
ZHAO Z H, BAO Z W, QIAO Y L. A peculiar composite M-and W-type REE tetrad effect:evidence from the Shuiquangou alkaline syenite complex, Hebei Province, China. Chinese Science Bulletin, 2010, 55(15):1474-1488.
Google Scholar
|
[109]
|
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, 1989, 42(1):313-345.
Google Scholar
|
[110]
|
MCLENNAN S M. Rare earth element geochemistry and the"tetrad"effect[J]. Geochimica et Cosmochimica Acta, 1994, 58(9):2025-2033.
Google Scholar
|
[111]
|
PAN Y W, BREAKS F W. Rare-earth elements in fluorapatite, Separation Lake area, Ontario:evidence for S-type granite-rare-element pegmatite linkage[J]. The Canadian Mineralogist, 1997, 35(3):659-671.
Google Scholar
|
[112]
|
DUC-TIN Q, KEPPLER H. Monazite and xenotime solubility in granitic melts and the origin of the lanthanide tetrad effect[J]. Contributions to Mineralogy and Petrology, 2015, 169:1-26.
Google Scholar
|
[113]
|
赵振华,熊小林,韩小东.花岗岩稀土元素四分组效应形成机理探讨——以千里山和巴尔哲花岗岩为例[J].中国科学(D辑), 1999, 29(4):331-338.
Google Scholar
ZHAO Z H, XIONG X L, HAN X D. Exploration of the formation mechanism of the four-grouping effect of rare earth elements in granite-taking Qianli Mountain and Balzhe granite as an example[J]. Science in China (Series D), 1999, 29(4):331-338.
Google Scholar
|
[114]
|
MONECKE T, KEMPE U, GÖTZE J. Genetic significance of the trace element content in metamorphic and hydrothermal quartz:a reconnaissance study[J]. Earth and Planetary Science Letters, 2002, 202(3/4):709-724.
Google Scholar
|
[115]
|
BARTH M C, RASCH P J, KIEHL J T, et al. Sulfur chemistry in the national center for atmospheric research community climate model:description, evaluation, features, and sensitivity to aqueous chemistry[J]. Journal of Geophysical Research, 2000, 105(D1):1387-1415.
Google Scholar
|
[116]
|
谭东波,李东永,肖益林."孪生元素"铌-钽的地球化学特性和研究进展[J].地球科学, 2018, 43(1):317-332.
Google Scholar
TAN D B, LI D Y, XIAO Y L. Geochemical characteristics of niobium and tantalum:a review of twin elements[J]. Earth Science, 2018, 43(1):317-332.
Google Scholar
|
[117]
|
RAIMBAULT L, CUNEY M, AZENCOTT C, et al. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central[J]. Economic Geology, 1995, 90(3):548-576.
Google Scholar
|
[118]
|
LINNEN R L, LICHTERVELDE M V,ČERNY'P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4):275-280.
Google Scholar
|
[119]
|
STEPANOV A S, HERMANN J. Fractionation of Nb and Ta by biotite and phengite:implications for the"missing Nb paradox"[J]. Geology, 2013, 41(3):303-306.
Google Scholar
|
[120]
|
LINNEN R L, KEPPLER H. Columbite solubility in granitic melts:consequences for the enrichment and fractionation of Nb and Ta in the Earth's crust[J]. Contributions to Mineralogy and Petrology, 1997, 128:213-227.
Google Scholar
|
[121]
|
LINNEN R L. The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li+F:constraints for mineralization in rare metal granites and pegmatites[J]. Economic Geology, 1998, 93(7):1013-1025.
Google Scholar
|
[122]
|
BARTELS A, HOLTZ F, LINNEN R L. Solubility of manganotantalite and manganocolumbite in pegmatitic melts[J]. American Mineralogist, 2010, 95(4):537-544.
Google Scholar
|
[123]
|
CHEVYCHELOV V Y, BORODULIN G P, ZARAISKY G P. Solubility of columbite,(Mn, Fe)(Nb, Ta)2O6, in granitoid and alkaline melts at 650-850 ℃ and 30-400 MPa:an experimental investigation[J]. Geochemistry International, 2010, 48:456-464.
Google Scholar
|
[124]
|
GAO M D, XIONG X L, HUANG F F, et al. Key factors controlling biotite-silicate melt Nb and Ta partitioning:implications for Nb-Ta enrichment and fractionation in granites. Journal of Geophysical Research:Solid Earth, 2023, 128(7):e2022JB025889.
Google Scholar
|
[125]
|
VIGNERESSE J L, BARBEY P, CUNEY M. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer[J]. Journal of Petrology, 1996, 37(6):1579-1600.
Google Scholar
|
[126]
|
LINNEN R L, CUNEY M. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization//LINNEN R L, SAMSON I M.Rare-element geochemistry and mineral deposits. Canada:Geological Association of Canada short course, 2005.
Google Scholar
|
[127]
|
ZARAISKY G P, KORZHINSKAYA V, KOTOVA N. Experimental studies of Ta2O5 and columbite-tantalite solubility in fluoride solutions from 300 to 550 ℃ and 50 to 100 MPa[J]. Mineralogy and Petrology, 2010, 99(3/4):287-300.
Google Scholar
|
[128]
|
DOSTAL J, CHATTERJEE A K. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada)[J]. Chemical Geology, 2000, 163(1/4):207-218.
Google Scholar
|
[129]
|
NI P, WANG X D, WANG G G, et al. An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt, South China[J]. Ore Geology Reviews, 2015, 65:1062-1077.
Google Scholar
|
[130]
|
吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604.
Google Scholar
WU Y B, ZHENG Y F. Mineralogical study of zircon genesis and its constraints on U-Pb age interpretation[J]. Chinese Science Bulletin, 2004, 49(16):1589-1604.
Google Scholar
|
[131]
|
CHAKOUMAKOS B C, MURAKAMI T, LUMPKIN G R, et al. Alpha-decay-induced fracturing in zircon:the transition from the crystalline to the metamict state[J]. Science, 1987, 236(4808):1556-1559.
Google Scholar
|
[132]
|
EWING R C, WANG L M, WEBER W J. Amorphization of complex ceramics by heavy-particle irradiations[J]. MRS Online Proceedings Library (OPL), 1994, 373:347.
Google Scholar
|
[133]
|
WILLIAMS I S, HERGT JM. U-Pb dating of Tasmanian dolerites:a cautionary tale of SHRIMP analysis of high-U zircon[C]//WOODHEAD J D, HERGT J M, NOBLE N P. Beyond 2000:New frontiers in isotope geoscience. Lorne, 2000:185-188.
Google Scholar
|
[134]
|
WHITE L T, IRELAND T R. High-uranium matrix effect in zircon and its implications for SHRIMP U-Pb age determinations[J]. Chemical Geology, 2012, 306/307:78-91.
Google Scholar
|
[135]
|
SILVER L T, DEUTSCH S. Uranium-lead isotopic variations in zircons:a case study[J]. The Journal of Geology, 1963, 71(6):721-758.
Google Scholar
|
[136]
|
SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in Halides and Chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5):751-767.
Google Scholar
|
[137]
|
YANG W B, NIU H C, SHAN Q, et al. Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite:implications for Zr-REE-Nb mineralization[J]. Mineralium Deposita, 2014, 49:451-470.
Google Scholar
|
[138]
|
LI H, HU X J, ELATIKPO S M, et al. Zircon as a pathfinder for ore exploration[J]. Journal of Geochemical Exploration, 2023, 249:107216.
Google Scholar
|
[139]
|
REED R, LEMAK D J, MERO N P. Total quality management and sustainable competitive advantage[J]. Journal of Quality Management, 2000, 5(1):5-26.
Google Scholar
|
[140]
|
HOSKIN P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2005, 69(3):637-648.
Google Scholar
|
[141]
|
JIANG W C, LI H, EVANS N J, et al. Zircon records multiple magmatic-hydrothermal processes at the giant Shizhuyuan W-Sn-Mo-Bi polymetallic deposit, South China[J]. Ore Geology Reviews, 2019, 115:103160.
Google Scholar
|
[142]
|
HERMANN J. Allanite:thorium and light rare earth element carrier in subducted crust[J]. Chemical Geology, 2002, 192(3/4):289-306.
Google Scholar
|
[143]
|
NOZHKIN A D, TURKINA O M. Radiogeochemistry of the charnockite-granulite complex, Sharyzhalgay Window, Siberian Platform[J]. Geochemistry International, 1995, 32(2):62-78.
Google Scholar
|
[144]
|
笪昊翔,王志强,袁峰,等.皖南伏岭岩体钾长石地球化学特征及其成因意义[J].合肥工业大学学报(自然科学版), 2024,待刊.DA H X, WANG Z Q, YUAN F, et al. Geochemical characteristics of K-feldspar from the Fuling pluton in southern Anhui and its genetic significance[J]. Journal of Hefei University of Technology (Natural Science), 2024, accepted.
Google Scholar
|
[145]
|
ZAJACZ Z, HALTER W E, PETTKE T, et al. Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions:controls on element partitioning[J]. Geochimica et Cosmochimica Acta, 2008, 72(8):2169-2197.
Google Scholar
|
[146]
|
黄方.高温下非传统稳定同位素分馏[J].岩石学报, 2011, 27(2):365-382.
Google Scholar
HUANG F. Non-traditional stable isotope fractionation at high teperatures[J]. Acta Petrologica Sinica, 2011, 27(2):365-382.
Google Scholar
|
[147]
|
朱祥坤,孙剑,王跃.岩浆过程中铁同位素的地球化学行为[J].地球科学与环境学报, 2016, 38(1):1-10.
Google Scholar
ZHU X K, SUN J, WANG Y. Fe isotope geochemistry of magmatic system[J]. Journal of Earth Sciences and Environment, 2016, 38(1):1-10.
Google Scholar
|
[148]
|
王昆,李伟强,李石磊.钾稳定同位素研究综述[J].地学前缘, 2020, 27(3):104-122.
Google Scholar
WANG K, LI W Q, LI S L. Stable potassium isotope geochemistry and cosmochemistry[J]. Earth Science Frontiers, 2020, 27(3):104-122.
Google Scholar
|
[149]
|
陆一敢,肖益林,王洋洋,等. Li同位素在矿床学中的应用:现状与展望[J].地球科学, 2021, 46(12):4346-4365.
Google Scholar
LU Y G, XIAO Y L, WANG Y Y, et al. Exploration of Li isotope in application of ore deposits[J]. Earth Science, 2021, 46(12):4346-4365.
Google Scholar
|
[150]
|
顾海欧,刘倩,孙贺.钾同位素的高精度分析及深部过程的示踪应用[J].地质学报, 2022, 96(12):4331-4339.
Google Scholar
GU H O, LIU Q, SUN H. High precision potassium isotope analysis and its application in tracing deep earth processes[J]. Acta Geologica Sinica, 2022, 96(12):4331-4339.
Google Scholar
|
[151]
|
TOMASCAK P B, TERA F, HELZ R T, et al. The absence of lithium isotope fractionation during basalt differentiation:new measurements by multicollector sector ICP-MS[J]. Geochimica et Cosmochimica Acta, 1999, 63(6):907-910.
Google Scholar
|
[152]
|
CHAN L H, FREY F A. Lithium isotope geochemistry of the Hawaiian plume:results from the Hawaii scientific drilling project and Koolau volcano[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(3):1-20.
Google Scholar
|
[153]
|
JEFFCOATE A B, ELLIOTT T, KASEMANN S A, et al. Li isotope fractionation in peridotites and mafic melts[J]. Geochimica et Cosmochimica Acta, 2007, 71(1):202-218.
Google Scholar
|
[154]
|
TENG F Z, MCDONOUGH W F, RUDNICK R L, et al. Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota[J]. American Mineralogist, 2006, 91(10):1488-14
Google Scholar
|