[1]
|
孙一博.渭河流域地下水中氟和碘的形成机理及其对人体健康的影响[D].西安:长安大学,2014. SUN Y B. Formation mechanism and human health influence of fluorine and iodine of groundwater in Wei River Basin[D]. Xian:Changan University,2014.
Google Scholar
|
[2]
|
徐清,刘晓端,汤奇峰,等.山西晋中地区地下水高碘的地球化学特征研究[J].中国地质,2010,37(3):809-815.
Google Scholar
XU Q, LIU X D, TANG Q F, et al. High iodic geochemical characteristics of the groundwater in central Shanxi Province[J]. Geology in China,2010,37(3):809-815.
Google Scholar
|
[3]
|
徐芬,马腾,石柳,等.内蒙古河套平原高碘地下水的水文地球化学特征[J].水文地质工程地质,2012,39(5):8-15.
Google Scholar
XU F, MA T, SHI L, et al. Hydrogeochemical characteristics of high iodine groundwater in the Hetao Plain, Inner Mongolia[J]. Hydrogeology and Engineering Geology,2012,39(5):8-15.
Google Scholar
|
[4]
|
陆徐荣,杨磊,陆华,等.江苏平原地区(淮河流域)潜水碘含量控制因素探讨[J].地球学报,2014,35(2):211-216.
Google Scholar
LU X R, YANG L, LU H, et al. A tentative discussion on the control factors of iodine content in phreatic water in Huaihe River Plains of Jiangsu Province[J]. Acta Geoscientica Sinica,2014,35(2):211-216.
Google Scholar
|
[5]
|
中华人民共和国国家卫生和计划生育委员会. GB/T 19380-2016水源性高碘地区和高碘病区的划定[S].2016. National Health Commission of the People's Republic of China. GB/T 19380-2016 Definition and demarcation of water-borne iodine-excess areas and iodine-excess endemial areas[S].2016.
Google Scholar
|
[6]
|
中华人民共和国国家卫生健康委员会. WS/T 669-2020碘缺乏地区和适碘地区的划定[S].2020. National Health Commission of the People's Republic of China. WS/T 669-2020 Definition and demarcation of iodine deficient areas and iodine adequate areas[S].2020.
Google Scholar
|
[7]
|
中华人民共和国国家卫生健康委员会.全国生活饮用水水碘含量调查报告[EB/OL].(2019-05-17). http://www.nhc.gov.cn.jkj/s5874/201905/bb1da1f5e47040e8820b9378e6db4bd3.shtml.
Google Scholar
National Health Commission of the People's Republic of China. Investigation report on iodine content of drinking water in China[EB/OL].(2019-05-17). http://www.nhc.gov.cn.jkj/s5874/201905/bb1da1f5e47040e8820b9378e6db4bd3.shtml.
Google Scholar
|
[8]
|
张云霞,李玲,付巧玲,等.开封市土壤地球化学元素分布特征研究[J].土壤通报,2014,45(2):272-280.
Google Scholar
ZHANG Y X, LI L, FU Q L, et al. Geochemical distribution characteristics of soil elements in Kaifeng City[J]. Chinese Journal of Soil Science,2014,45(2):272-280.
Google Scholar
|
[9]
|
张妍,李玉嵩,盛奇,等.河南省商丘地区土壤地球化学特征[J].现代地质,2019,33(2):305-314.
Google Scholar
ZHANG Y, LI Y S, SHENG Q, et al. Soil geochemical characteristics of Shangqiu area in Henan Province[J]. Geoscience,2019,33(2):305-314.
Google Scholar
|
[10]
|
李云峰,张庆,周小平,等.安庆大别山区矿泉水化学特征及成因模式[J].华东地质,2021,42(2):193-201.
Google Scholar
LI Y F, ZHANG Q, ZHOU X P, et al. Chemical characteristics and genetic model of mineral water in Dabie Mountain area of Anqing City[J]. East China Geology,2021,42(2):193-201.
Google Scholar
|
[11]
|
郄海满,文帮勇,王继强,等.江西赣州梓山地区富硒土壤重金属元素安全性评价[J].华东地质,2017,38(3):234-240.
Google Scholar
QIE H M, WEN B Y, WANG J Q, et al. Safety evaluation of heavy metal contents in selenium-rich soil in the Zishan area, Ganzhou, Jiangxi Province[J]. East China Geology,2017,38(3):234-240.
Google Scholar
|
[12]
|
SHEPPARD M I, THIBAULT D H, SMITH P A. Iodine dispersion and effects on groundwater chemistry following a release to a peat bog, Manitoba, Can-ada[J]. Geochemistry, 1989,4:423-432.
Google Scholar
|
[13]
|
董陆阳.河套平原区碘和砷地球化学特征及地方病控制因素[D].北京:中国地质大学(北京),2019. DONG L Y. Geochemical characteristics of iodine and arsenic and controlling factors of endemic diseases in Hetao Plain[D]. Beijing:China University of Geosciences (Beijing),2019.
Google Scholar
|
[14]
|
韩颖,张宏民,张永峰,等.大同盆地地下水高砷、氟、碘分布规律与成因分析及质量区划[J].中国地质调查,2017,4(1):57-68.
Google Scholar
HAN Y, ZHANG H M, ZHANG Y F, et al. Distribution regularity, origin and quality division of high arsenic, fluorine and iodine contents in groundwater in Datong Basin[J]. Geological Survey of China,2017,4(1):57-68.
Google Scholar
|
[15]
|
吴飞,王曾祺,童秀娟,等.我国典型地区浅层高碘地下水分布特征及其赋存环境[J].水资源与水工程学报,2017,28(2):99-104.
Google Scholar
WU F, WANG Z Q, TONG X J, et al. The distribution characteristics and storage environments of rich iodine in shallow groundwater of typical areas in China[J]. Journal of Water Resources and Water Engineering,2017,28(2):99-104.
Google Scholar
|
[16]
|
张艳玲.河南省商丘51年来气候变化特征分析[J].河南科学,2013,31(8):1262-1266.
Google Scholar
ZHANG Y L. Climate variation characteristics in recent 51 years in Shangqiu, Henan Province[J]. Henan Science,2013,31(8):1262-1266.
Google Scholar
|
[17]
|
YE N J, GONG J S, GE W Y, et al. Environmental isotopic study for groundwater of the North Plain of Huai He River, China[C]//International Atomic Energy Agency. Advances in Isotope Hydrology and its Role in Sustainable Water Resources Management (IHS-2007). Vienna:International Atomic Energy Agency, 2007:177-186.
Google Scholar
|
[18]
|
张二勇,张福存,钱永,等.中国典型地区高碘地下水分布特征及启示[J].中国地质,2010,37(3):797-802.
Google Scholar
ZHANG E Y, ZHANG F C, QIAN Y, et al. The distribution of high iodine groundwater in typical areas of China and its inspiration[J]. Geology in China,2010,37(3):797-802.
Google Scholar
|
[19]
|
YANG X Q, ZHENG Q, HE M, et al. Bromine and iodine species in drinking water supply system along the Changjiang River in China:Occurrence and transformation[J]. Water Research, 2021,202:1-9.
Google Scholar
|
[20]
|
张媛静,张玉玺,向小平,等.沧州地区地下水碘分布特征及其成因浅析[J].地学前缘,2014,21(4):59-65.
Google Scholar
ZHANG Y J, ZHANG Y X, XIANG X P, et al. Distribution characteristics and cause analysis of iodine in groundwater of Cangzhou Region[J]. Earth Science Frontiers,2014,21(4):59-65.
Google Scholar
|
[21]
|
LI J X, WANG Y X, XIE X J, et al. Effects of water-sediment interaction and irrigation practices on iodine enrichment in shallow groundwater[J]. Journal of Hydrology, 2016,543:293-304.
Google Scholar
|
[22]
|
宋秀辉.土壤-作物系统中碘的迁移转化研究[D].杭州:浙江大学,2006. SONG X H. Study on transfer and transform of iodine in soil-crop system[D]. Hangzhou:Zhejiang University,2006.
Google Scholar
|