2024 Vol. 45, No. 4
Article Contents

LI Liang, ZHOU Kaie, LI Jie, GONG Jianshi, TAN Mengjiao, ZHANG Fei, ZHU Yingxin, LIU Lin, YE Yonghong. 2024. Chemical influence factors and contribution rate in shallow groundwater of Wuxi City. East China Geology, 45(4): 440-451. doi: 10.16788/j.hddz.32-1865/P.2023.12.017
Citation: LI Liang, ZHOU Kaie, LI Jie, GONG Jianshi, TAN Mengjiao, ZHANG Fei, ZHU Yingxin, LIU Lin, YE Yonghong. 2024. Chemical influence factors and contribution rate in shallow groundwater of Wuxi City. East China Geology, 45(4): 440-451. doi: 10.16788/j.hddz.32-1865/P.2023.12.017

Chemical influence factors and contribution rate in shallow groundwater of Wuxi City

More Information
  • Accurate assessment of the chemical factors influencing groundwater is crucial to classify groundwater pollution, select appropriate treatment schemes and set treatment objectives. This study analyzes 67 groups of shallow groundwater samples from Wuxi city in Jiangsu Province by using mathematical statistics, factor analysis, and an absolute factor score-multiple linear regression model. The findings are as follows: Firstly, regarding the quality grade of shallow groundwater in Wuxi, Class III water constitutes 53.7% of the samples, while ultra-Class III water accounts for 46.3%. The ions exceeding standards are COD, NH4+, NO3 and SO42- in sequence. Secondly, the groundwater can be categorized into 9 types, with HCO3-Ca ·Na, HCO3-Ca and HCO3· SO4-Ca ·Na types predominating, representing 76.1% of the total samples. Thirdly, three major chemical influence factors in the groundwater chemical index system—natural evolution (F1), industrial production (F2) and agricultural production (F3)—account for 76.05% of the cumulative variance contribution rate, with their comprehensive contributions being 57.44 %, 27.62 % and 14.94 %, respectively. The results indicate that the measured concentrations of groundwater chemical index closely match the predicted concentrations derived from the absolute factor score and multiple linear regression model, demonstrating the method’s effectiveness in analyzing the chemical factors influencing groundwater.

  • 加载中
  • [1] CHEN X D, LU X W. 2017. Source apportionment of soil heavy metals in city residential areas based on the receptor model and geostatistics[J]. Environmental Science,38(6):2513-2521 (in Chinese with English abstract).

    Google Scholar

    [2] CHENG D H, CHEN H H, HE J T, LIN J, YANG D G, YU H. 2007. A study of indicators of anthropogenic influence and water-rock interaction in groundwater system in the urban region of Beijing[J]. Hydrogeology and Engineering Geology,34(5):37-42 (in Chinese with English abstract).

    Google Scholar

    [3] DAR F A, PERRIN J, AHMED S, NARAYANA A C. 2014. Review: carbonate aquifers and future perspectives of karst hydrogeology in India[J]. Hydrogeology Journal,22(7):1493-1506. doi: 10.1007/s10040-014-1151-z

    CrossRef Google Scholar

    [4] DUAN W L, HE B, NOVER D, YANG G S, CHEN W, MENG H F, ZOU S, LIU C M. 2016. Water quality assessment and pollution source identification of the eastern Poyang Lake Basin using multivariate statistical methods[J]. Sustainability,8(2):133. doi: 10.3390/su8020133

    CrossRef Google Scholar

    [5] GENERAL ADMINISTRATION OF QUALITY SUPERVISION, INSPECTION AND QUARANTINE OF THE PEOPLE'S REPUBLIC OF CHINA, STANDARDIZATION ADMINISTRATION OF THE PEOPLE'S REPUBLIC OF CHINA. 2017. GB/T 14848-2017 Standard for groundwater quality[S]. Beijing: Standards Press of China (in Chinese).

    Google Scholar

    [6] HUANG S S, XU W W, HE P L, ZHOU Q, LI W B, HE X X. 2023. Distribution characteristics and pollution evaluation of nutrient salts in typical wetland sediment in Huai'an, Jiangsu Province[J]. East China Geology,44(3):323-332. doi: 10.16788/j.hddz.32-1865/P.2023.03.008

    CrossRef Google Scholar

    [7] JIN Y, JIANG Y H, ZHOU Q P, LEI T, JIA J Y, YANG G Q. 2021. Evolution characteristics and genesis of shallow groundwater in Lücheng area of Danyang City[J]. East China Geology,42(4):475-482 (in Chinese with English abstract).

    Google Scholar

    [8] JIANG Y H, ZHOU Q P, NI H Y, CHEN L D, CHENG H Q, LEI M T, GE W Y, MA T, SHI B, CHENG Z Y, DUAN X J, SU J W, ZHU J Q, XIU L C, XIANG F, ZHU Z M, FENG N Q, XIE Z S, TAN J M, PENG K, GUO S Q, FU Y P, REN H Y, SUN J P, YANG Q, ZHU J L, WANG D H, LI M H, LIU G N, FAN C Z, WANG X F, SHI Y J, WANG H M, DONG X Z, CHEN H Y, HAO S F, DENG Y M, LI Y, XIAO Z Y, YANG H, LIU L, JIN Y, ZHANG H, MEI S J, QI Q J, LÜ J S, HOU L L, CHEN G, CHEN Z, JIA Z Y. 2023. Progress of environmental geological investigation and research in the Yangtze River Economic Zone[J]. East China Geology,44(3):239-261. doi: 10.16788/j.hddz.32-1865/P.2023.03.001

    CrossRef Google Scholar

    [9] LI J X, SU C L, XIE X J, WANG Y X. 2010. Application of multivariate statistical analysis to research the environment of groundwater: a case study at Datong Basin, northern China[J]. Geological Science and Technology Information,29(6):94-100 (in Chinese with English abstract).

    Google Scholar

    [10] LI L, WANG M, XING H X, GE W Y, JIA J Y, YU C. 2019. Risk assessment of phreatic water pollution in Wuxi City based on AHP-DRASTIC evaluation model[J]. Journal of Hefei University of Technology (Natural Science),42(3):310-314 (in Chinese with English abstract).

    Google Scholar

    [11] LI L, XING H X, GONG J S, WANG H S, ZHOU K E, ZHU Y X, DENG T T. 2022. Hydrochemical characteristics and formation mechanism of groundwater in northern Taihu Lake Basin[J]. East China Geology,43(2):217-226 (in Chinese with English abstract).

    Google Scholar

    [12] LIN C Q, HU G R, YU R L, YANG Q L, YU W H. 2016. Pollution assessment and source analysis of heavy metals in offshore surface sediments from Jiulong River[J]. China Environmental Science,36(4):1218-1225 (in Chinese with English abstract).

    Google Scholar

    [13] MAO H R, WANG G C, LIAO F, SHI Z M, HUANG X J, LI B, YAN X. 2022. Geochemical evolution of groundwater under the influence of human activities: a case study in the southwest of Poyang Lake Basin[J]. Applied Geochemistry,140:105299, doi: 10.1016/j.apgeochem.2022.105299

    CrossRef Google Scholar

    [14] MENG L, ZUO R, WANG J S, YANG J, TENG Y G, ZHAI Y Z, SHI R T. 2017. Quantitative source apportionment of groundwater pollution based on PCA-APCS-MLR[J]. China Environmental Science,37(10):3773-3786 (in Chinese with English abstract).

    Google Scholar

    [15] NESHAT A, PRADHAN B, DADRAS M. 2014. Groundwater vulnerability assessment using an improved DRASTIC method in GIS[J]. Resources, Conservation and Recycling, 86: 74-86.

    Google Scholar

    [16] QIN Z Y, GAO R Z, ZHANG S, JIA D B, DU D D, ZHANG A L, WANG X X. 2019. Source identification of groundwater chemical components in the Salt Lake Basin of Northwest Arid Area, China[J]. Research of Environmental Sciences,32(11):1790-1799 (in Chinese with English abstract).

    Google Scholar

    [17] QIN X Y, LI Y H, SUN Y, PENG M Z. 2017. Source apportionment of soil heavy metals in Typically Agricultural Region around Chaohu Lake, China[J]. Earth and Environment,45(4):455-463 (in Chinese with English abstract).

    Google Scholar

    [18] QIN R G, WU Y Q, XU Z G, XIE D, ZHANG C. 2013. Assessing the impact of natural and anthropogenic activities on groundwater quality in coastal alluvial aquifers of the lower Liaohe River Plain, NE China[J]. Applied Geochemistry,31:142-158. doi: 10.1016/j.apgeochem.2013.01.001

    CrossRef Google Scholar

    [19] SHI W C,GU Z G,FENG Y,WU Y N,WU X R,ZHANG Z S.2020.Source Apportionment of Heavy Metals in Sediments with Application of APCS-MLR Model in Baoxiang River[J].Environmental Science & Technology,43(10):51-59.

    Google Scholar

    [20] THURSTON G D, SPENGLER J D. 1985. A quantitative assessment of source contributions to inhalable particulate matter pollution in Metropolitan Boston[J]. Atmospheric Environment (1967),19(1):9-25. doi: 10.1016/0004-6981(85)90132-5

    CrossRef Google Scholar

    [21] TONG F. 2012. Contamination characteristics and health risk assessment of heavy metals in urban dusts of Hefei city[D]. Hefei: Hefei University of Technology (in Chinese with English abstract).

    Google Scholar

    [22] XU N Z, LIU H Y, WEI F, YANG H, GE W Y. 2015. Study on the environmental isotope compositions and their evolution in groundwater of Yoco port in Jiangsu Province, China[J]. Acta Scientiae Circumstantiae,35(12):3862-3871 (in Chinese with English abstract).

    Google Scholar

    [23] XU T, WANG F, GUO Q, NIE X Q, HUANG Y P, CHEN J. 2014. Transfer characteristic and source identification of soil heavy metals from Water-Level-Fluctuating zone along Xiangxi River, Three-Gorges Reservoir Area[J]. Environmental Science,35(4):1502-1508 (in Chinese with English abstract).

    Google Scholar

    [24] YANG P H, YUAN D X, YE X C, XIE S Y, CHEN X B, LIU Z Q. 2013. Sources and migration path of chemical compositions in a karst groundwater system during rainfall events[J]. Chinese Science Bulletin,58(20):2488-2496. doi: 10.1007/s11434-013-5762-x

    CrossRef Google Scholar

    [25] YAY O D, ALAGHA O, TUNCEL G. 2008. Multivariate statistics to investigate metal contamination in surface soil[J]. Journal of Environmental Management,86(4):581-594. doi: 10.1016/j.jenvman.2006.12.032

    CrossRef Google Scholar

    [26] ZHANG X M. 2007. Source apportionment of inhalable particulates in air of Xiamen city[J]. Environmental Science & Technology,30(11):51-54,69 (in Chinese with English abstract).

    Google Scholar

    [27] ZHENG T, JIAO T L, HU B, GONG J S, HOU X M, WANG H S. 2021. Hydrochemical characteristics and origin of groundwater in the Central Guohe River Basin[J]. Environmental Science,42(2):766-775 (in Chinese with English abstract).

    Google Scholar

    [28] 陈秀端, 卢新卫. 2017. 基于受体模型与地统计的城市居民区土壤重金属污染源解析[J]. 环境科学,38(6):2513-2521.

    Google Scholar

    [29] 程东会, 陈鸿汉, 何江涛, 林健, 杨德贵, 蔚辉. 2007. 北京城近郊区地下水人为影响和水-岩作用指示性指标研究[J]. 水文地质工程地质,34(5):37-42. doi: 10.3969/j.issn.1000-3665.2007.05.010

    CrossRef Google Scholar

    [30] 黄顺生, 许伟伟, 何培良, 周强, 李文博, 贺新星. 2023. 江苏省淮安市典型湿地底泥营养盐分布特征及污染评价[J]. 华东地质,44(3):323-332. doi: 10.16788/j.hddz.32-1865/P.2023.03.008

    CrossRef Google Scholar

    [31] 姜月华, 周权平, 倪化勇, 陈立德, 程和琴, 雷明堂, 葛伟亚, 马腾, 施斌, 程知言, 段学军, 苏晶文, 朱锦旗, 修连存, 向芳, 朱志敏, 冯乃琦, 谢忠胜, 谭建民, 彭轲, 郭盛乔, 伏永朋, 任海彦, 孙建平, 杨强, 朱继良, 王东辉, 李明辉, 刘广宁, 范晨子, 王新峰, 史玉金, 王寒梅, 董贤哲, 陈焕元, 郝社峰, 邓娅敏, 李云, 肖则佑, 杨海, 刘林, 金阳, 张鸿, 梅世嘉, 齐秋菊, 吕劲松, 侯莉莉, 陈刚, 陈孜, 贾正阳. 2023. 长江经济带环境地质调查研究进展[J]. 华东地质,44(3):239-261. doi: 10.16788/j.hddz.32-1865/P.2023.03.001

    CrossRef Google Scholar

    [32] 金阳, 姜月华, 周权平, 雷廷, 贾军元, 杨国强. 2021. 丹阳市吕城地区浅层地下水演化特征及成因[J]. 华东地质,42(4):475-482.

    Google Scholar

    [33] 李俊霞, 苏春利, 谢先军, 王焰新. 2010. 多元统计方法在地下水环境研究中的应用——以山西大同盆地为例[J]. 地质科技情报,29(6):94-100.

    Google Scholar

    [34] 李亮, 王敏, 邢怀学, 葛伟亚, 贾军元, 余成. 2019. 基于AHP-DRASTIC评价模型的无锡市潜水污染风险评价[J]. 合肥工业大学学报(自然科学版),42(3):310-314.

    Google Scholar

    [35] 李亮, 邢怀学, 龚建师, 王赫生, 周锴锷, 朱应新, 邓婷婷. 2022. 太湖流域北部地下水化学特征及成因分析[J]. 华东地质,43(2):217-226.

    Google Scholar

    [36] 林承奇, 胡恭任, 于瑞莲, 杨秋丽, 余伟河. 2016. 九龙江近岸表层沉积物重金属污染评价及来源解析[J]. 中国环境科学,36(4):1218-1225. doi: 10.3969/j.issn.1000-6923.2016.04.038

    CrossRef Google Scholar

    [37] 孟利, 左锐, 王金生, 杨洁, 滕彦国, 翟远征, 石榕涛. 2017. 基于PCA-APCS-MLR的地下水污染源定量解析研究[J]. 中国环境科学,37(10):3773-3786. doi: 10.3969/j.issn.1000-6923.2017.10.020

    CrossRef Google Scholar

    [38] 秦子元, 高瑞忠, 张生, 贾德彬, 杜丹丹, 张阿龙, 王喜喜. 2019. 西北旱区盐湖盆地地下水化学组分源解析[J]. 环境科学研究,32(11):1790-1799.

    Google Scholar

    [39] 秦先燕, 李运怀, 孙跃, 彭苗枝. 2017. 环巢湖典型农业区土壤重金属来源解析[J]. 地球与环境,45(4):455-463.

    Google Scholar

    [40] 史文昌,古正刚,冯燕,吴雅楠,伍籼融,张志尚,2020.基于APCS-MLR的宝象河沉积物重金属污染源解析[J].环境科学与技术,43(10):51-59.

    Google Scholar

    [41] 童芳. 2012. 合肥城区地表灰尘重金属污染特征及健康风险评价研究[D]. 合肥: 合肥工业大学.

    Google Scholar

    [42] 许乃政, 刘红樱, 魏峰, 杨辉, 葛伟亚. 2015. 江苏洋口港地区地下水的环境同位素组成及其形成演化研究[J]. 环境科学学报,35(12):3862-3871.

    Google Scholar

    [43] 胥焘, 王飞, 郭强, 聂小倩, 黄应平, 陈俊. 2014. 三峡库区香溪河消落带及库岸土壤重金属迁移特征及来源分析[J]. 环境科学,35(4):1502-1508.

    Google Scholar

    [44] 杨平恒, 袁道先, 叶许春, 谢世友, 陈雪彬, 刘子琦. 2013. 降雨期间岩溶地下水化学组分的来源及运移路径[J]. 科学通报,58(18):1755-1763.

    Google Scholar

    [45] 张学敏. 2007. 厦门市大气可吸入颗粒物源解析的研究[J]. 环境科学与技术,30(11):51-54,69. doi: 10.3969/j.issn.1003-6504.2007.11.019

    CrossRef Google Scholar

    [46] 郑涛, 焦团理, 胡波, 龚建师, 侯香梦, 王赫生. 2021. 涡河流域中部地区地下水化学特征及其成因分析[J]. 环境科学,42(2):766-775.

    Google Scholar

    [47] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2017. GB/T 14848-2017 地下水质量标准[S]. 北京: 中国标准出版社.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(101) PDF downloads(20) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint