2023 Vol. 44, No. 3
Article Contents

LI Liang, GONG Jianshi, WANG Hesheng, ZHOU Kaie, ZHU Chunfang, TAO Xiaohu, YE Yonghong, TAN Mengjiao, ZHANG Fei. 2023. Hydrochemical characteristics and formation mechanism of shallow groundwater in Bozhou City, Anhui Province. East China Geology, 44(3): 345-356. doi: 10.16788/j.hddz.32-1865/P.2023.03.010
Citation: LI Liang, GONG Jianshi, WANG Hesheng, ZHOU Kaie, ZHU Chunfang, TAO Xiaohu, YE Yonghong, TAN Mengjiao, ZHANG Fei. 2023. Hydrochemical characteristics and formation mechanism of shallow groundwater in Bozhou City, Anhui Province. East China Geology, 44(3): 345-356. doi: 10.16788/j.hddz.32-1865/P.2023.03.010

Hydrochemical characteristics and formation mechanism of shallow groundwater in Bozhou City, Anhui Province

  • The present study is envisaged to investigate the chemical characteristics and formation mechanism of the shallow groundwater, one of the main sources for agricultural and domestic water in Bozhou City, Anhui Province. 143 samples of shallow groundwater were analyzed and evaluated by specifically using descriptive statistics, correlation analysis, ion ratio coefficient and Piper three-line diagram. The results reveal complicated chemical types of shallow groundwater in Bozhou City as follows: the contents of the cations and anions in the shallow groundwater are found to be in the order Na+> Mg2+> Ca2+ and HCO-3> SO2-4> Cl-, respectively. The hydrochemical characteristics are controlled by water-rock interaction, evaporation, and comparatively less influenced by the atmospheric precipitation and human factors. The exchange between the cations, weathering and dissolution of silicate and carbonate minerals dominate the water-rock interaction during the formation of shallow groundwater. In terms of human activity, the domestic pollution and agricultural activities are found to be more influential in hydrochemistry than industrial and mining activities. The ordinary grade of groundwater quality is IV. The key influencing factors in Ⅳ and Ⅴ grade water are F-, Na+, total hardness and total dissolved solids (TDS). The primary irrigation water is medium-quality, mainly affected by ultra-concentration of Na+. The research results on the mechanism of groundwater chemical genesis can lay a scientific basis for the investigation and evaluation of groundwater in the Huaihe River Basin and its sustainable exploitation and management.
  • 加载中
  • [1] 董维红,苏小四,侯光才,等.鄂尔多斯白垩系地下水盆地地下水水化学类型的分布规律[J].吉林大学学报(地球科学版),2007,37(2):288-292.

    Google Scholar

    DONG W H, SU X S, HOU G C, et al. Distribution law of groundwater hydrochemical type in the Ordos Cretaceous artesian basin[J]. Journal of Jilin University, 2007,37(2):288-292.

    Google Scholar

    [2] 苏小四,万玉玉,董维红,等.马莲河河水与地下水的相互关系:水化学和同位素证据[J].吉林大学学报(地球科学版), 2009, 39(6):1087-1094.

    Google Scholar

    SU X S, WAN Y Y, DONG W H, et al. Hydraulic relationship between Malianhe river and groundwater:Hydrogeochemical and isotopic evidences[J]. Journal of Jilin University, 2009,39(6):1087-1094.

    Google Scholar

    [3] 唐玺雯,吴锦奎,薛丽洋,等.锡林河流域地表水水化学主离子特征及控制因素[J].环境科学,2014, 35(1):131-142.

    Google Scholar

    TANG X W, WU J K, XUE L Y, et al. Major ion chemistry of surface water in the Xilin River basin and the possible controls[J]. Environmental Science, 2014,35(1):131-142.

    Google Scholar

    [4] 孙跃,刘中刚,侯香梦,等.安徽合肥地区浅层地下水质量评价[J].华东地质, 2019, 40(1):74-80.

    Google Scholar

    SUN Y,LIU Z G,HOU X M,et al. Quality assessment for shallow groundwater in the Hefei area, Anhui Province[J]. East China Geology, 2019,40(1):74-80.

    Google Scholar

    [5] 刘君,陈宗宇,王莹,等.大规模开采条件下我国北方区域地下水水化学变化特征[J].地球与环境, 2017, 45(4):408-414.

    Google Scholar

    LIU J,CHEN Z Y,WANG Y, et al. Evaluation of hydrochemical characteristics of regional groundwater systems in northern China under the conditions of large-scale exploitation[J]. Earth and Environment,2017, 45(4):408-414.

    Google Scholar

    [6] 王雅欣,冯忠伦,邱庆泰,等.南水北调通水对梁济运河流域地下水化学成分影响[J].中国农村水利水电, 2015(11):110-114.

    Google Scholar

    WANG Y X, FENG Z L, QIU Q T, et al. An analysis of the influence of chemical composition of groundwater in the Liangji Canal Basin on south to north water tansfer project in operation[J]. China Rural Water and Hydropower, 2015(11):110-114.

    Google Scholar

    [7] 蒋万军,赵丹,王广才,等.新疆吐-哈盆地地下水水文地球化学特征及形成作用[J].现代地质,2016, 30(4):825-833.

    Google Scholar

    JIANG W J, ZHAO D, WANG G C, et al. Hydro-geochemical characteristics and formation of groundwater in Tu-Ha Basin, Xinjiang[J]. Geoscience, 2016, 30(4):825-833.

    Google Scholar

    [8] 彭玉怀,陈伟.安徽省淮北平原地下水环境演变调查评价报告[R].合肥:安徽省地质调查院, 2010. PENG Y H, CHEN W. Investigation and evaluation report on groundwater environment evolution in Huaibei Plain of Anhui Province[R]. Hefei:Geological Survey of Anhui Province, 2010.

    Google Scholar

    [9] 中国地质调查局. DD2008-01地下水污染调查评价规范[S].2008. China Geological Survey. DD2008-01 Code for investigation and evaluation of groundwater pollu-tion[S]. 2008.

    Google Scholar

    [10] 中国地质矿产部.DZ/T0064-93地下水质检验方法[S].1993. Ministry of Geology and Mineral Resources of China. DZ/T0064-93 Inspection method of groundwater quality[S]. 1993.

    Google Scholar

    [11] 钱会,马致远.水文地球化学[M].北京:地质出版社, 2005. QIAN H,MA Z Y. Hydrogeochemistry[M]. Beijing:Geological Publishing House, 2005.

    Google Scholar

    [12] 尹子悦,林青,徐绍辉.青岛市大沽河流域地下水水化学时空演化及影响因素分析[J].地质论评,2018, 64(4):1030-1043.

    Google Scholar

    YIN Z Y, LIN Q, XU S H. Spatial-temporal variations and controlling factors of groundwater hydrochemical characteristics in the Dagu River ba-sin[J]. Geological Review, 2018,64(4):1030-1043.

    Google Scholar

    [13] MEYBECK M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science,1987, 287(5):401-428.

    Google Scholar

    [14] 文冬光,林良俊,孙继朝,等.中国东部主要平原地下水质量与污染评价[J].地球科学(中国地质大学学报), 2012, 37(2):220-228.

    Google Scholar

    WEN D G, LIN L J, SUN J C, et al. Groundwater quality and contamination assessmentin the main plains of eastern China[J]. Earth Science (Journal of China University of Geosciences), 2012,37(2):220-228.

    Google Scholar

    [15] 邢怀学,李亮,葛伟亚,等.安徽省淮北市地下水中氟的空间分布特征及成因[J].地球学报, 2014, 35(2):163-168.

    Google Scholar

    XING H X, LI L, GE W Y, et al. Spatial distribution characteristics and origin of fluorine in groundwater of Huaibei City, Anhui Province[J].Acta Geoscientica Sinica, 2014,35(2):163-168.

    Google Scholar

    [16] 邓春英.安徽省高含氟地下水成因及其分布特征[J].江淮水利科技,2006(2):22-24. DENG C Y. Origin and spatial distribution characteristics of fluorine in groundwater Anhui Province[J]. Jianghuai Water Resources Science and Technology, 2006(2):22-26.

    Google Scholar

    [17] 姜凌,李佩成,郭建青.贺兰山西麓典型干旱区绿洲地下水水化学特征与演变规律[J].地球科学与环境学报, 2009, 31(3):285-290.

    Google Scholar

    JIANG L, LI P C, GUO J Q. Hydrochemical characteristics and evolution laws of groundwater in typical oasis of arid areas on the west of Helan Mountain[J]. Journal of Earth Sciences and Environment, 2009,31(3):285-290.

    Google Scholar

    [18] 王水献,王云智,董新光.焉耆盆地浅层地下水埋深与TDS时空变异及水化学的演化特征[J].灌溉排水学报, 2007,15(5):90-93.

    Google Scholar

    WANG S X,WANG Y Z, DONG X G. The spatio-temporal variation of shallow groundwater TDS, depth and it's evolvement characteristic of water chemistry in Yanqi basin[J]. Advances in Water Science, 2007,15(5):90-93.

    Google Scholar

    [19] HE J, MA J, ZHANG P, et al. Groundwater recharge environments and hydrogeochemical evolution in the Jiuquan Basin, Northwest China[J]. Applied Geochemistry,2012, 27(4):866-878.

    Google Scholar

    [20] 侯景儒,黄竟先.实用地质统计学[M].北京:地质出版社, 1998. HOU J R, HUANG J X. Practical Geostatistics[M]. Beijing:Geology Press, 1998.

    Google Scholar

    [21] ZHU B, YANG X, RIOUAL P, et al. Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China[J]. Applied Geochemistry,2011, 26(8):1535-1548.

    Google Scholar

    [22] 周迅,姜月华.氮、氧同位素在地下水硝酸盐污染研究中的应用[J].地球学报,2007,28(4):389-395.

    Google Scholar

    ZHOU X, JIANG Y H. Application of nitrogen and oxygen isotopes to the study of groundwater nitrate contamination[J]. Acta Geoscientica Sinica, 2007, 28(4):389-395.

    Google Scholar

    [23] 卢丽,李文莉,裴建国,等.基于IsoSource的桂林寨底地下河硝酸盐来源定量研究[J].地球学报,2014, 35(2):248-254.

    Google Scholar

    LU L, LI W L, PEI J G, et al. A quantitative study of the sources of nitrate of Zhaidi undertround river in Guilin based on IsoSource[J]. Acta Geoscientica Sinica, 2014,35(2):248-254.

    Google Scholar

    [24] 高坛光,康世昌,张强弓,等.青藏高原纳木错流域河水主要离子化学特征及来源[J].环境科学,2008,29(11):3009-3016.

    Google Scholar

    GAO T G, KANG S C, ZHANG Q G, et al. Major ionic features and their sources in the Nam Co basin over the Tibetan plateau[J]. Environmental Science, 2008, 29(11):3009-3016.

    Google Scholar

    [25] 周嘉欣,丁永建,曾国雄,等.疏勒河上游地表水水化学主离子特征及其控制因素[J].环境科学,2014, 35(9):3315-3324.

    Google Scholar

    ZHOU J X, DING Y J, ZENG G X, et al. Major ion chemistry of surface water in the upper reach of Shule River basin and the possible controls[J]. Environmental Science, 2014,35(9):3315-3324.

    Google Scholar

    [26] 张艳,吴勇,杨军,等.阆中市思依镇水化学特征及其成因分析[J].环境科学,2015, 36(9):3230-3237.

    Google Scholar

    ZHANG Y, WU Y, YANG J, et al. Hydrochemical characteristic and reasoning analysis in Siyi Town, Langzhong City[J]. Environmental Science, 2015,36(9):3230-3237.

    Google Scholar

    [27] 许乃政,龚建师,檀梦皎,等.淮河流域高砷地下水的形成演化过程[J].中国地质,2021, 48(5):1418-1428.

    Google Scholar

    XU N Z, GONG J S, TAN M J, et al. Formation and evolution processes of high-araenic groundwater in Huaihe River Basin,China[J]. Geology in China, 2021,48(5):1418-1428.

    Google Scholar

    [28] FAN B, ZHAO Z, TAO F, et al. Characteristics of carbonate, evaporite and silicate weathering in Huanghe River basin:A comparison among the upstream, midstream and downstream[J]. Journal of Asian Earth Sciences,2014, 96:17-26.

    Google Scholar

    [29] HAN G, LIU C. Water geochemistry controlled by carbonate dissolution:a study of the river waters draining karst-dominated terrain, Guizhou Province, China[J]. Chemical Geology,2004, 204(1/2):1-21.

    Google Scholar

    [30] GAILLARDET J, DUPRE B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology,1999, 159(1):3-30.

    Google Scholar

    [31] 张涛,何锦,李敬杰,等.蛤蟆通河流域地下水化学特征及控制因素[J].环境科学,2018, 39(11):4981-4990.

    Google Scholar

    ZHANG T, HE J, LI J J, et al. Najor ionic featrues and possible controls in the groundwater in the Hamatong River basin[J]. Environmental Science, 2018,39(11):4981-4990.

    Google Scholar

    [32] GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962):1088-1090.

    Google Scholar

    [33] 张涛,蔡五田,李颖智,等.尼洋河流域水化学特征及其控制因素[J].环境科学, 2017, 38(11):4537-4545.

    Google Scholar

    ZHANG T, CAI W T, LI Y Z, et al. Najor ionic featrues and possible controls in the groundwater in the Hamatong River basin[J]. Environmental Science, 2017, 38(11):4537-4545.

    Google Scholar

    [34] WU Y, GIBSON C E. Mechanisms controlling the water chemistry of small lakes in Northern Ireland[J]. Water Research,1996, 30(1):178-182.

    Google Scholar

    [35] 左禹政,安艳玲,吴起鑫,等.贵州省都柳江流域水化学特征研究[J].中国环境科学,2017, 37(7):2684-2690.

    Google Scholar

    ZUO Y Z, AN Y L, WU Q X, et al. Study on the hydrochemical characteristics of Duliu River basin in Guizhou Province[J]. China Environmental Science,2017,37(7):2684-2690.

    Google Scholar

    [36] 蒲俊兵,袁道先,蒋勇军,等.重庆岩溶地下河水文地球化学特征及环境意义[J].水科学进展,2010, 21(5):628-636.

    Google Scholar

    PU J B, YUAN D X, JIANG Y J, et al. Hydrogeochemistry and environmental meaning of Chongqing subterranean karst streams in China[J]. Advances in Water Science, 2010, 21(5):628-636.

    Google Scholar

    [37] SAMI K. Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa[J]. Journal of Hydrology, 1992(139):27-48.

    Google Scholar

    [38] CHANG J, WANG G. Major ions chemistry of groundwater in the arid region of Zhangye Basin, northwestern China[J]. Environmental Earth Sciences, 2010, 61(3):539-547.

    Google Scholar

    [39] NKOTAGU H. The groundwater geochemistry in a semi-arid, fractured crystalline basement area of Dodoma, Tanzania[J]. Journal of African Earth Sciences,1996, 23(4):593-605.

    Google Scholar

    [40] 中华人民共和国国家质量监督检验检疫总局. GBT14848-2017地下水质量标准[S]. 2018. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China.GBT14848-2017 Standard for groundwater quality[S].2018.

    Google Scholar

    [41] 颜晓龙,马杰,张玉洁,等.皖北地区浅层地下水水化学特征及水质评价--以宿州市某乡镇为例[J].河南科技,2022, 41(6):111-116.

    Google Scholar

    YAN X L, MA J, ZHANG Y J, et al. Hydrochemical characteristics and water quality assessment of the shallow groundwater of northern Anhui Province:A case study of a township of Suzhou City[J]. Henan Science and Techonlogy, 2022, 41(6):111-116.

    Google Scholar

    [42] HEM J D. Study and interpretation of the chemical characteristics of natural water[J]. USA Geological Survey Water Supply Paper,1985:2245.

    Google Scholar

    [43] 邢文乐,马瑞,孙自永,等.敦煌盆地地下水水化学特征及水质评价[J].地质科技情报,2016, 35(5):196-202.

    Google Scholar

    XING W L, MA R, SUN Z Y, et al. Hydrochemical characteristics and water quality assessment of groundwater in the Dunhuang Basin, Northwestern China[J]. Geological Science and Technology Information, 2016,35(5):196-202.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(366) PDF downloads(94) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint