[1]
|
徐国风,邵洁莲.磁铁矿的标型特征及其实际意义[J].地质与勘探, 1979(3):30-37.
Google Scholar
XU G F, SHAO J L. Typical characteristics of magnetite and its practical significance[J]. Geology and Exploration, 1979(3):30-37.
Google Scholar
|
[2]
|
LIU Y, HU Z, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2):34-43.
Google Scholar
|
[3]
|
RAJU P V S, BARNES S J, SAVARD D. Using magnetite as an indicator mineral, step 1:calibration of LA-ICP-MS[C]. 11th international platinum symposium, Ontario Canada. 2010.
Google Scholar
|
[4]
|
NADOLL P, KOENIG A E. LA-ICP-MS of magnetite:methods and reference materials[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(9):1872-1877.
Google Scholar
|
[5]
|
黄海波,袁静,凌波,等.电弧发射光谱技术发展及其在地质领域的应用[J].华东地质,2023,44(1):103-117.
Google Scholar
HUANG H B, YUAN J, LING B, et al. Technical development of arc-emission spectroscopy and its application in geological sample analysis[J].East China Geology, 2023, 44(1):103-117.
Google Scholar
|
[6]
|
SAVARD D, BARNES S J, DARE S, et al. Improved calibration technique for magnetite analysis by LA-ICP-MS[J]. Mineralogical Magazine, 2012, 76(6):2329.
Google Scholar
|
[7]
|
HUANG X W, ZHOU M F, QI L, et al. Re-Os isotopic ages of pyrite and chemical composition of magnetite from the Cihai magmatic-hydrothermal Fe deposit, NW China[J]. Mineralium Deposita, 2013, 48(8):925-946.
Google Scholar
|
[8]
|
GAO J F, ZHOU M F, LIGHTFOOT P C, et al. Sulfide saturation and magma emplacement in the formation of the Permian Huangshandong Ni-Cu sulfide deposit, Xinjiang, Northwestern China[J]. Economic Geology, 2013, 108(8):1833-1848.
Google Scholar
|
[9]
|
孟郁苗,黄小文,高剑峰,等.无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成[J].岩矿测试, 2016, 35(6):585-594.
Google Scholar
MENG Y M, HUANG X W, GAO J F, et al. Determination of trace elements in magnetite by laser ablation-inductively coupled plasma-mass spectrometry using multiple external standards without an internal standard calibration[J]. Rock and Mineral Analysis, 2016, 35(6):585-594.
Google Scholar
|
[10]
|
WANG R C, ZHOU M F. Preface of special issue of "applications of modern analytical techniques in the study of mineral deposits" by Rucheng Wang and Mei-Fu Zhou (guest editors)[J]. Ore Geology Reviews, 2015, 65(Part 4):729-732.
Google Scholar
|
[11]
|
HUANG X W, ZHOU M F, QIU Y Z, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite:The Bayan Obo Fe-REE-Nb deposit, North China[J]. Ore Geology Reviews, 2015, 65(Part 4):884-899.
Google Scholar
|
[12]
|
HUANG X W, GAO J F, QI L, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite and Re-Os dating of pyrite:the Tianhu hydrothermally remobilized sedimentary Fe deposit, NW China[J]. Ore Geology Reviews, 2015, 65(Part 4):900-916.
Google Scholar
|
[13]
|
CHEN W T, ZHOU M F, LI X, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite:Cu-(Au, Fe) deposits in the Khetri copper belt in Rajasthan province, NW India[J]. Ore Geology Reviews, 2015, 65(Part 4):929-939.
Google Scholar
|
[14]
|
ZHAO W W, ZHOU M F. In-situ LA-ICP-MS trace elemental analyses of magnetite:the Mesozoic Tengtie skarn Fe deposit in the Nanling Range, South China[J]. Ore Geology Reviews, 2015, 65(Part 4):872-883.
Google Scholar
|
[15]
|
LIU P P, ZHOU M F, CHEN W T, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite:Fe-Ti-(V) oxide-bearing mafic-ultramafic layered intrusions of the Emeishan Large Igneous Province, SW China[J]. Ore Geology Reviews, 2015, 65(Part 4):853-871.
Google Scholar
|
[16]
|
CHUNG D, ZHOU M F, GAO J F, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite:the late Palaeoproterozoic Sokoman iron formation in the Labrador Trough, Canada[J]. Ore Geology Reviews, 2015, 65(Part 4):917-928.
Google Scholar
|
[17]
|
NADOLL P, ANGERER T, MAUK J L, et al. The chemistry of hydrothermal magnetite:A review[J]. Ore Geology Reviews, 2014, 61:1-32.
Google Scholar
|
[18]
|
陈华勇,韩金生.磁铁矿单矿物研究现状、存在问题和研究方向[J].矿物岩石地球化学通报, 2015, 34(4):724-730.
Google Scholar
CHEN H Y, HAN J S. Study of magnetite:problems and future[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(4):724-730.
Google Scholar
|
[19]
|
赵振华,严爽.矿物——成矿与找矿[J].岩石学报, 2019, 35(1):31-68.
Google Scholar
ZHAO Z H, YAN S. Minerals and relevant metallogeny and exploration[J]. Acta Petrological Sinica, 2019, 35(1):31-68.
Google Scholar
|
[20]
|
蒋少涌,杨竞红,赵葵东,等.金属矿床Re-Os同位素示踪与定年研究[J].南京大学学报:自然科学版, 2000, 36(6):669-677.
Google Scholar
JIANG S Y, YANG J H, ZHAO K D, et al. Re-Os isotope tracer and dating methods in ore deposits research[J]. Journal of Nanjing University (Natural Sciences), 2000, 36(6):669-677.
Google Scholar
|
[21]
|
STEIN H J, MORGAN J W, SCHERSTÉN A. Re-Os dating of Low-Level Highly Radiogenic (LLHR) sulfides:The Harnäs gold deposit, southwest Sweden, records continental-scale tectonic events[J]. Economic Geology, 2000, 95(8):1657-1671.
Google Scholar
|
[22]
|
ARNE D C, BIERLIN F P, MORGAN J W, et al. Re-Os dating of sulfides associated with gold mineralization in central Victoria, Australia[J]. Economic Geology, 2001, 96(6):1455-1459.
Google Scholar
|
[23]
|
SELBY D, CREASER R A. Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada[J]. Economic Geology, 2001, 96(1):197-204.
Google Scholar
|
[24]
|
HUANG X W, ZHAO X F, QI L, et al. Re-Os and S isotopic constraints on the origins of two mineralization events at the Tangdan sedimentary rock-hosted stratiform Cu deposit, SW China[J]. Chemical Geology, 2013, 347:9-19.
Google Scholar
|
[25]
|
黄小文,漆亮,刘莹莹.磁铁矿Re-Os定年的可行性探讨[J].矿床地质, 2010, 29(A1):825-826.
Google Scholar
HUANG X W, QI L, LIU Y Y. Feasibility study on Re-Os dating of magnetite[J]. Mineral Deposits, 2010, 29(A1):825-826.
Google Scholar
|
[26]
|
DAVIES J. Re-Os geochronology of oxide minerals[D]. Edmonton:University of Alberta, 2010:1-155.
Google Scholar
|
[27]
|
ACOSTA-GÓNGORA P, GLEESON S A, SAMSON I M, et al. Trace element geochemistry of magnetite and its relationship to Cu-Bi-Co-Au-Ag-U-W mineralization in the Great Bear magmatic zone, NWT, Canada[J]. Economic Geology, 2014, 109(7):1901-1928.
Google Scholar
|
[28]
|
HU H, LI J W, LENTZ D, et al. Dissolution-reprecipitation process of magnetite from the Chengchao iron deposit:Insights into ore genesis and implication for in-situ chemical analysis of magnetite[J]. Ore Geology Reviews, 2014, 57:393-405.
Google Scholar
|
[29]
|
HUANG X W, GAO J F, QI L, et al. In-situ LA-ICP-MS trace elements analysis of magnetite:The Fenghuangshan Cu-Fe-Au deposit, Tongling, Eastern China[J]. Ore Geology Reviews, 2016, 72:746-759.
Google Scholar
|
[30]
|
HU H, LENTZ D, LI J W, et al. Reequilibration processes in magnetite from iron skarn deposits[J]. Economic Geology, 2015, 110(1):1-8.
Google Scholar
|
[31]
|
HUANG X W, BEAUDOIN G. Textures and chemical composition of magnetite from iron oxide-copper-gold (IOCG) and Kiruna-type iron oxide-apatite (IOA) deposits and their implications for ore genesis and magnetite classification schemes[J]. Economic Geology, 2019, 114(5):953-979.
Google Scholar
|
[32]
|
刘俊来,曹淑云,邹运鑫,等.岩石电子背散射衍射(EBSD)组构分析及应用[J].地质通报, 2008, 27(10):1638-1645.
Google Scholar
LIU J L, CAO S Y, ZOU Y X, et al. EBSD analysis of rock fabrics and its application[J]. Geological Bulletin of China, 2008, 27(10):1638-1645.
Google Scholar
|
[33]
|
TAN W, HE H, WANG C Y, et al. Magnetite exsolution in ilmenite from the Fe-Ti oxide gabbro in the Xinjie intrusion (SW China) and sources of unusually strong remnant magnetization[J]. American Mineralogist, 2016, 101(12):2759-2767.
Google Scholar
|
[34]
|
DEDITIUS A P, REICH M, SIMON A C, et al. Nanogeochemistry of hydrothermal magnetite[J]. Contributions to Mineralogy and Petrology, 2018, 173:46.
Google Scholar
|
[35]
|
CIOBANU C L, VERDUGO-IHL M R, SLATTERY A, et al. Silician magnetite:Si-Fe-nanoprecipitates and other mineral inclusions in magnetite from the Olympic Dam deposit, South Australia[J]. Minerals, 2019, 9(5):311.
Google Scholar
|
[36]
|
GAO W, CIOBANU C L, COOK N J, et al. Nanoscale study of titanomagnetite from the Panzhihua layered intrusion, Southwest China:Multistage exsolutions record ore formation[J]. Minerals, 2019, 9(9):513.
Google Scholar
|
[37]
|
YIN S, WIRTH R, MA C, et al. The role of mineral nanoparticles at a fluid-magnetite interface:Implications for trace-element uptake in hydrothermal systems[J]. American Mineralogist, 2019, 104(8):1180-1188.
Google Scholar
|
[38]
|
HUANG X W, BEAUDOIN G, YANG Y. A HR-TEM study on two generations of magnetite from the Alemao IOCG deposit, Carajás, Brazil:Implication for Fe-Cu mineralization[J]. Ore Geology Reviews, 2022, 146:104934.
Google Scholar
|
[39]
|
HUANG X W, BEAUDOIN G. Nanoinclusions in zoned magnetite from the Sossego IOCG deposit, Carajás, Brazil:implication for mineral zoning and magnetite origin discrimination[J]. Ore Geology Reviews, 2021, 139:104453.
Google Scholar
|
[40]
|
VERDUGO-IHL M R, CIOBANU C L, COOK N J, et al. Nanomineralogy of hydrothermal magnetite from Acropolis, South Australia:genetic implications for iron-oxide copper gold mineralization[J]. American Mineralogist, 2021, 106(8):1273-1293.
Google Scholar
|
[41]
|
ALBEE A L, CHODOS A A. Semiquantitative electron microprobe determination of Fe2+/Fe3+ and Mn2+/Mn3+ in oxides and silicates and its application to petrologic problems[J]. American Mineralogist, 1970, 55(3-4):491-501.
Google Scholar
|
[42]
|
陈克樵,欧阳菲.电子探针定量分析直接测定含铁矿物中二价和三价铁[J].岩矿测试, 1992, 11(4):306-310.
Google Scholar
CHEN K Q, OUYANG F. Determination of Fe (Ⅱ) and Fe (Ⅲ) in iron-bearing minerals by eletron probe analysis[J]. Rock and Mineral Analysis, 1992, 11(4):306-310.
Google Scholar
|
[43]
|
杨琴,杨勇,宋俊磊.电子探针定量分析测定FeO和Fe2O3含量常用方法的评定[J].岩矿测试, 2007, 26(3):213-218.
Google Scholar
YANG Q, YANG Y, SONG J L. Evaluation of the methods for quantitative determination of FeO and Fe2O3 by electron probe microanalysis[J]. Rock and Mineral Analysis, 2007, 26(3):213-218.
Google Scholar
|
[44]
|
YI L, LI Q, LU A, et al. Determination of Fe2+/Fe3+ ratios of magnetite using different methods:a case study from the Qimantag metallogenic belt[J]. Acta Geologica Sinica-English Edition, 2022, 96(6):2135-2147.
Google Scholar
|
[45]
|
赵同新,崔会杰,胡晓春,等.电子探针对磁铁矿中变价元素Fe的测试方法[J].物理测试, 2020, 38(3):27-32.
Google Scholar
ZHAO T X, CUI H J, HU X C, et al. Determination method of variable valence iron in magnetite using electron probe micro-analyzer[J]. Physics Examination and Testing, 2020, 38(3):27-32.
Google Scholar
|
[46]
|
DARE S A S, BARNES S, BEAUDOIN G. Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada:Implications for provenance discrimination[J]. Geochimica et Cosmochimica Acta, 2012, 88:27-50.
Google Scholar
|
[47]
|
HUANG X W, MENG Y M, LIN S, et al. High-temperature and high-pressure sintering method to prepare magnetite reference material for in-situ microanaly-sis[J]. Atomic Spectroscopy, 2023, 44(2):103-111.
Google Scholar
|
[48]
|
CHEN K, BAO Z, YUAN H, et al. Direct measurement of Fe isotope compositions in iron-dominated minerals without column chromatography using MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(2):249-263.
Google Scholar
|
[49]
|
BELSHAW N, ZHU X, GUO Y, et al. High precision measurement of iron isotopes by plasma source mass spectrometry[J]. International Journal of Mass Spectrometry, 2000, 197(1-3):191-195.
Google Scholar
|
[50]
|
DIDERIKSEN K, BAKER J A, STIPP S L S. Iron isotopes in natural carbonate minerals determined by MC-ICP-MS with a 58Fe-54Fe double spike[J]. Geochimica et Cosmochimica Acta, 2006, 70(1):118-132.
Google Scholar
|
[51]
|
ARNOLD T, MARKOVIC T, KIRK G J, et al. Iron and zinc isotope fractionation during uptake and translocation in rice (Oryza sativa) grown in oxic and anoxic soils[J]. Comptes Rendus Geoscience, 2015, 347(7-8):397-404.
Google Scholar
|
[52]
|
BEARD B L, JOHNSON C M, VON DAMM K L, et al. Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans[J]. Geology, 2003, 31(7):629-632.
Google Scholar
|
[53]
|
DAUPHAS N, POURMAND A, TENG F Z. Routine isotopic analysis of iron by HR-MC-ICPMS:How precise and how accurate?[J]. Chemical Geology, 2009, 267(3-4):175-184.
Google Scholar
|
[54]
|
HE Y, KE S, TENG F Z, et al. High-precision iron isotope analysis of geological reference materials by high-resolution MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2015, 39(3):341-356.
Google Scholar
|
[55]
|
HORN I, VON BLANCKENBURG F, SCHOENBERG R, et al. In situ iron isotope ratio determination using UV-femtosecond laser ablation with application to hydrothermal ore formation processes[J]. Geochimica et Cosmochimica Acta, 2006, 70(14):3677-3688.
Google Scholar
|
[56]
|
GVNTHER T, KLEMD R, ZHANG X, et al. In-situ trace element and Fe-isotope studies on magnetite of the volcanic-hosted Zhibo and Chagangnuoer iron ore deposits in the Western Tianshan, NW China[J]. Chemical Geology, 2017, 453:111-127.
Google Scholar
|
[57]
|
KNIPPING J L, FIEGE A, SIMON A C, et al. In-situ iron isotope analyses reveal igneous and magmatic-hydrothermal growth of magnetite at the Los Colorados Kiruna-type iron oxide-apatite deposit, Chile[J]. American Mineralogist, 2019, 104(4):471-484.
Google Scholar
|
[58]
|
梁鹏.地质样品中Fe同位素整体及原位分析方法研究及其地质应用[D].西安:西北大学, 2017.LIANG P. The analytical method of iron isotope using whole and in situ and its geological application[D]. Xi'an:Northwest University, 2017.
Google Scholar
|
[59]
|
ZHENG X Y, BEARD B L, JOHNSON C M. Assessment of matrix effects associated with Fe isotope analysis using 266 nm femtosecond and 193 nm nanosecond laser ablation multi-collector inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(1):68-83.
Google Scholar
|
[60]
|
秦燕,徐衍明,侯可军,等.铁同位素分析测试技术研究进展[J].岩矿测试, 2020, 39(2):151-161.
Google Scholar
QIN Y, XU Y M, HOU K J, et al. Progress of analytical techniques for stable iron isotopes[J]. Rock and Mineral Analysis, 2020, 39(2):151-161.
Google Scholar
|
[61]
|
CHEN K, YUAN H, BAO Z A, et al. Accurate analysis of Fe isotopes in Fe-dominated minerals by excimer laser ablation MC-ICP-MS on wet plasma conditions[J]. Atomic Spetroscopy, 2021, 42(5):282-293.
Google Scholar
|
[62]
|
CLAYTON R N, MAYEDA T K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J]. Geochimica et Cosmochimica Acta, 1963, 27(1):43-52.
Google Scholar
|
[63]
|
CHOI B G, MCKEEGAN K D, LESHIN L A, et al. Origin of magnetite in oxidized CV chondrites:in situ measurement of oxygen isotope compositions of Allende magnetite and olivine[J]. Earth Planetary Science Letters, 1997, 146(1-2):337-349.
Google Scholar
|
[64]
|
CHOI B G, MCKEEGAN K D, KROT A N, et al. Extreme oxygen-isotope compositions in magnetite from unequilibrated ordinary chondrites[J]. Nature, 1998, 392(6676):577-579.
Google Scholar
|
[65]
|
HUBERTY J M, KITA N T, KOZDON R, et al. Crystal orientation effects in δ18O for magnetite and hematite by SIMS[J]. Chemical Geology, 2010, 276(3-4):269-283.
Google Scholar
|
[66]
|
KITA N T, HUBERTY J M, KOZDON R, et al. High-precision SIMS oxygen, sulfur and iron stable isotope analyses of geological materials:accuracy, surface topography and crystal orientation[J]. Surface and Interface Analysis, 2011, 43(1-2):427-431.
Google Scholar
|
[67]
|
MORGAN J W, STEIN H J, HANNAH J L, et al. Re-Os study of Fe-Ti-V oxide and Fe-Cu-Ni sulfide deposits, Suwalki Anorthosite Massif, northeast Po-land[J]. Mineralium Deposita, 2000, 35(5):391-401.
Google Scholar
|
[68]
|
HUANG X W, QI L, WANG Y C, et al. Re-Os dating of magnetite from the Shaquanzi Fe-Cu deposit, eastern Tianshan, NW China[J]. Science China:Earth Sciences, 2014, 57(2):267-277.
Google Scholar
|
[69]
|
LIANG P, CHEN H, WU C, et al. Pyrite and magnetite Re-Os isotope systematics at the Laoshankou Fe-Cu-Au deposit in the northern margin of the East Junggar terrane, NW Xinjiang, China:Constraints on the multistage mineralization and metal sources[J]. Geological Journal, 2020, 55(6):4265-4278.
Google Scholar
|
[70]
|
JIANG H, YANG C, WANG D, et al. Multiple-stage mineralization in the Huayangchuan U-REE-Mo-Cu-Fe ore belt of the Qinling orogen, Central China:geological and Re-Os geochronological constraints[J]. Journal of Earth Science, 2022, 33(1):193-204.
Google Scholar
|
[71]
|
BUDDINGTON A F, LINDSLEY D H. Iron-titanium oxide minerals and synthetic equivalents[J]. Journal of Petrology, 1964, 5(2):310-357.
Google Scholar
|
[72]
|
GHIORSO M S, EVANS B W. Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer[J]. American Journal of Science, 2008, 308(9):957-1039.
Google Scholar
|
[73]
|
ARATÓ R, AUDÉTAT A. Experimental calibration of a new oxybarometer for silicic magmas based on vanadium partitioning between magnetite and silicate melt[J]. Geochimica et Cosmochimica Acta, 2017, 209:284-295.
Google Scholar
|
[74]
|
CANIL D, LACOURSE T. Geothermometry using minor and trace elements in igneous and hydrothermal magnetite[J]. Chemical Geology, 2020, 541:119576.
Google Scholar
|
[75]
|
林师整.磁铁矿矿物化学、成因及演化的探讨[J].矿物学报, 1982(3):166-174.
Google Scholar
LIN S Z. A contribution to the chemistry, origin and evolution of magnetite[J]. Acta Mineralogical Sinica, 1982(3):166-174.
Google Scholar
|
[76]
|
陈光远,孙岱生,殷辉安.成因矿物学与找矿矿物学[M].重庆:重庆出版社, 1987.CHEN G Y, SUN D S, YIN H A. Genetic mineralogy and prospecting mineralogy[M]. Chongqing:Chongqing Publishing House, 1987.
Google Scholar
|
[77]
|
DUPUIS C, BEAUDOIN G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J]. Mineralium Deposita, 2011, 46(3):1-17.
Google Scholar
|
[78]
|
DARE S A S, BARNES S J, BEAUDOIN G, et al. Trace elements in magnetite as petrogenetic indica-tors[J]. Mineralium Deposita, 2014, 49(7):785-796.
Google Scholar
|
[79]
|
WEN G, LI J W, HOFSTRA A H, et al. Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes:Insights from the Handan-Xingtai iron district, North China Craton[J]. Geochimica et Cosmochimica Acta, 2017, 213:255-270.
Google Scholar
|
[80]
|
KNIPPING J L, BILENKER L D, SIMON A C, et al. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes[J]. Geochimica et Cosmochimica Acta, 2015, 171:15-38.
Google Scholar
|
[81]
|
HEIDARIAN H, LENTZ D, ALIREZAEI S, et al. Using the chemical analysis of magnetite to constrain various stages in the formation and genesis of the Kiruna-type chadormalu magnetite-apatite deposit, Bafq district, Central Iran[J]. Mineralogy and Petrology, 2016, 110(6):927-942.
Google Scholar
|
[82]
|
BROUGHM S G, HANCHAR J M, TORNOS F, et al. Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks:examples from Kiruna, Sweden, and El Laco, Chile[J]. Mineralium Deposita, 2017, 52(8):1223-1244.
Google Scholar
|
[83]
|
XIE H, HUANG X, MENG Y, et al. Discrimination of mineralization types of skarn deposits by magnetite chemistry[J]. Minerals, 2022, 12(5):608.
Google Scholar
|
[84]
|
HUANG X W, SAPPIN A A, BOUTROYÉ, et al. Trace element composition of igneous and hydrothermal magnetite from porphyry deposits:Relationship to deposit subtypes and magmatic affi-nity[J]. Economic Geology, 2019, 114(5):917-952.
Google Scholar
|
[85]
|
HUANG X W, BOUTROYÉ, MAKVANDI S, et al. Trace element composition of iron oxides from IOCG and IOA deposits:relationship to hydrothermal alteration and deposit subtypes[J]. Mineralium Deposita, 2019, 54(4):525-552.
Google Scholar
|
[86]
|
HONG S, ZUO R, HUANG X, et al. Distinguishing IOCG and IOA deposits via random forest algorithm based on magnetite composition[J]. Journal of Geochemical Exploration, 2021, 230:106859.
Google Scholar
|
[87]
|
HU B, ZENG L P, LIAO W, et al. The origin and discrimination of high-Ti magnetite in magmatic-hydrothermal systems:insight from machine learning analysis[J]. Economic Geology, 2022, 117(7):1613-1627.
Google Scholar
|
[88]
|
BÉDARDÉ, DE VAZELHES V D B, BEAUDOIN G. Performance of predictive supervised classification models of trace elements in magnetite for mineral exploration[J]. Journal of Geochemical Exploration, 2022, 236:106959.
Google Scholar
|
[89]
|
ZHANG P, ZHANG Z, YANG J, et al. Machine learning prediction of ore deposit genetic type using magnetite geochemistry[J]. Natural Resources Research, 2023, 32(1):99-116.
Google Scholar
|
[90]
|
WILLIAMS P J, BARTON M D, JOHNSON D A, et al. Iron oxide copper-gold deposits:geology, space-time distribution and possible modes of origin[M]//HEDENQUIST J W. Economic Geology 100th Anniversary Volume. Littelton, Colorado:Society of Economic Geologists, 2005:371-405.
Google Scholar
|
[91]
|
NASLUND H R, HENRÍQUEZ F, NYSTRÖM J O, et al. Magmatic iron ores and associated mineralization:examples from the Chilean high Andes and coastal Cordillera[M]//PORTER T M. Hydrothermal iron oxide copper-gold and related deposits:a global perspective. Adelaide:PGC Publishing, 2002:207-226.
Google Scholar
|
[92]
|
SIMON A C, KNIPPING J, REICH M, et al. Kiruna-type iron oxide-apatite (IOA) and iron oxide copper-gold (IOCG) deposits form by a combination of igneous and magmatic-hydrothermal processes:evidence from the Chilean iron belt[J]. Economic Geology Special Publications, 2018, 21:89-114.
Google Scholar
|
[93]
|
HUANG X W, BEAUDOIN G, DE TONI A F, et al. Iron-oxide trace element fingerprinting of iron oxide copper-gold and iron oxide-apatite deposits:a review[M]//CORRIVEAU L, POTTER E G, MUMIN A H. Mineral systems with iron oxide copper-gold (IOCG) and affiliated deposits. Toronto:Geological Association of Canada, 2022:347-364.
Google Scholar
|
[94]
|
HUANG X W, ZHOU M F, BEAUDOIN G, et al. Origin of the volcanic-hosted Yamansu Fe deposit, Eastern Tianshan, NW China:constraints from pyrite Re-Os isotopes, stable isotopes, and in situ magnetite trace elements[J]. Mineralium Deposita, 2018, 53(7):1039-1060.
Google Scholar
|
[95]
|
SIMPSON B, FITZHERBERT J, MOLTZEN J, et al. Magnetite trace element characteristics and their use as a proximity indicator to the Avoca Tank Cu-Au prospect, Girilambone copper province, New South Wales, Australia[J]. Mineralium Deposita, 2024, 59(1):169-187.
Google Scholar
|
[96]
|
MAKVANDI S, GHASEMZADEH-BARVARZ M, BEAUDOIN G, et al. Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes:application to mineral exploration[J]. Ore Geology Reviews, 2016, 78:388-408.
Google Scholar
|
[97]
|
PISIAK L K, CANIL D, LACOURSE T, et al. Magnetite as an indicator mineral in the exploration of porphyry deposits:a case study in till near the Mount Polley Cu-Au deposit, British Columbia, Canada[J]. Economic Geology, 2017, 112(4):919-940.
Google Scholar
|
[98]
|
MCCURDY M W, PETER J M, MCCLENAGHAN M B, et al. Evaluation of magnetite as an indicator mineral for porphyry Cu exploration:a case study using bedrock and stream sediments at the Casino porphyry Cu-Au-Mo deposit, Yukon, Canada[J]. Geochemistry:Exploration, Environment, Analysis, 2022, 22(2):geochem 2021-072.
Google Scholar
|
[99]
|
MAKVANDI S, BEAUDOIN G, MCCLENAGHAN M B, et al. PCA of Fe-oxides MLA data as an advanced tool in provenance discrimination and indicator mineral exploration:case study from bedrock and till from the Kiggavik U deposits area (Nunavut, Canada)[J]. Journal of Geochemical Exploration, 2019, 197:199-211.
Google Scholar
|
[100]
|
SIEVWRIGHT R H, WILKINSON J J, O'NEILL H S C, et al. Thermodynamic controls on element partitioning between titanomagnetite and andesitic-dacitic silicate melts[J]. Contributions to Mineralogy and Petrology, 2017, 172(62):1-33.
Google Scholar
|
[101]
|
SIEVWRIGHT R H, O'NEILL H S C, TOLLEY J, et al. Diffusion and partition coefficients of minor and trace elements in magnetite as a function of oxygen fugacity at 1150 ℃[J]. Contributions to Mineralogy and Petrology, 2020, 175(40):1-21.
Google Scholar
|
[102]
|
ILTON E S, EUGSTER H P. Base metal exchange between magnetite and a chloride-rich hydrothermal fluid[J]. Geochimica et Cosmochimica Acta, 1989, 53(2):291-301.
Google Scholar
|
[103]
|
TAUSON V L, SMAGUNOV N V, LIPKO S V. Cocrystallization coefficients of Cr, V, and Fe in hydrothermal ore systems (from experimental data)[J]. Russian Geology and Geophysics, 2017, 58(8):949-955.
Google Scholar
|
[104]
|
SOSSI P A, PRYTULAK J, O'NEILL H S C. Experimental calibration of vanadium partitioning and stable isotope fractionation between hydrous granitic melt and magnetite at 800 ℃ and 0.5 GPa[J]. Contributions to Mineralogy and Petrology, 2018, 173:27.
Google Scholar
|
[105]
|
洪双,左仁广,胡浩,等.磁铁矿元素地球化学大数据构建及其在矿床成因分类中的应用[J].地学前缘, 2021, 28(3):87-96.
Google Scholar
HONG S, ZUO R G, HU H, et al. Magnetite geochemical big data:Dataset construction and application in genetic classification of ore deposits[J]. Earth Science Frontiers, 2021, 28(3):87-96.
Google Scholar
|