2023 Vol. 44, No. 4
Article Contents

HUANG Dehua. 2023. Land subsidence monitoring in Yungang mining area in Datong City based on InSAR technology. East China Geology, 44(4): 476-484. doi: 10.16788/j.hddz.32-1865/P.2023.04.011
Citation: HUANG Dehua. 2023. Land subsidence monitoring in Yungang mining area in Datong City based on InSAR technology. East China Geology, 44(4): 476-484. doi: 10.16788/j.hddz.32-1865/P.2023.04.011

Land subsidence monitoring in Yungang mining area in Datong City based on InSAR technology

  • Datong is rich in coal resources, but the development of mining area is restricted to a certain extent by geological environment problems such as land subsidence caused by coal mining activities. In order to monitor the land subsidence characteristics of Yungang mining area in Datong City, based on Sentinel-1A satellite data, this paper used Differential Interferometric Synthetic Aperture Radar(D-InSAR) technology to process the landscape images captured from June to July, 2020, and preliminarily obtained the characteristics of the subsidence area in the mining area, and the maximum subsidence amount in the monitoring area reached 4.6 cm/36 d. A Small Baseline Subset InSAR (SBAS-InSAR) is used to process 24 images photographed from January 2019 to December 2020, obtaining a long time series deformation of some subsidence areas in the monitoring area. The spatial distribution of this monitoring deformation is consistent with that of the deformation monitored by Persistent Scattered Interferometric Synthetic Aperture Radar(PS-InSAR) using 25 SAR images during the period from January 2020 to September 2020, both of which have coincident deformation trend. According to the above three InSAR monitoring results, there are as many as 12 obviously rapid subsidence zones evenly distributed in the mining area, among which the maximum subsidence rate is 180 mm/y, and the maximum cumulative subsidence in 2019—2020 is 333 mm, while there is no obvious deformation sign in the southeastern urban area. It provides scientific basis for monitoring and rational exploitation of ground subsidence in mining area.
  • 加载中
  • [1] 杨逾, 刘文生, 缪协兴,等. 我国采煤沉陷及其控制研究现状与展望[J]. 中国矿业, 2007,16(7): 43-46.

    Google Scholar

    YANG Y, LIU W S, MIAO X X, et al. The research status and view of the mining subsidence and it's control technology in China[J]. China Mining Magazine,2007,16(7): 43-46.

    Google Scholar

    [2] 段丽丽, 朱明. 矿区地面沉降的危害及其防治[J]. 河北理工大学学报, 2007,29(1): 122-124.

    Google Scholar

    DUAN L L, ZHU M. Harm of the ground sedimentation in mining areas and prevention and cure[J]. Journal of Hebei Institute of Technology, 2007,29(1):122-124.

    Google Scholar

    [3] 李万林, 周英帅. 基于D-InSAR技术的地质灾害和监测预警[J]. 测绘工程, 2021, 30(1): 66-70.

    Google Scholar

    LI W L, ZHOU Y S. Early warning and monitoring of geohazards based on D-InSAR technology[J]. Engineering of Surveying and Mapping, 2021, 30(1): 66-70.

    Google Scholar

    [4] 王明珠,万军伟,白通,等. 德州市德城区砂岩热储地热资源开采对地面沉降的影响[J]. 华东地质, 2021, 42(2): 202-209.

    Google Scholar

    WANG M Z, WAN J W, BAI T, et al. The influence of geothermal resources exploitation of sandstone thermal reservoir on land subsidence in Decheng District, Dezhou City[J]. East China Geology, 2021, 42(2): 202-209.

    Google Scholar

    [5] 麻学飞,张双成,惠文华,等.山西省临汾市矿区地表形变InSAR大范围探测与监测[J].自然资源遥感, 2022, 34(3): 146-153.

    Google Scholar

    MA X F, ZHANG S C, HUI W H, et al. InSAR-based large-scale detection and monitoring of the surface deformation in Linfen mining areas, Shanxi Province[J]. Remote Sensing for Natural Resources, 2022, 34(3):146-153.

    Google Scholar

    [6] CARNEC C, DELACOURT C. Three years of mining subsidence monitored by SAR interferometry, near Gardanne, France[J]. Joumal of Applied Geophysics, 2000, 43(1): 43-54.

    Google Scholar

    [7] 吴立新,高均海,葛大庆,等. 工矿区地表沉陷D-InSAR监测试验研究[J]. 东北大学学报(自然科学版), 2005,26(8): 778-782.

    Google Scholar

    WU L X, GAO J H, GE D Q, et al. Experimental study on surface subsidence monitoring with D-InSAR in mining area[J]. Journal of Northeastern University (Natural Science), 2005,26(8): 778-782.

    Google Scholar

    [8] FERRETTI A, PRATI C, ROCCA F. Permanent scatters in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20.

    Google Scholar

    [9] BERARIDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.

    Google Scholar

    [10] GRZOVIC M, GHULAM A. Evaluation of land subsidence from underground coal mining using Time SAR (SBAS and PSI) in Springfield, Illinois, USA[J]. Natural Hazards, 2015, 79(3):1739-1751.

    Google Scholar

    [11] 虎小强, 杨树文, 闫恒, 等. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023,35(1): 171-179.

    Google Scholar

    HU X Q, YANG S W, YAN H, et al. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J]. Remote Sensing for Natural Resources, 2023,35(1): 171-179.

    Google Scholar

    [12] 林珲,马培峰,王伟玺. 监测城市基础设施健康的星载MT-InSAR方法介绍[J]. 测绘学报, 2017, 46(10): 1421-1433.

    Google Scholar

    LIN H, MA P F, WANG W X. Urban infrastructure health monitoring with spaceborne multi-temporal synthetic aperture tadar interferometry[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1421-1433.

    Google Scholar

    [13] 郑跃, 谭凯, 邱江涛. 利用DInSAR技术获取高质量同震形变场的方法研究[J].大地测量与地球动力学, 2017,37(增4): 77-81.

    Google Scholar

    ZHENG Y, TAN K, QIU J T. Method of obtaining high quality coseismic deformation field by using DInSAR technology[J]. Journal of Geodesy and Geodynamics, 2017,37(Z4): 77-81.

    Google Scholar

    [14] 高海英, 赵争, 章彭, 等. 基于MT-InSAR技术的滑坡体形变监测[J].北京测绘, 2020, 34(4): 485-489.

    Google Scholar

    GAO H Y, ZHAO Z, ZHANG P, et al. Landslide meformation monitoring based on InSAR and offset-tracking technology[J]. Beijing Surveying and Mapping, 2020, 34(4): 485-489.

    Google Scholar

    [15] 夏磊凯,付五洲,黄其欢.永久散射体差分干涉测量和小基线集技术在常州地面沉降分析中的应用[J]. 勘察科学技术, 2016(6): 46-49.

    Google Scholar

    XIA L K, FU W Z, HUANG Q H. Application of PS-InSAR and SBAS technology in land subsidence monitoring analysing in Changzhou[J]. Site Investigation Science and Technology, 2016(6): 46-49.

    Google Scholar

    [16] 张棫. SBAS-InSAR数据处理的自动化方法研究[D]. 南京:南京师范大学, 2016. ZHANG Y. Research on automatic method of SBAS-InSAR data[D]. Nanjing:Nanjing Normal University, 2016.

    Google Scholar

    [17] 赵强. 基于InSAR时序分析的吉林省地表形变监测研究[D]. 吉林:吉林大学, 2019. ZHAO Q. Research on surface deformation monitoring in Jilin province based on InSAR time series analy-sis[D]. Jilin:Jilin University, 2019.

    Google Scholar

    [18] 云烨, 吕孝雷, 付希凯, 等. 星载InSAR技术在地质灾害监测领域的应用[J].雷达学报, 2020, 9(1): 73-85.

    Google Scholar

    YUN Y, LU X L, FU X K, et al. Application of spaceborne interferometric synthetic aperture radar to geohazard monitoring[J]. Journal of Radars, 2020, 9(1): 73-85.

    Google Scholar

    [19] 胡波, 汪汉胜. 用PSInSAR技术监测地面沉降研究[J]. 大地测量与地球动力学, 2010, 30(2): 34-39.

    Google Scholar

    HU B, WANG H S. Monitoring ground subsidence with permanent scatterers interferometry[J]. Journal of Geodesy and Geodynamics, 2010, 30(2): 34-39.

    Google Scholar

    [20] 白泽朝, 靳国旺, 张红敏, 等. 天津地区Sentinel-1A雷达影像PSInSAR地面沉降监测[J]. 测绘科学技术学报, 2017, 34(3): 283-288.

    Google Scholar

    BAI Z C, JIN G W, ZHANG H M, et al. Subsidence monitoring of Tianjin using PSInSAR technique with Sentinel-1A[J]. Journal of Geomatics Science and Technology, 2017, 34(3): 283-288.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(667) PDF downloads(160) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint