2023 Vol. 44, No. 4
Article Contents

LIU Lin, CHEN Qi, ZHAO Rurong, ZHOU Xun, JIANG Yuehua, YE Yonghong. 2023. The mechanism of high iodine groundwater driven by human activities: a case study of Fuzhou City. East China Geology, 44(4): 457-466. doi: 10.16788/j.hddz.32-1865/P.2023.04.009
Citation: LIU Lin, CHEN Qi, ZHAO Rurong, ZHOU Xun, JIANG Yuehua, YE Yonghong. 2023. The mechanism of high iodine groundwater driven by human activities: a case study of Fuzhou City. East China Geology, 44(4): 457-466. doi: 10.16788/j.hddz.32-1865/P.2023.04.009

The mechanism of high iodine groundwater driven by human activities: a case study of Fuzhou City

More Information
  • Drinking high iodine water for a long time can cause thyroid dysfunction and pose a threat to human health. We selected high iodine groundwater in Fuzhou as the research object, and collected 42 groups of groundwater samples from different land use types. The spatial characteristics and genetic mechanisms of iodine in shallow groundwater were studied by using statistical analysis and ion ratio analysis. The results showed that the average content of iodine in local groundwater was 0.10 mg/L (0.008 0~0.52 mg/L). The distribution characteristics of iodine were inland low-coastal high, mountain low-plain high, and rural low-urban high. High iodine groundwater samples accounted for 19.1%, and were predominantly distributed in the main urban areas along the Minjiang River, eastern Fuqing and Pingtan coastal areas. The Quaternary alluvial and marine sediments provide a natural material sources for iodine enrichment in groundwater. Moreover, the reduced groundwater environment and long retention time are natural conditions of iodine enrichment in groundwater. As the spatial distribution of high iodine groundwater is highly correlated with the areas of high population density, it is suggested that high iodine domestic sewage discharged from human activities plays a significant role in the formation mechanism of high iodine groundwater.
  • 加载中
  • [1] 徐芬, 马腾, 石柳, 等. 内蒙古河套平原高碘地下水的水文地球化学特征[J]. 水文地质工程地质, 2012,39(5): 8-15.

    Google Scholar

    XU F, MA T, SHI L, et al. Hydrogeochemical characteristics of high iodine groundwater in the Hetao Plain, Inner Mongolia[J]. Hydrogeology & Engineering Geology, 2012,39(5): 8-15.

    Google Scholar

    [2] 钱坤. 大同盆地高碘地下水系统中胶体影响下的碘富集机理研究[D]. 武汉:中国地质大学(武汉), 2017. QIAN K. Effects of colloids on iodine enrichment in groundwater of the Datong basin, China[D]. Wuhan:China University of Geosciences (Wuhan), 2017.

    Google Scholar

    [3] 郑宝山, 王滨滨, 朱广伟,等. 大气与植物中碘的环境地球化学——综述与新的假说[J]. 地学前缘, 2001,8(2):359-365.

    Google Scholar

    ZHENG B S, WANG B B, ZHU G W, et al. Environmental geochemistry of iodine in atmosphere and plant—review and a hypothesis[J]. Earth Science Frontier, 2001, 8(2):359-365.

    Google Scholar

    [4] 曾昭华.地下水中碘的形成及其控制因素[J].吉林地质,1999,18(2):30-33,72.

    Google Scholar

    ZENG S H. The formation of Ⅰ and its control factors[J]. Jilin Geology, 1999,18(2):30-33,72.

    Google Scholar

    [5] WANG Y X, LI J X, MA T, et al. Genesis of geogenic contaminated groundwater: As, F and I[J]. Critical Reviews in Environmental Science and Technology, 2021(24):2895-2933.

    Google Scholar

    [6] 国家质量监督检验检疫总局.GB/T 19380—2003水源性高碘地区和地方性高碘甲状腺肿病区的划定. 2003:1-8.

    Google Scholar

    General Administration of Quality Supervision, Inspection and Quarantine of The People's Republic of China. GB/T 19380—2003 Determination and classificaton of the areas of high water iodine and the endemic areas of iodine excess goiter. 2003:1-8.

    Google Scholar

    [7] 周海玲, 苏春利, 李俊霞. 地表灌溉对沉积含水层中碘迁移释放过程的影响[J]. 吉林大学学报(地球科学版), 2018,48(6): 1810-1820.

    Google Scholar

    ZHOU H L, SU C L, LI J X. Influence of surface irrigation practices on iodine mobilization in sedimentary aquifers[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(6): 1810-1820.

    Google Scholar

    [8] 薛江凯, 邓娅敏, 杜尧, 等. 长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示[J]. 地球科学, 2021, 46(11): 4140-4149.

    Google Scholar

    XUE J K, DENG Y M, DU Y, et al. Molecular characterization of dissolved organic matter (DOM) in shallow aquifer along middle reach of Yangtze River and its implications for iodine enrichment[J]. Earth Science, 2021, 46(11): 4140-4149.

    Google Scholar

    [9] 王妍妍, 马腾, 董一慧, 等. 内陆盆地区高碘地下水的成因分析:以内蒙古河套平原杭锦后旗为例[J]. 地学前缘, 2014,21(4): 66-73.

    Google Scholar

    WANG Y Y, MA T, DONG Y H, et al. The formation of inland-high-iodine groundwater: A case study in Hangjinhouqi, Hetao Plain[J]. Earth Science Frontiers, 2014, 21(4): 66-73.

    Google Scholar

    [10] TAYLOR P N, ALBRECHT D, SCHOLZ A, et al. Global epidemiology of hyperthyroidism and hypothyroidism[J]. Nature reviews. Endocrinology, 2018, 14(5): 301-316.

    Google Scholar

    [11] 孙英, 周金龙, 杨方源, 等. 塔里木盆地南缘绿洲带地下水砷氟碘分布及共富集成因[J]. 地学前缘, 2022, 29(3): 99-114.

    Google Scholar

    SUN Y, ZHOU J L, YANG F Y, et al. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Trim Basin[J]. Earth Science Frontiers, 2022, 29(3): 99-114.

    Google Scholar

    [12] 罗义鹏, 邓娅敏, 杜尧, 等. 长江中游故道区高碘地下水分布与形成机理[J]. 地球科学, 2022, 47(2): 662-673.

    Google Scholar

    LUO Y P, DENG Y M, DU Y, et al. Occurrence and formation of high iodine groundwater in oxbows of the middle reach of the Yangtze River[J]. Earth Science, 2022, 47(2): 662-673.

    Google Scholar

    [13] 王焰新, 李俊霞, 谢先军. 高碘地下水成因与分布规律研究[J]. 地学前缘, 2022, 29(3): 1-10.

    Google Scholar

    WANG Y X, LI J X, XIE X J. Genesis and occurrence of high iodine groundwater[J]. Earth Science Frontiers, 2022, 29(3): 1-10.

    Google Scholar

    [14] 孙英, 周金龙, 梁杏, 等. 塔里木盆地南缘浅层高碘地下水的分布及成因:以新疆民丰县平原区为例[J]. 地球科学, 2021, 46(08): 2999-3011.

    Google Scholar

    SUN Y, ZHOU J L, LIANG X, et al. Distribution and genesis of shallow high-iodine groundwater in southern margin of Tarim Basin: A case study of plain area in Minfeng County, Xinjiang. Earth Science, 2021, 46(8): 2999-3011.

    Google Scholar

    [15] 朱沉静, 李俊霞, 谢先军. 大同盆地地下水中碳硫同位素组成特征及其对碘迁移富集的指示[J]. 地球科学, 2021, 46(12): 4480-4491.

    Google Scholar

    ZHU C J, LI J X, XIE X J. Carbon and sulfur isotopic features and its implications for iodine mobilization in groundwater system at Datong Basin, Northern China[J]. Earth Science, 2021, 46(12): 4480-4491.

    Google Scholar

    [16] 钱永, 张兆吉, 费宇红, 等. 华北平原饮用地下水碘分布及碘盐分区供应探讨[J]. 生态与农村环境学报, 2014, 30(1): 9-14.

    Google Scholar

    QIAN Y, ZHANG Z J, FEI Y H, et al. Spatial distribution of iodine in underground drinking water and discussion on region-specific supply of iodized salt in the North China Plain[J]. Journal of Ecology and Rural Environment, 2014, 30(1): 9-14.

    Google Scholar

    [17] 张媛静, 张玉玺, 向小平, 等. 华北平原典型剖面地下水碘分布及对配碘影响[J]. 水资源保护, 2013,29(5): 7-9.

    Google Scholar

    ZHANG Y J, ZHANG Y X, XIANG X P, et al. Distribution of iodine in typical sections in North China Plain and its influence on choice of edible salt[J]. Water Resources Protection, 2013, 29(5): 7-9.

    Google Scholar

    [18] 李俊霞. 大同盆地高碘地下水系统地球化学研究[D]. 武汉:中国地质大学(武汉), 2014. LI J X. Geochemistry of high iodine groundwater system of Datong basin, northern china[D]. Wuhan:China University of Geosciences (Wuhan), 2014.

    Google Scholar

    [19] FUGE R, JOHNSON C C. Iodine and human health, the role of environmental geochemistry and diet, a review[J]. Applied Geochemistry, 2015, 63: 282-302.

    Google Scholar

    [20] ABDELKADER B, ABDELHAK M, ABDESLAM K, et al. Estimation of pollution load of domestic sewage to Oued bechar (sw algeria) and its impact on the microbiological quality of groundwater[J]. Procedia Engineering, 2012, 33(3):261-267.

    Google Scholar

    [21] 孙跃, 刘中刚, 侯香梦, 等. 安徽合肥地区浅层地下水质量评价[J]. 华东地质, 2019,40(1):74-80.

    Google Scholar

    SUN Y, LIU Z G, HOU X M, et al. Quality assessment for shallow groundwater in the Hefei area, Anhui Province[J]. East China Geology, 2019,40(1):74-80.

    Google Scholar

    [22] 吕晓立, 刘景涛, 韩占涛, 等. 快速城镇化三角洲地区高碘地下水赋存特征及驱动因素:以珠江三角洲为例[J]. 环境科学, 2022, 43(1): 339-348.

    Google Scholar

    LÜ X L, LIU J T, HAN Z T, et al. Geochemical characteristics and driving factors of high-iodine groundwater in rapidly urbanized delta areas: a case study of the Pearl River Delta[J]. Environmental Science, 2022, 43(1): 339-348.

    Google Scholar

    [23] 周迅, 赵汝荣, 陈琦. 福州市浅层地下水的硝化机制[J].水资源保护,2015,33(4): 26-31,46. ZHOU X, ZHAO R R, CHEN Q. Nitrification of shallow groundwater in Fuzhou City, China[J]. Water Resources Protection, 2015, 33(4): 26-31, 46.

    Google Scholar

    [24] 福建省地质调查研究院. 福建省区域地质志[R].福州:福建省地质调查研究院,2012:719-791.

    Google Scholar

    Fujian Institute of Geological Survey. Regional geology of Fujian Province[R]. Fuzhou:Fujian Institate of Geological Survey, 2012:719-791.

    Google Scholar

    [25] 中国地质调查局. 水文地质手册(第二版)[M].北京: 地质出版社, 2012:504-516.

    Google Scholar

    China Geological Survey. Handbook of hydrogeology(2nd edition)[M].Beijing: Geological Publishing House, 2012: 504-516.

    Google Scholar

    [26] 中华人民共和国国家质量监督检验检疫局, 中国国家标准化管理委员会. GB/T 14848—2017地下水质量标准. 2017:1-14.

    Google Scholar

    General Administration of Quality Supervision, Inspection and Quarantine of The People's Republic of China, Standardization Administration of China. GB/T 14848—2017 Standard for groundwater quality. 2017:1-14.

    Google Scholar

    [27] 刘立才, 陈鸿汉, 杨仪, 等. 苏锡常地区浅层地下水rNa/rCl特征及其成因初探[J]. 中国地质, 2000,35(1):117-122.

    Google Scholar

    LIU L C, CHEN H H, YANG Y, et al. Characteristics and genesis of rNa/rCl in shallow groundwater in the Suzhou-Wuxi-Changzhou region[J]. Geology in China, 2000, 35(1):117-122.

    Google Scholar

    [28] 刘林, 周迅, 叶永红. 基于多元统计分析的浅层地下水受人为活动影响表征性指标筛选[J]. 资源调查与环境, 2014,35(4):305-310.

    Google Scholar

    LIU L, ZHOU X, YE Y H. Screening of characteristic indexes for shallow groundwater influenced by human activities using multivariate statistics[J]. Resources Survey and Environment, 2014, 35(4): 305-310.

    Google Scholar

    [29] 钟佐燊. 地下水防污性能评价方法探讨[J]. 地学前缘, 2005, 12(A1):3-13.

    Google Scholar

    ZHONG Z S. A discussion of groundwater vulnerability assessment methods[J]. Earth Science Frontiers, 2005, 12(A1):3-13.

    Google Scholar

    [30] ANDERSEN S, GUAN H, TENG W, et al. Speciation of iodine in high iodine groundwater in china associated with goiter and hypothyroidism[J]. Biological Trace Element Research, 2009, 128(2):95-103.

    Google Scholar

    [31] 张媛静, 张玉玺, 向小平,等. 沧州地区地下水碘分布特征及其成因浅析[J]. 地学前缘, 2014, 21(4):59-65.

    Google Scholar

    ZHANG Y J, ZHANG Y X, XIANG X P, et al. Distribution characteristics and cause analysis of iodine in groundwater of Cangzhou Region. Earth Science Frontiers, 2014, 21(4):59-65.

    Google Scholar

    [32] 赵振宏, 田文法. 沧州市浅层高碘地下水成因及分布规律的初步探讨[J]. 水文地质工程地质, 1988(6):48-51.

    Google Scholar

    ZHAO Z H, TIAN W F. Preliminary study on the genesis and distribution of shallow high iodine groundwater in Cangzhou City[J]. Hydrogeology & Engineering Geology, 1988(6):48-51.

    Google Scholar

    [33] 张伟娜. 环境水体中碘的存在形态及其影响因素研究[D].吉林:吉林大学, 2012. ZHANG W N. Studies on speciation and influencing factors of iodine in environmental water system[D]. Jilin: Jilin University, 2012.

    Google Scholar

    [34] 陈志辉,林曙光.闽东南沿海居民碘营养状况评价及对策[J].中华地方病学杂志,1997(4):210-213.

    Google Scholar

    CHEN Z H, LIN S G. Evaluation and countermeasure on iodine nutritional status of residents in south east coastal areas of Fujian province[J]. Chinese Journal of Cndemiology, 1997(4):210-213.

    Google Scholar

    [35] 刘必端, 张琼. 福州市2011年居民碘盐与儿童尿碘监测结果分析[J]. 海峡预防医学杂志, 2012, 18(5):60-61.

    Google Scholar

    LIU B D, ZHANG Q. Analysis on surveillance results of iodized salt and urinary iodine of children in Fuzhou in 2011[J]. Strait Journal of Preventive Medicine, 2012, 18(5):60-61.

    Google Scholar

    [36] 纪锋颖. 2008—2009年青岛市居民饮用水水碘和盐碘及8~10岁儿童尿碘调查结果分析[J]. 中华地方病学杂志, 2011, 30(6):663-666.

    Google Scholar

    JI F Y. Analysis of a survey on status of iodine content in drinking water, edible salt and urine of children aged 8~10 in Qingdao in 2008-2009[J]. Chinese Journal of Endemiology, 2011, 30(6):663-666.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(528) PDF downloads(153) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint