Citation: | LI Liang, ZHOU Kaie, LI Jie, GONG Jianshi, TAN Mengjiao, ZHANG Fei, ZHU Yingxin, LIU Lin, YE Yonghong. 2024. Chemical influence factors and contribution rate in shallow groundwater of Wuxi City. East China Geology, 45(4): 440-451. doi: 10.16788/j.hddz.32-1865/P.2023.12.017 |
Accurate assessment of the chemical factors influencing groundwater is crucial to classify groundwater pollution, select appropriate treatment schemes and set treatment objectives. This study analyzes 67 groups of shallow groundwater samples from Wuxi city in Jiangsu Province by using mathematical statistics, factor analysis, and an absolute factor score-multiple linear regression model. The findings are as follows: Firstly, regarding the quality grade of shallow groundwater in Wuxi, Class III water constitutes 53.7% of the samples, while ultra-Class III water accounts for 46.3%. The ions exceeding standards are COD, NH4+, NO3− and SO42- in sequence. Secondly, the groundwater can be categorized into 9 types, with HCO3-Ca ·Na, HCO3-Ca and HCO3· SO4-Ca ·Na types predominating, representing 76.1% of the total samples. Thirdly, three major chemical influence factors in the groundwater chemical index system—natural evolution (F1), industrial production (F2) and agricultural production (F3)—account for 76.05% of the cumulative variance contribution rate, with their comprehensive contributions being 57.44 %, 27.62 % and 14.94 %, respectively. The results indicate that the measured concentrations of groundwater chemical index closely match the predicted concentrations derived from the absolute factor score and multiple linear regression model, demonstrating the method’s effectiveness in analyzing the chemical factors influencing groundwater.
[1] | CHEN X D, LU X W. 2017. Source apportionment of soil heavy metals in city residential areas based on the receptor model and geostatistics[J]. Environmental Science,38(6):2513-2521 (in Chinese with English abstract). |
[2] | CHENG D H, CHEN H H, HE J T, LIN J, YANG D G, YU H. 2007. A study of indicators of anthropogenic influence and water-rock interaction in groundwater system in the urban region of Beijing[J]. Hydrogeology and Engineering Geology,34(5):37-42 (in Chinese with English abstract). |
[3] | DAR F A, PERRIN J, AHMED S, NARAYANA A C. 2014. Review: carbonate aquifers and future perspectives of karst hydrogeology in India[J]. Hydrogeology Journal,22(7):1493-1506. doi: 10.1007/s10040-014-1151-z |
[4] | DUAN W L, HE B, NOVER D, YANG G S, CHEN W, MENG H F, ZOU S, LIU C M. 2016. Water quality assessment and pollution source identification of the eastern Poyang Lake Basin using multivariate statistical methods[J]. Sustainability,8(2):133. doi: 10.3390/su8020133 |
[5] | GENERAL ADMINISTRATION OF QUALITY SUPERVISION, INSPECTION AND QUARANTINE OF THE PEOPLE'S REPUBLIC OF CHINA, STANDARDIZATION ADMINISTRATION OF THE PEOPLE'S REPUBLIC OF CHINA. 2017. GB/T 14848-2017 Standard for groundwater quality[S]. Beijing: Standards Press of China (in Chinese). |
[6] | HUANG S S, XU W W, HE P L, ZHOU Q, LI W B, HE X X. 2023. Distribution characteristics and pollution evaluation of nutrient salts in typical wetland sediment in Huai'an, Jiangsu Province[J]. East China Geology,44(3):323-332. doi: 10.16788/j.hddz.32-1865/P.2023.03.008 |
[7] | JIN Y, JIANG Y H, ZHOU Q P, LEI T, JIA J Y, YANG G Q. 2021. Evolution characteristics and genesis of shallow groundwater in Lücheng area of Danyang City[J]. East China Geology,42(4):475-482 (in Chinese with English abstract). |
[8] | JIANG Y H, ZHOU Q P, NI H Y, CHEN L D, CHENG H Q, LEI M T, GE W Y, MA T, SHI B, CHENG Z Y, DUAN X J, SU J W, ZHU J Q, XIU L C, XIANG F, ZHU Z M, FENG N Q, XIE Z S, TAN J M, PENG K, GUO S Q, FU Y P, REN H Y, SUN J P, YANG Q, ZHU J L, WANG D H, LI M H, LIU G N, FAN C Z, WANG X F, SHI Y J, WANG H M, DONG X Z, CHEN H Y, HAO S F, DENG Y M, LI Y, XIAO Z Y, YANG H, LIU L, JIN Y, ZHANG H, MEI S J, QI Q J, LÜ J S, HOU L L, CHEN G, CHEN Z, JIA Z Y. 2023. Progress of environmental geological investigation and research in the Yangtze River Economic Zone[J]. East China Geology,44(3):239-261. doi: 10.16788/j.hddz.32-1865/P.2023.03.001 |
[9] | LI J X, SU C L, XIE X J, WANG Y X. 2010. Application of multivariate statistical analysis to research the environment of groundwater: a case study at Datong Basin, northern China[J]. Geological Science and Technology Information,29(6):94-100 (in Chinese with English abstract). |
[10] | LI L, WANG M, XING H X, GE W Y, JIA J Y, YU C. 2019. Risk assessment of phreatic water pollution in Wuxi City based on AHP-DRASTIC evaluation model[J]. Journal of Hefei University of Technology (Natural Science),42(3):310-314 (in Chinese with English abstract). |
[11] | LI L, XING H X, GONG J S, WANG H S, ZHOU K E, ZHU Y X, DENG T T. 2022. Hydrochemical characteristics and formation mechanism of groundwater in northern Taihu Lake Basin[J]. East China Geology,43(2):217-226 (in Chinese with English abstract). |
[12] | LIN C Q, HU G R, YU R L, YANG Q L, YU W H. 2016. Pollution assessment and source analysis of heavy metals in offshore surface sediments from Jiulong River[J]. China Environmental Science,36(4):1218-1225 (in Chinese with English abstract). |
[13] | MAO H R, WANG G C, LIAO F, SHI Z M, HUANG X J, LI B, YAN X. 2022. Geochemical evolution of groundwater under the influence of human activities: a case study in the southwest of Poyang Lake Basin[J]. Applied Geochemistry,140:105299, doi: 10.1016/j.apgeochem.2022.105299 |
[14] | MENG L, ZUO R, WANG J S, YANG J, TENG Y G, ZHAI Y Z, SHI R T. 2017. Quantitative source apportionment of groundwater pollution based on PCA-APCS-MLR[J]. China Environmental Science,37(10):3773-3786 (in Chinese with English abstract). |
[15] | NESHAT A, PRADHAN B, DADRAS M. 2014. Groundwater vulnerability assessment using an improved DRASTIC method in GIS[J]. Resources, Conservation and Recycling, 86: 74-86. |
[16] | QIN Z Y, GAO R Z, ZHANG S, JIA D B, DU D D, ZHANG A L, WANG X X. 2019. Source identification of groundwater chemical components in the Salt Lake Basin of Northwest Arid Area, China[J]. Research of Environmental Sciences,32(11):1790-1799 (in Chinese with English abstract). |
[17] | QIN X Y, LI Y H, SUN Y, PENG M Z. 2017. Source apportionment of soil heavy metals in Typically Agricultural Region around Chaohu Lake, China[J]. Earth and Environment,45(4):455-463 (in Chinese with English abstract). |
[18] | QIN R G, WU Y Q, XU Z G, XIE D, ZHANG C. 2013. Assessing the impact of natural and anthropogenic activities on groundwater quality in coastal alluvial aquifers of the lower Liaohe River Plain, NE China[J]. Applied Geochemistry,31:142-158. doi: 10.1016/j.apgeochem.2013.01.001 |
[19] | SHI W C,GU Z G,FENG Y,WU Y N,WU X R,ZHANG Z S.2020.Source Apportionment of Heavy Metals in Sediments with Application of APCS-MLR Model in Baoxiang River[J].Environmental Science & Technology,43(10):51-59. |
[20] | THURSTON G D, SPENGLER J D. 1985. A quantitative assessment of source contributions to inhalable particulate matter pollution in Metropolitan Boston[J]. Atmospheric Environment (1967),19(1):9-25. doi: 10.1016/0004-6981(85)90132-5 |
[21] | TONG F. 2012. Contamination characteristics and health risk assessment of heavy metals in urban dusts of Hefei city[D]. Hefei: Hefei University of Technology (in Chinese with English abstract). |
[22] | XU N Z, LIU H Y, WEI F, YANG H, GE W Y. 2015. Study on the environmental isotope compositions and their evolution in groundwater of Yoco port in Jiangsu Province, China[J]. Acta Scientiae Circumstantiae,35(12):3862-3871 (in Chinese with English abstract). |
[23] | XU T, WANG F, GUO Q, NIE X Q, HUANG Y P, CHEN J. 2014. Transfer characteristic and source identification of soil heavy metals from Water-Level-Fluctuating zone along Xiangxi River, Three-Gorges Reservoir Area[J]. Environmental Science,35(4):1502-1508 (in Chinese with English abstract). |
[24] | YANG P H, YUAN D X, YE X C, XIE S Y, CHEN X B, LIU Z Q. 2013. Sources and migration path of chemical compositions in a karst groundwater system during rainfall events[J]. Chinese Science Bulletin,58(20):2488-2496. doi: 10.1007/s11434-013-5762-x |
[25] | YAY O D, ALAGHA O, TUNCEL G. 2008. Multivariate statistics to investigate metal contamination in surface soil[J]. Journal of Environmental Management,86(4):581-594. doi: 10.1016/j.jenvman.2006.12.032 |
[26] | ZHANG X M. 2007. Source apportionment of inhalable particulates in air of Xiamen city[J]. Environmental Science & Technology,30(11):51-54,69 (in Chinese with English abstract). |
[27] | ZHENG T, JIAO T L, HU B, GONG J S, HOU X M, WANG H S. 2021. Hydrochemical characteristics and origin of groundwater in the Central Guohe River Basin[J]. Environmental Science,42(2):766-775 (in Chinese with English abstract). |
[28] | 陈秀端, 卢新卫. 2017. 基于受体模型与地统计的城市居民区土壤重金属污染源解析[J]. 环境科学,38(6):2513-2521. |
[29] | 程东会, 陈鸿汉, 何江涛, 林健, 杨德贵, 蔚辉. 2007. 北京城近郊区地下水人为影响和水-岩作用指示性指标研究[J]. 水文地质工程地质,34(5):37-42. doi: 10.3969/j.issn.1000-3665.2007.05.010 |
[30] | 黄顺生, 许伟伟, 何培良, 周强, 李文博, 贺新星. 2023. 江苏省淮安市典型湿地底泥营养盐分布特征及污染评价[J]. 华东地质,44(3):323-332. doi: 10.16788/j.hddz.32-1865/P.2023.03.008 |
[31] | 姜月华, 周权平, 倪化勇, 陈立德, 程和琴, 雷明堂, 葛伟亚, 马腾, 施斌, 程知言, 段学军, 苏晶文, 朱锦旗, 修连存, 向芳, 朱志敏, 冯乃琦, 谢忠胜, 谭建民, 彭轲, 郭盛乔, 伏永朋, 任海彦, 孙建平, 杨强, 朱继良, 王东辉, 李明辉, 刘广宁, 范晨子, 王新峰, 史玉金, 王寒梅, 董贤哲, 陈焕元, 郝社峰, 邓娅敏, 李云, 肖则佑, 杨海, 刘林, 金阳, 张鸿, 梅世嘉, 齐秋菊, 吕劲松, 侯莉莉, 陈刚, 陈孜, 贾正阳. 2023. 长江经济带环境地质调查研究进展[J]. 华东地质,44(3):239-261. doi: 10.16788/j.hddz.32-1865/P.2023.03.001 |
[32] | 金阳, 姜月华, 周权平, 雷廷, 贾军元, 杨国强. 2021. 丹阳市吕城地区浅层地下水演化特征及成因[J]. 华东地质,42(4):475-482. |
[33] | 李俊霞, 苏春利, 谢先军, 王焰新. 2010. 多元统计方法在地下水环境研究中的应用——以山西大同盆地为例[J]. 地质科技情报,29(6):94-100. |
[34] | 李亮, 王敏, 邢怀学, 葛伟亚, 贾军元, 余成. 2019. 基于AHP-DRASTIC评价模型的无锡市潜水污染风险评价[J]. 合肥工业大学学报(自然科学版),42(3):310-314. |
[35] | 李亮, 邢怀学, 龚建师, 王赫生, 周锴锷, 朱应新, 邓婷婷. 2022. 太湖流域北部地下水化学特征及成因分析[J]. 华东地质,43(2):217-226. |
[36] | 林承奇, 胡恭任, 于瑞莲, 杨秋丽, 余伟河. 2016. 九龙江近岸表层沉积物重金属污染评价及来源解析[J]. 中国环境科学,36(4):1218-1225. doi: 10.3969/j.issn.1000-6923.2016.04.038 |
[37] | 孟利, 左锐, 王金生, 杨洁, 滕彦国, 翟远征, 石榕涛. 2017. 基于PCA-APCS-MLR的地下水污染源定量解析研究[J]. 中国环境科学,37(10):3773-3786. doi: 10.3969/j.issn.1000-6923.2017.10.020 |
[38] | 秦子元, 高瑞忠, 张生, 贾德彬, 杜丹丹, 张阿龙, 王喜喜. 2019. 西北旱区盐湖盆地地下水化学组分源解析[J]. 环境科学研究,32(11):1790-1799. |
[39] | 秦先燕, 李运怀, 孙跃, 彭苗枝. 2017. 环巢湖典型农业区土壤重金属来源解析[J]. 地球与环境,45(4):455-463. |
[40] | 史文昌,古正刚,冯燕,吴雅楠,伍籼融,张志尚,2020.基于APCS-MLR的宝象河沉积物重金属污染源解析[J].环境科学与技术,43(10):51-59. |
[41] | 童芳. 2012. 合肥城区地表灰尘重金属污染特征及健康风险评价研究[D]. 合肥: 合肥工业大学. |
[42] | 许乃政, 刘红樱, 魏峰, 杨辉, 葛伟亚. 2015. 江苏洋口港地区地下水的环境同位素组成及其形成演化研究[J]. 环境科学学报,35(12):3862-3871. |
[43] | 胥焘, 王飞, 郭强, 聂小倩, 黄应平, 陈俊. 2014. 三峡库区香溪河消落带及库岸土壤重金属迁移特征及来源分析[J]. 环境科学,35(4):1502-1508. |
[44] | 杨平恒, 袁道先, 叶许春, 谢世友, 陈雪彬, 刘子琦. 2013. 降雨期间岩溶地下水化学组分的来源及运移路径[J]. 科学通报,58(18):1755-1763. |
[45] | 张学敏. 2007. 厦门市大气可吸入颗粒物源解析的研究[J]. 环境科学与技术,30(11):51-54,69. doi: 10.3969/j.issn.1003-6504.2007.11.019 |
[46] | 郑涛, 焦团理, 胡波, 龚建师, 侯香梦, 王赫生. 2021. 涡河流域中部地区地下水化学特征及其成因分析[J]. 环境科学,42(2):766-775. |
[47] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2017. GB/T 14848-2017 地下水质量标准[S]. 北京: 中国标准出版社. |
Distribution of shallow groundwater sampling points in Wuxi City
Piper three-line diagrams of shallow groundwater in Wuxi City
Single-element quality evaluation grade of groundwater in Wuxi City
The factor extraction rates of groundwater quality index in Wuxi City
The grading and distribution of natural evolution factor(F1) score of groundwater in Wuxi City
The grading and distribution of industrial production factor(F2) score of groundwater in Wuxi City
The grading and distribution of agricultural production factor(F3) score of groundwater in Wuxi City
The relation of of measured concentrations of groundwater chemistry and MLR predicted concentration (calculated by common factor water quality indexes based on Multiple Regression Model) in Wuxi City