2024 Vol. 45, No. 1
Article Contents

HUANG Xiaowen, MENG Yumiao, QI Liang, ZHOU Meifu, GAO Jianfeng, TAN Houmingrui, XIE Huan, TAN Mao, YANG Zhishuang, GAO Yinghui, ZHANG Xin. 2024. Magnetite: research methods and applications to ore deposit research. East China Geology, 45(1): 1-15. doi: 10.16788/j.hddz.32-1865/P.2024.01.001
Citation: HUANG Xiaowen, MENG Yumiao, QI Liang, ZHOU Meifu, GAO Jianfeng, TAN Houmingrui, XIE Huan, TAN Mao, YANG Zhishuang, GAO Yinghui, ZHANG Xin. 2024. Magnetite: research methods and applications to ore deposit research. East China Geology, 45(1): 1-15. doi: 10.16788/j.hddz.32-1865/P.2024.01.001

Magnetite: research methods and applications to ore deposit research

More Information
  • As an ubiquitous mineral in nature, the diagenetic and mineralization studies on magnetite have attracted much attention. This article systematically summarizes recent years' research progress on magnetite, introduces magnetite research method system and its application in mineral deposit research. Magnetite research methodologies involve geochronology, microtexture, elemental and isotopic composition. On the basis of magnetite methodology, we discussed the application of magnetite Re-Os isotope dating in geochronology, magnetite-related thermometers and oxygen fugameters, as well as deposit type discrimination. In addition, taking iron oxide-copper-gold and iron oxide-apatite deposits as examples, the authors explored how trace elements in magnetite constrain their genesis, and summarized the participation of magnetite trace element in mineral exploration. As an important object in mineral deposit study, magnetite has been promoting ore genesis research and mineral exploration with much practical potential, involving its U-Pb geochronology and nontraditional stable isotopes(such as V isotopes). Nevertheless, the occurrence and partition behavior of trace elements in magnetite, and the magnetite geochemical database are still weak aspects which need enhancement in magnetite research.
  • 加载中
  • [1] 徐国风,邵洁莲.磁铁矿的标型特征及其实际意义[J].地质与勘探, 1979(3):30-37.

    Google Scholar

    XU G F, SHAO J L. Typical characteristics of magnetite and its practical significance[J]. Geology and Exploration, 1979(3):30-37.

    Google Scholar

    [2] LIU Y, HU Z, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2):34-43.

    Google Scholar

    [3] RAJU P V S, BARNES S J, SAVARD D. Using magnetite as an indicator mineral, step 1:calibration of LA-ICP-MS[C]. 11th international platinum symposium, Ontario Canada. 2010.

    Google Scholar

    [4] NADOLL P, KOENIG A E. LA-ICP-MS of magnetite:methods and reference materials[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(9):1872-1877.

    Google Scholar

    [5] 黄海波,袁静,凌波,等.电弧发射光谱技术发展及其在地质领域的应用[J].华东地质,2023,44(1):103-117.

    Google Scholar

    HUANG H B, YUAN J, LING B, et al. Technical development of arc-emission spectroscopy and its application in geological sample analysis[J].East China Geology, 2023, 44(1):103-117.

    Google Scholar

    [6] SAVARD D, BARNES S J, DARE S, et al. Improved calibration technique for magnetite analysis by LA-ICP-MS[J]. Mineralogical Magazine, 2012, 76(6):2329.

    Google Scholar

    [7] HUANG X W, ZHOU M F, QI L, et al. Re-Os isotopic ages of pyrite and chemical composition of magnetite from the Cihai magmatic-hydrothermal Fe deposit, NW China[J]. Mineralium Deposita, 2013, 48(8):925-946.

    Google Scholar

    [8] GAO J F, ZHOU M F, LIGHTFOOT P C, et al. Sulfide saturation and magma emplacement in the formation of the Permian Huangshandong Ni-Cu sulfide deposit, Xinjiang, Northwestern China[J]. Economic Geology, 2013, 108(8):1833-1848.

    Google Scholar

    [9] 孟郁苗,黄小文,高剑峰,等.无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成[J].岩矿测试, 2016, 35(6):585-594.

    Google Scholar

    MENG Y M, HUANG X W, GAO J F, et al. Determination of trace elements in magnetite by laser ablation-inductively coupled plasma-mass spectrometry using multiple external standards without an internal standard calibration[J]. Rock and Mineral Analysis, 2016, 35(6):585-594.

    Google Scholar

    [10] WANG R C, ZHOU M F. Preface of special issue of "applications of modern analytical techniques in the study of mineral deposits" by Rucheng Wang and Mei-Fu Zhou (guest editors)[J]. Ore Geology Reviews, 2015, 65(Part 4):729-732.

    Google Scholar

    [11] HUANG X W, ZHOU M F, QIU Y Z, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite:The Bayan Obo Fe-REE-Nb deposit, North China[J]. Ore Geology Reviews, 2015, 65(Part 4):884-899.

    Google Scholar

    [12] HUANG X W, GAO J F, QI L, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite and Re-Os dating of pyrite:the Tianhu hydrothermally remobilized sedimentary Fe deposit, NW China[J]. Ore Geology Reviews, 2015, 65(Part 4):900-916.

    Google Scholar

    [13] CHEN W T, ZHOU M F, LI X, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite:Cu-(Au, Fe) deposits in the Khetri copper belt in Rajasthan province, NW India[J]. Ore Geology Reviews, 2015, 65(Part 4):929-939.

    Google Scholar

    [14] ZHAO W W, ZHOU M F. In-situ LA-ICP-MS trace elemental analyses of magnetite:the Mesozoic Tengtie skarn Fe deposit in the Nanling Range, South China[J]. Ore Geology Reviews, 2015, 65(Part 4):872-883.

    Google Scholar

    [15] LIU P P, ZHOU M F, CHEN W T, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite:Fe-Ti-(V) oxide-bearing mafic-ultramafic layered intrusions of the Emeishan Large Igneous Province, SW China[J]. Ore Geology Reviews, 2015, 65(Part 4):853-871.

    Google Scholar

    [16] CHUNG D, ZHOU M F, GAO J F, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite:the late Palaeoproterozoic Sokoman iron formation in the Labrador Trough, Canada[J]. Ore Geology Reviews, 2015, 65(Part 4):917-928.

    Google Scholar

    [17] NADOLL P, ANGERER T, MAUK J L, et al. The chemistry of hydrothermal magnetite:A review[J]. Ore Geology Reviews, 2014, 61:1-32.

    Google Scholar

    [18] 陈华勇,韩金生.磁铁矿单矿物研究现状、存在问题和研究方向[J].矿物岩石地球化学通报, 2015, 34(4):724-730.

    Google Scholar

    CHEN H Y, HAN J S. Study of magnetite:problems and future[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(4):724-730.

    Google Scholar

    [19] 赵振华,严爽.矿物——成矿与找矿[J].岩石学报, 2019, 35(1):31-68.

    Google Scholar

    ZHAO Z H, YAN S. Minerals and relevant metallogeny and exploration[J]. Acta Petrological Sinica, 2019, 35(1):31-68.

    Google Scholar

    [20] 蒋少涌,杨竞红,赵葵东,等.金属矿床Re-Os同位素示踪与定年研究[J].南京大学学报:自然科学版, 2000, 36(6):669-677.

    Google Scholar

    JIANG S Y, YANG J H, ZHAO K D, et al. Re-Os isotope tracer and dating methods in ore deposits research[J]. Journal of Nanjing University (Natural Sciences), 2000, 36(6):669-677.

    Google Scholar

    [21] STEIN H J, MORGAN J W, SCHERSTÉN A. Re-Os dating of Low-Level Highly Radiogenic (LLHR) sulfides:The Harnäs gold deposit, southwest Sweden, records continental-scale tectonic events[J]. Economic Geology, 2000, 95(8):1657-1671.

    Google Scholar

    [22] ARNE D C, BIERLIN F P, MORGAN J W, et al. Re-Os dating of sulfides associated with gold mineralization in central Victoria, Australia[J]. Economic Geology, 2001, 96(6):1455-1459.

    Google Scholar

    [23] SELBY D, CREASER R A. Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada[J]. Economic Geology, 2001, 96(1):197-204.

    Google Scholar

    [24] HUANG X W, ZHAO X F, QI L, et al. Re-Os and S isotopic constraints on the origins of two mineralization events at the Tangdan sedimentary rock-hosted stratiform Cu deposit, SW China[J]. Chemical Geology, 2013, 347:9-19.

    Google Scholar

    [25] 黄小文,漆亮,刘莹莹.磁铁矿Re-Os定年的可行性探讨[J].矿床地质, 2010, 29(A1):825-826.

    Google Scholar

    HUANG X W, QI L, LIU Y Y. Feasibility study on Re-Os dating of magnetite[J]. Mineral Deposits, 2010, 29(A1):825-826.

    Google Scholar

    [26] DAVIES J. Re-Os geochronology of oxide minerals[D]. Edmonton:University of Alberta, 2010:1-155.

    Google Scholar

    [27] ACOSTA-GÓNGORA P, GLEESON S A, SAMSON I M, et al. Trace element geochemistry of magnetite and its relationship to Cu-Bi-Co-Au-Ag-U-W mineralization in the Great Bear magmatic zone, NWT, Canada[J]. Economic Geology, 2014, 109(7):1901-1928.

    Google Scholar

    [28] HU H, LI J W, LENTZ D, et al. Dissolution-reprecipitation process of magnetite from the Chengchao iron deposit:Insights into ore genesis and implication for in-situ chemical analysis of magnetite[J]. Ore Geology Reviews, 2014, 57:393-405.

    Google Scholar

    [29] HUANG X W, GAO J F, QI L, et al. In-situ LA-ICP-MS trace elements analysis of magnetite:The Fenghuangshan Cu-Fe-Au deposit, Tongling, Eastern China[J]. Ore Geology Reviews, 2016, 72:746-759.

    Google Scholar

    [30] HU H, LENTZ D, LI J W, et al. Reequilibration processes in magnetite from iron skarn deposits[J]. Economic Geology, 2015, 110(1):1-8.

    Google Scholar

    [31] HUANG X W, BEAUDOIN G. Textures and chemical composition of magnetite from iron oxide-copper-gold (IOCG) and Kiruna-type iron oxide-apatite (IOA) deposits and their implications for ore genesis and magnetite classification schemes[J]. Economic Geology, 2019, 114(5):953-979.

    Google Scholar

    [32] 刘俊来,曹淑云,邹运鑫,等.岩石电子背散射衍射(EBSD)组构分析及应用[J].地质通报, 2008, 27(10):1638-1645.

    Google Scholar

    LIU J L, CAO S Y, ZOU Y X, et al. EBSD analysis of rock fabrics and its application[J]. Geological Bulletin of China, 2008, 27(10):1638-1645.

    Google Scholar

    [33] TAN W, HE H, WANG C Y, et al. Magnetite exsolution in ilmenite from the Fe-Ti oxide gabbro in the Xinjie intrusion (SW China) and sources of unusually strong remnant magnetization[J]. American Mineralogist, 2016, 101(12):2759-2767.

    Google Scholar

    [34] DEDITIUS A P, REICH M, SIMON A C, et al. Nanogeochemistry of hydrothermal magnetite[J]. Contributions to Mineralogy and Petrology, 2018, 173:46.

    Google Scholar

    [35] CIOBANU C L, VERDUGO-IHL M R, SLATTERY A, et al. Silician magnetite:Si-Fe-nanoprecipitates and other mineral inclusions in magnetite from the Olympic Dam deposit, South Australia[J]. Minerals, 2019, 9(5):311.

    Google Scholar

    [36] GAO W, CIOBANU C L, COOK N J, et al. Nanoscale study of titanomagnetite from the Panzhihua layered intrusion, Southwest China:Multistage exsolutions record ore formation[J]. Minerals, 2019, 9(9):513.

    Google Scholar

    [37] YIN S, WIRTH R, MA C, et al. The role of mineral nanoparticles at a fluid-magnetite interface:Implications for trace-element uptake in hydrothermal systems[J]. American Mineralogist, 2019, 104(8):1180-1188.

    Google Scholar

    [38] HUANG X W, BEAUDOIN G, YANG Y. A HR-TEM study on two generations of magnetite from the Alemao IOCG deposit, Carajás, Brazil:Implication for Fe-Cu mineralization[J]. Ore Geology Reviews, 2022, 146:104934.

    Google Scholar

    [39] HUANG X W, BEAUDOIN G. Nanoinclusions in zoned magnetite from the Sossego IOCG deposit, Carajás, Brazil:implication for mineral zoning and magnetite origin discrimination[J]. Ore Geology Reviews, 2021, 139:104453.

    Google Scholar

    [40] VERDUGO-IHL M R, CIOBANU C L, COOK N J, et al. Nanomineralogy of hydrothermal magnetite from Acropolis, South Australia:genetic implications for iron-oxide copper gold mineralization[J]. American Mineralogist, 2021, 106(8):1273-1293.

    Google Scholar

    [41] ALBEE A L, CHODOS A A. Semiquantitative electron microprobe determination of Fe2+/Fe3+ and Mn2+/Mn3+ in oxides and silicates and its application to petrologic problems[J]. American Mineralogist, 1970, 55(3-4):491-501.

    Google Scholar

    [42] 陈克樵,欧阳菲.电子探针定量分析直接测定含铁矿物中二价和三价铁[J].岩矿测试, 1992, 11(4):306-310.

    Google Scholar

    CHEN K Q, OUYANG F. Determination of Fe (Ⅱ) and Fe (Ⅲ) in iron-bearing minerals by eletron probe analysis[J]. Rock and Mineral Analysis, 1992, 11(4):306-310.

    Google Scholar

    [43] 杨琴,杨勇,宋俊磊.电子探针定量分析测定FeO和Fe2O3含量常用方法的评定[J].岩矿测试, 2007, 26(3):213-218.

    Google Scholar

    YANG Q, YANG Y, SONG J L. Evaluation of the methods for quantitative determination of FeO and Fe2O3 by electron probe microanalysis[J]. Rock and Mineral Analysis, 2007, 26(3):213-218.

    Google Scholar

    [44] YI L, LI Q, LU A, et al. Determination of Fe2+/Fe3+ ratios of magnetite using different methods:a case study from the Qimantag metallogenic belt[J]. Acta Geologica Sinica-English Edition, 2022, 96(6):2135-2147.

    Google Scholar

    [45] 赵同新,崔会杰,胡晓春,等.电子探针对磁铁矿中变价元素Fe的测试方法[J].物理测试, 2020, 38(3):27-32.

    Google Scholar

    ZHAO T X, CUI H J, HU X C, et al. Determination method of variable valence iron in magnetite using electron probe micro-analyzer[J]. Physics Examination and Testing, 2020, 38(3):27-32.

    Google Scholar

    [46] DARE S A S, BARNES S, BEAUDOIN G. Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada:Implications for provenance discrimination[J]. Geochimica et Cosmochimica Acta, 2012, 88:27-50.

    Google Scholar

    [47] HUANG X W, MENG Y M, LIN S, et al. High-temperature and high-pressure sintering method to prepare magnetite reference material for in-situ microanaly-sis[J]. Atomic Spectroscopy, 2023, 44(2):103-111.

    Google Scholar

    [48] CHEN K, BAO Z, YUAN H, et al. Direct measurement of Fe isotope compositions in iron-dominated minerals without column chromatography using MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(2):249-263.

    Google Scholar

    [49] BELSHAW N, ZHU X, GUO Y, et al. High precision measurement of iron isotopes by plasma source mass spectrometry[J]. International Journal of Mass Spectrometry, 2000, 197(1-3):191-195.

    Google Scholar

    [50] DIDERIKSEN K, BAKER J A, STIPP S L S. Iron isotopes in natural carbonate minerals determined by MC-ICP-MS with a 58Fe-54Fe double spike[J]. Geochimica et Cosmochimica Acta, 2006, 70(1):118-132.

    Google Scholar

    [51] ARNOLD T, MARKOVIC T, KIRK G J, et al. Iron and zinc isotope fractionation during uptake and translocation in rice (Oryza sativa) grown in oxic and anoxic soils[J]. Comptes Rendus Geoscience, 2015, 347(7-8):397-404.

    Google Scholar

    [52] BEARD B L, JOHNSON C M, VON DAMM K L, et al. Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans[J]. Geology, 2003, 31(7):629-632.

    Google Scholar

    [53] DAUPHAS N, POURMAND A, TENG F Z. Routine isotopic analysis of iron by HR-MC-ICPMS:How precise and how accurate?[J]. Chemical Geology, 2009, 267(3-4):175-184.

    Google Scholar

    [54] HE Y, KE S, TENG F Z, et al. High-precision iron isotope analysis of geological reference materials by high-resolution MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2015, 39(3):341-356.

    Google Scholar

    [55] HORN I, VON BLANCKENBURG F, SCHOENBERG R, et al. In situ iron isotope ratio determination using UV-femtosecond laser ablation with application to hydrothermal ore formation processes[J]. Geochimica et Cosmochimica Acta, 2006, 70(14):3677-3688.

    Google Scholar

    [56] GVNTHER T, KLEMD R, ZHANG X, et al. In-situ trace element and Fe-isotope studies on magnetite of the volcanic-hosted Zhibo and Chagangnuoer iron ore deposits in the Western Tianshan, NW China[J]. Chemical Geology, 2017, 453:111-127.

    Google Scholar

    [57] KNIPPING J L, FIEGE A, SIMON A C, et al. In-situ iron isotope analyses reveal igneous and magmatic-hydrothermal growth of magnetite at the Los Colorados Kiruna-type iron oxide-apatite deposit, Chile[J]. American Mineralogist, 2019, 104(4):471-484.

    Google Scholar

    [58] 梁鹏.地质样品中Fe同位素整体及原位分析方法研究及其地质应用[D].西安:西北大学, 2017.LIANG P. The analytical method of iron isotope using whole and in situ and its geological application[D]. Xi'an:Northwest University, 2017.

    Google Scholar

    [59] ZHENG X Y, BEARD B L, JOHNSON C M. Assessment of matrix effects associated with Fe isotope analysis using 266 nm femtosecond and 193 nm nanosecond laser ablation multi-collector inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(1):68-83.

    Google Scholar

    [60] 秦燕,徐衍明,侯可军,等.铁同位素分析测试技术研究进展[J].岩矿测试, 2020, 39(2):151-161.

    Google Scholar

    QIN Y, XU Y M, HOU K J, et al. Progress of analytical techniques for stable iron isotopes[J]. Rock and Mineral Analysis, 2020, 39(2):151-161.

    Google Scholar

    [61] CHEN K, YUAN H, BAO Z A, et al. Accurate analysis of Fe isotopes in Fe-dominated minerals by excimer laser ablation MC-ICP-MS on wet plasma conditions[J]. Atomic Spetroscopy, 2021, 42(5):282-293.

    Google Scholar

    [62] CLAYTON R N, MAYEDA T K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J]. Geochimica et Cosmochimica Acta, 1963, 27(1):43-52.

    Google Scholar

    [63] CHOI B G, MCKEEGAN K D, LESHIN L A, et al. Origin of magnetite in oxidized CV chondrites:in situ measurement of oxygen isotope compositions of Allende magnetite and olivine[J]. Earth Planetary Science Letters, 1997, 146(1-2):337-349.

    Google Scholar

    [64] CHOI B G, MCKEEGAN K D, KROT A N, et al. Extreme oxygen-isotope compositions in magnetite from unequilibrated ordinary chondrites[J]. Nature, 1998, 392(6676):577-579.

    Google Scholar

    [65] HUBERTY J M, KITA N T, KOZDON R, et al. Crystal orientation effects in δ18O for magnetite and hematite by SIMS[J]. Chemical Geology, 2010, 276(3-4):269-283.

    Google Scholar

    [66] KITA N T, HUBERTY J M, KOZDON R, et al. High-precision SIMS oxygen, sulfur and iron stable isotope analyses of geological materials:accuracy, surface topography and crystal orientation[J]. Surface and Interface Analysis, 2011, 43(1-2):427-431.

    Google Scholar

    [67] MORGAN J W, STEIN H J, HANNAH J L, et al. Re-Os study of Fe-Ti-V oxide and Fe-Cu-Ni sulfide deposits, Suwalki Anorthosite Massif, northeast Po-land[J]. Mineralium Deposita, 2000, 35(5):391-401.

    Google Scholar

    [68] HUANG X W, QI L, WANG Y C, et al. Re-Os dating of magnetite from the Shaquanzi Fe-Cu deposit, eastern Tianshan, NW China[J]. Science China:Earth Sciences, 2014, 57(2):267-277.

    Google Scholar

    [69] LIANG P, CHEN H, WU C, et al. Pyrite and magnetite Re-Os isotope systematics at the Laoshankou Fe-Cu-Au deposit in the northern margin of the East Junggar terrane, NW Xinjiang, China:Constraints on the multistage mineralization and metal sources[J]. Geological Journal, 2020, 55(6):4265-4278.

    Google Scholar

    [70] JIANG H, YANG C, WANG D, et al. Multiple-stage mineralization in the Huayangchuan U-REE-Mo-Cu-Fe ore belt of the Qinling orogen, Central China:geological and Re-Os geochronological constraints[J]. Journal of Earth Science, 2022, 33(1):193-204.

    Google Scholar

    [71] BUDDINGTON A F, LINDSLEY D H. Iron-titanium oxide minerals and synthetic equivalents[J]. Journal of Petrology, 1964, 5(2):310-357.

    Google Scholar

    [72] GHIORSO M S, EVANS B W. Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer[J]. American Journal of Science, 2008, 308(9):957-1039.

    Google Scholar

    [73] ARATÓ R, AUDÉTAT A. Experimental calibration of a new oxybarometer for silicic magmas based on vanadium partitioning between magnetite and silicate melt[J]. Geochimica et Cosmochimica Acta, 2017, 209:284-295.

    Google Scholar

    [74] CANIL D, LACOURSE T. Geothermometry using minor and trace elements in igneous and hydrothermal magnetite[J]. Chemical Geology, 2020, 541:119576.

    Google Scholar

    [75] 林师整.磁铁矿矿物化学、成因及演化的探讨[J].矿物学报, 1982(3):166-174.

    Google Scholar

    LIN S Z. A contribution to the chemistry, origin and evolution of magnetite[J]. Acta Mineralogical Sinica, 1982(3):166-174.

    Google Scholar

    [76] 陈光远,孙岱生,殷辉安.成因矿物学与找矿矿物学[M].重庆:重庆出版社, 1987.CHEN G Y, SUN D S, YIN H A. Genetic mineralogy and prospecting mineralogy[M]. Chongqing:Chongqing Publishing House, 1987.

    Google Scholar

    [77] DUPUIS C, BEAUDOIN G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J]. Mineralium Deposita, 2011, 46(3):1-17.

    Google Scholar

    [78] DARE S A S, BARNES S J, BEAUDOIN G, et al. Trace elements in magnetite as petrogenetic indica-tors[J]. Mineralium Deposita, 2014, 49(7):785-796.

    Google Scholar

    [79] WEN G, LI J W, HOFSTRA A H, et al. Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes:Insights from the Handan-Xingtai iron district, North China Craton[J]. Geochimica et Cosmochimica Acta, 2017, 213:255-270.

    Google Scholar

    [80] KNIPPING J L, BILENKER L D, SIMON A C, et al. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes[J]. Geochimica et Cosmochimica Acta, 2015, 171:15-38.

    Google Scholar

    [81] HEIDARIAN H, LENTZ D, ALIREZAEI S, et al. Using the chemical analysis of magnetite to constrain various stages in the formation and genesis of the Kiruna-type chadormalu magnetite-apatite deposit, Bafq district, Central Iran[J]. Mineralogy and Petrology, 2016, 110(6):927-942.

    Google Scholar

    [82] BROUGHM S G, HANCHAR J M, TORNOS F, et al. Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks:examples from Kiruna, Sweden, and El Laco, Chile[J]. Mineralium Deposita, 2017, 52(8):1223-1244.

    Google Scholar

    [83] XIE H, HUANG X, MENG Y, et al. Discrimination of mineralization types of skarn deposits by magnetite chemistry[J]. Minerals, 2022, 12(5):608.

    Google Scholar

    [84] HUANG X W, SAPPIN A A, BOUTROYÉ, et al. Trace element composition of igneous and hydrothermal magnetite from porphyry deposits:Relationship to deposit subtypes and magmatic affi-nity[J]. Economic Geology, 2019, 114(5):917-952.

    Google Scholar

    [85] HUANG X W, BOUTROYÉ, MAKVANDI S, et al. Trace element composition of iron oxides from IOCG and IOA deposits:relationship to hydrothermal alteration and deposit subtypes[J]. Mineralium Deposita, 2019, 54(4):525-552.

    Google Scholar

    [86] HONG S, ZUO R, HUANG X, et al. Distinguishing IOCG and IOA deposits via random forest algorithm based on magnetite composition[J]. Journal of Geochemical Exploration, 2021, 230:106859.

    Google Scholar

    [87] HU B, ZENG L P, LIAO W, et al. The origin and discrimination of high-Ti magnetite in magmatic-hydrothermal systems:insight from machine learning analysis[J]. Economic Geology, 2022, 117(7):1613-1627.

    Google Scholar

    [88] BÉDARDÉ, DE VAZELHES V D B, BEAUDOIN G. Performance of predictive supervised classification models of trace elements in magnetite for mineral exploration[J]. Journal of Geochemical Exploration, 2022, 236:106959.

    Google Scholar

    [89] ZHANG P, ZHANG Z, YANG J, et al. Machine learning prediction of ore deposit genetic type using magnetite geochemistry[J]. Natural Resources Research, 2023, 32(1):99-116.

    Google Scholar

    [90] WILLIAMS P J, BARTON M D, JOHNSON D A, et al. Iron oxide copper-gold deposits:geology, space-time distribution and possible modes of origin[M]//HEDENQUIST J W. Economic Geology 100th Anniversary Volume. Littelton, Colorado:Society of Economic Geologists, 2005:371-405.

    Google Scholar

    [91] NASLUND H R, HENRÍQUEZ F, NYSTRÖM J O, et al. Magmatic iron ores and associated mineralization:examples from the Chilean high Andes and coastal Cordillera[M]//PORTER T M. Hydrothermal iron oxide copper-gold and related deposits:a global perspective. Adelaide:PGC Publishing, 2002:207-226.

    Google Scholar

    [92] SIMON A C, KNIPPING J, REICH M, et al. Kiruna-type iron oxide-apatite (IOA) and iron oxide copper-gold (IOCG) deposits form by a combination of igneous and magmatic-hydrothermal processes:evidence from the Chilean iron belt[J]. Economic Geology Special Publications, 2018, 21:89-114.

    Google Scholar

    [93] HUANG X W, BEAUDOIN G, DE TONI A F, et al. Iron-oxide trace element fingerprinting of iron oxide copper-gold and iron oxide-apatite deposits:a review[M]//CORRIVEAU L, POTTER E G, MUMIN A H. Mineral systems with iron oxide copper-gold (IOCG) and affiliated deposits. Toronto:Geological Association of Canada, 2022:347-364.

    Google Scholar

    [94] HUANG X W, ZHOU M F, BEAUDOIN G, et al. Origin of the volcanic-hosted Yamansu Fe deposit, Eastern Tianshan, NW China:constraints from pyrite Re-Os isotopes, stable isotopes, and in situ magnetite trace elements[J]. Mineralium Deposita, 2018, 53(7):1039-1060.

    Google Scholar

    [95] SIMPSON B, FITZHERBERT J, MOLTZEN J, et al. Magnetite trace element characteristics and their use as a proximity indicator to the Avoca Tank Cu-Au prospect, Girilambone copper province, New South Wales, Australia[J]. Mineralium Deposita, 2024, 59(1):169-187.

    Google Scholar

    [96] MAKVANDI S, GHASEMZADEH-BARVARZ M, BEAUDOIN G, et al. Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes:application to mineral exploration[J]. Ore Geology Reviews, 2016, 78:388-408.

    Google Scholar

    [97] PISIAK L K, CANIL D, LACOURSE T, et al. Magnetite as an indicator mineral in the exploration of porphyry deposits:a case study in till near the Mount Polley Cu-Au deposit, British Columbia, Canada[J]. Economic Geology, 2017, 112(4):919-940.

    Google Scholar

    [98] MCCURDY M W, PETER J M, MCCLENAGHAN M B, et al. Evaluation of magnetite as an indicator mineral for porphyry Cu exploration:a case study using bedrock and stream sediments at the Casino porphyry Cu-Au-Mo deposit, Yukon, Canada[J]. Geochemistry:Exploration, Environment, Analysis, 2022, 22(2):geochem 2021-072.

    Google Scholar

    [99] MAKVANDI S, BEAUDOIN G, MCCLENAGHAN M B, et al. PCA of Fe-oxides MLA data as an advanced tool in provenance discrimination and indicator mineral exploration:case study from bedrock and till from the Kiggavik U deposits area (Nunavut, Canada)[J]. Journal of Geochemical Exploration, 2019, 197:199-211.

    Google Scholar

    [100] SIEVWRIGHT R H, WILKINSON J J, O'NEILL H S C, et al. Thermodynamic controls on element partitioning between titanomagnetite and andesitic-dacitic silicate melts[J]. Contributions to Mineralogy and Petrology, 2017, 172(62):1-33.

    Google Scholar

    [101] SIEVWRIGHT R H, O'NEILL H S C, TOLLEY J, et al. Diffusion and partition coefficients of minor and trace elements in magnetite as a function of oxygen fugacity at 1150 ℃[J]. Contributions to Mineralogy and Petrology, 2020, 175(40):1-21.

    Google Scholar

    [102] ILTON E S, EUGSTER H P. Base metal exchange between magnetite and a chloride-rich hydrothermal fluid[J]. Geochimica et Cosmochimica Acta, 1989, 53(2):291-301.

    Google Scholar

    [103] TAUSON V L, SMAGUNOV N V, LIPKO S V. Cocrystallization coefficients of Cr, V, and Fe in hydrothermal ore systems (from experimental data)[J]. Russian Geology and Geophysics, 2017, 58(8):949-955.

    Google Scholar

    [104] SOSSI P A, PRYTULAK J, O'NEILL H S C. Experimental calibration of vanadium partitioning and stable isotope fractionation between hydrous granitic melt and magnetite at 800 ℃ and 0.5 GPa[J]. Contributions to Mineralogy and Petrology, 2018, 173:27.

    Google Scholar

    [105] 洪双,左仁广,胡浩,等.磁铁矿元素地球化学大数据构建及其在矿床成因分类中的应用[J].地学前缘, 2021, 28(3):87-96.

    Google Scholar

    HONG S, ZUO R G, HU H, et al. Magnetite geochemical big data:Dataset construction and application in genetic classification of ore deposits[J]. Earth Science Frontiers, 2021, 28(3):87-96.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2530) PDF downloads(262) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint