2023 Vol. 44, No. 3
Article Contents

YE Yonghong, GONG Jianshi, XU Naizheng, ZHANG Fei, WANG Hesheng, LI Liang, ZHOU Kaie, ZHU Chunfang, TAO Xiaohu, TAN Mengjiao. 2023. Distribution and genesis of high iodine shallow groundwater in Henan section of Guohe Basin. East China Geology, 44(3): 292-299. doi: 10.16788/j.hddz.32-1865/P.2023.03.005
Citation: YE Yonghong, GONG Jianshi, XU Naizheng, ZHANG Fei, WANG Hesheng, LI Liang, ZHOU Kaie, ZHU Chunfang, TAO Xiaohu, TAN Mengjiao. 2023. Distribution and genesis of high iodine shallow groundwater in Henan section of Guohe Basin. East China Geology, 44(3): 292-299. doi: 10.16788/j.hddz.32-1865/P.2023.03.005

Distribution and genesis of high iodine shallow groundwater in Henan section of Guohe Basin

  • By analyzing 249 groups of shallow groundwater samples in Henan section of Guohe Basin, it is found that the area of high iodine shallow groundwater covers 5 818.9 km2, accounting for 51.97% of the total. It is widely distributed in the north and northeast of the study area, followed by the east of Taikang County. Iodine in the shallow groundwater of the study area is mainly sourced from the Quaternary loose sediments. The combination of climate condition, the groundwater flow field constrained by topography and the groundwater pumping for crops irrigation is the prerequisite for the gradual concentration of iodine in the shallow groundwater.
  • 加载中
  • [1] 孙一博.渭河流域地下水中氟和碘的形成机理及其对人体健康的影响[D].西安:长安大学,2014. SUN Y B. Formation mechanism and human health influence of fluorine and iodine of groundwater in Wei River Basin[D]. Xian:Changan University,2014.

    Google Scholar

    [2] 徐清,刘晓端,汤奇峰,等.山西晋中地区地下水高碘的地球化学特征研究[J].中国地质,2010,37(3):809-815.

    Google Scholar

    XU Q, LIU X D, TANG Q F, et al. High iodic geochemical characteristics of the groundwater in central Shanxi Province[J]. Geology in China,2010,37(3):809-815.

    Google Scholar

    [3] 徐芬,马腾,石柳,等.内蒙古河套平原高碘地下水的水文地球化学特征[J].水文地质工程地质,2012,39(5):8-15.

    Google Scholar

    XU F, MA T, SHI L, et al. Hydrogeochemical characteristics of high iodine groundwater in the Hetao Plain, Inner Mongolia[J]. Hydrogeology and Engineering Geology,2012,39(5):8-15.

    Google Scholar

    [4] 陆徐荣,杨磊,陆华,等.江苏平原地区(淮河流域)潜水碘含量控制因素探讨[J].地球学报,2014,35(2):211-216.

    Google Scholar

    LU X R, YANG L, LU H, et al. A tentative discussion on the control factors of iodine content in phreatic water in Huaihe River Plains of Jiangsu Province[J]. Acta Geoscientica Sinica,2014,35(2):211-216.

    Google Scholar

    [5] 中华人民共和国国家卫生和计划生育委员会. GB/T 19380-2016水源性高碘地区和高碘病区的划定[S].2016. National Health Commission of the People's Republic of China. GB/T 19380-2016 Definition and demarcation of water-borne iodine-excess areas and iodine-excess endemial areas[S].2016.

    Google Scholar

    [6] 中华人民共和国国家卫生健康委员会. WS/T 669-2020碘缺乏地区和适碘地区的划定[S].2020. National Health Commission of the People's Republic of China. WS/T 669-2020 Definition and demarcation of iodine deficient areas and iodine adequate areas[S].2020.

    Google Scholar

    [7] 中华人民共和国国家卫生健康委员会.全国生活饮用水水碘含量调查报告[EB/OL].(2019-05-17). http://www.nhc.gov.cn.jkj/s5874/201905/bb1da1f5e47040e8820b9378e6db4bd3.shtml.

    Google Scholar

    National Health Commission of the People's Republic of China. Investigation report on iodine content of drinking water in China[EB/OL].(2019-05-17). http://www.nhc.gov.cn.jkj/s5874/201905/bb1da1f5e47040e8820b9378e6db4bd3.shtml.

    Google Scholar

    [8] 张云霞,李玲,付巧玲,等.开封市土壤地球化学元素分布特征研究[J].土壤通报,2014,45(2):272-280.

    Google Scholar

    ZHANG Y X, LI L, FU Q L, et al. Geochemical distribution characteristics of soil elements in Kaifeng City[J]. Chinese Journal of Soil Science,2014,45(2):272-280.

    Google Scholar

    [9] 张妍,李玉嵩,盛奇,等.河南省商丘地区土壤地球化学特征[J].现代地质,2019,33(2):305-314.

    Google Scholar

    ZHANG Y, LI Y S, SHENG Q, et al. Soil geochemical characteristics of Shangqiu area in Henan Province[J]. Geoscience,2019,33(2):305-314.

    Google Scholar

    [10] 李云峰,张庆,周小平,等.安庆大别山区矿泉水化学特征及成因模式[J].华东地质,2021,42(2):193-201.

    Google Scholar

    LI Y F, ZHANG Q, ZHOU X P, et al. Chemical characteristics and genetic model of mineral water in Dabie Mountain area of Anqing City[J]. East China Geology,2021,42(2):193-201.

    Google Scholar

    [11] 郄海满,文帮勇,王继强,等.江西赣州梓山地区富硒土壤重金属元素安全性评价[J].华东地质,2017,38(3):234-240.

    Google Scholar

    QIE H M, WEN B Y, WANG J Q, et al. Safety evaluation of heavy metal contents in selenium-rich soil in the Zishan area, Ganzhou, Jiangxi Province[J]. East China Geology,2017,38(3):234-240.

    Google Scholar

    [12] SHEPPARD M I, THIBAULT D H, SMITH P A. Iodine dispersion and effects on groundwater chemistry following a release to a peat bog, Manitoba, Can-ada[J]. Geochemistry, 1989,4:423-432.

    Google Scholar

    [13] 董陆阳.河套平原区碘和砷地球化学特征及地方病控制因素[D].北京:中国地质大学(北京),2019. DONG L Y. Geochemical characteristics of iodine and arsenic and controlling factors of endemic diseases in Hetao Plain[D]. Beijing:China University of Geosciences (Beijing),2019.

    Google Scholar

    [14] 韩颖,张宏民,张永峰,等.大同盆地地下水高砷、氟、碘分布规律与成因分析及质量区划[J].中国地质调查,2017,4(1):57-68.

    Google Scholar

    HAN Y, ZHANG H M, ZHANG Y F, et al. Distribution regularity, origin and quality division of high arsenic, fluorine and iodine contents in groundwater in Datong Basin[J]. Geological Survey of China,2017,4(1):57-68.

    Google Scholar

    [15] 吴飞,王曾祺,童秀娟,等.我国典型地区浅层高碘地下水分布特征及其赋存环境[J].水资源与水工程学报,2017,28(2):99-104.

    Google Scholar

    WU F, WANG Z Q, TONG X J, et al. The distribution characteristics and storage environments of rich iodine in shallow groundwater of typical areas in China[J]. Journal of Water Resources and Water Engineering,2017,28(2):99-104.

    Google Scholar

    [16] 张艳玲.河南省商丘51年来气候变化特征分析[J].河南科学,2013,31(8):1262-1266.

    Google Scholar

    ZHANG Y L. Climate variation characteristics in recent 51 years in Shangqiu, Henan Province[J]. Henan Science,2013,31(8):1262-1266.

    Google Scholar

    [17] YE N J, GONG J S, GE W Y, et al. Environmental isotopic study for groundwater of the North Plain of Huai He River, China[C]//International Atomic Energy Agency. Advances in Isotope Hydrology and its Role in Sustainable Water Resources Management (IHS-2007). Vienna:International Atomic Energy Agency, 2007:177-186.

    Google Scholar

    [18] 张二勇,张福存,钱永,等.中国典型地区高碘地下水分布特征及启示[J].中国地质,2010,37(3):797-802.

    Google Scholar

    ZHANG E Y, ZHANG F C, QIAN Y, et al. The distribution of high iodine groundwater in typical areas of China and its inspiration[J]. Geology in China,2010,37(3):797-802.

    Google Scholar

    [19] YANG X Q, ZHENG Q, HE M, et al. Bromine and iodine species in drinking water supply system along the Changjiang River in China:Occurrence and transformation[J]. Water Research, 2021,202:1-9.

    Google Scholar

    [20] 张媛静,张玉玺,向小平,等.沧州地区地下水碘分布特征及其成因浅析[J].地学前缘,2014,21(4):59-65.

    Google Scholar

    ZHANG Y J, ZHANG Y X, XIANG X P, et al. Distribution characteristics and cause analysis of iodine in groundwater of Cangzhou Region[J]. Earth Science Frontiers,2014,21(4):59-65.

    Google Scholar

    [21] LI J X, WANG Y X, XIE X J, et al. Effects of water-sediment interaction and irrigation practices on iodine enrichment in shallow groundwater[J]. Journal of Hydrology, 2016,543:293-304.

    Google Scholar

    [22] 宋秀辉.土壤-作物系统中碘的迁移转化研究[D].杭州:浙江大学,2006. SONG X H. Study on transfer and transform of iodine in soil-crop system[D]. Hangzhou:Zhejiang University,2006.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(804) PDF downloads(95) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint