2021 Vol. 42, No. 2
Article Contents

DING Dalin, XU Jishang, WANG Jilong, LI Guangxue, DING Dong, QIAO Lulu, YU Junjie. 2021. A brief introduction on dating methods of marine sediments. East China Geology, 42(2): 217-228. doi: 10.16788/j.hddz.32-1865/P.2021.02.011
Citation: DING Dalin, XU Jishang, WANG Jilong, LI Guangxue, DING Dong, QIAO Lulu, YU Junjie. 2021. A brief introduction on dating methods of marine sediments. East China Geology, 42(2): 217-228. doi: 10.16788/j.hddz.32-1865/P.2021.02.011

A brief introduction on dating methods of marine sediments

More Information
  • Marine sediment is one of important carriers for studying the issues on global scale, such as global climate, sea-level fluctuation, paleontological productivity evolution and geochemical cycle, etc. And accurate age-dating is the most important prerequisites for the above studies. With the constantly breakthrough of marine sediment dating theory and technical equipment, dating methods such as 210Pb, 137Cs, AMS14C, optically stimulated luminescence, paleomagnetism, astronomical orbit tuning, oxygen isotope curve comparison, electron paramagnetic resonance and uranium series dating are appearing over the past one hundred years. This paper summarizes the basic principles, applicable objects and age ranges of different methods that commonly used in marine geology, combing the advantages and disadvantages of different dating methods, so that scientific researchers can choose the suitable measurement in face of various type marine sediments. Each method has its own limitations, in order to obtain a more accurate time scale, it is necessary to use several dating methods on the same research object for mutual verification, to improve the accuracy and precision.
  • 加载中
  • [1] DEACON M, RICE T, SUMMERHAYES C. Understanding the oceans:a century of ocean explor-tion[M]. London:Routledge, 2013:67-69.

    Google Scholar

    [2] 刘东生.黃土与环境[M]. 北京:科学出版社, 1985:106-112.

    Google Scholar

    [3] BARNOLA J M, RAYNAUD D, KOROTKEVICH Y S, et al. Vostok ice core provides 160000-year record of atmospheric CO2[J]. Nature, 1987, 329(6138):408-414.

    Google Scholar

    [4] FLEITMANN D, BURNS S J, MUDELSEE M, et al. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman[J]. Science, 2003, 300(5626):1737-1739.

    Google Scholar

    [5] BOND G, SHOWERS W, CHESEBY M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278(5341):1257-1266.

    Google Scholar

    [6] JOLY J. Uranium and geology[J]. Science, 1908, 28(725):697-713.

    Google Scholar

    [7] HASSAN N M, HINES A L, GHOSH T K, et al. New apparatus for measuring radon adsorption on solid adsorbents[J]. Industrial & engineering chemistry research, 1991, 30(9):2205-2211.

    Google Scholar

    [8] PIGGOT C S, URRY W D. Time relations in ocean sediments[J]. Geological Society of America Bulletin, 1942, 53(8):1187-1210.

    Google Scholar

    [9] LIBBY W F, JOHNSON F. Radiocarbon dating[M]. Chicago:University of Chicago Press, 1955:1-14.

    Google Scholar

    [10] APPLEBY P G, OIDFIELD F. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment[J]. Catena, 1978, 5(1):1-8.

    Google Scholar

    [11] CHINO M, NAKAYAMA H, NAGAI H, et al. Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere[J]. Journal of Nuclear Science and Technology, 2011, 48:1129-1134.

    Google Scholar

    [12] BØTTER-JENSEN L, THOMSEN K J, JAIN M. Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosi-metry[J]. Radiation Measurements, 2010, 45(3/6):253-257.

    Google Scholar

    [13] BENOIT G, ROZAN T F. 210Pb and 137Cs dating methods in lakes:a retrospective study[J]. Journal of Paleolimnology, 2001, 25:455-465.

    Google Scholar

    [14] 王福, 杨彪, 田立柱, 等.开放潮坪地区210Pbexc 测年CIC和CRS计算模式的选择[J]. 地球科学, 2016, 41(6):971-981.

    Google Scholar

    [15] 蔡庆芳, 贾培蒙, 邵长高.210Pb和137Cs测年在中国海岸带古环境演变研究中的应用[J]. 吉林地质, 2015, 34(2):107-111.

    Google Scholar

    [16] WALLING D E, HE Q. Use of fallout 137Cs in investigations of overbank sediment deposition on river floodplains[J]. Catena, 1997, 29(3/4):263-282.

    Google Scholar

    [17] ROBBINS J A, EDGINGTON D N. Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137[J]. Geochimica et Cosmochimica Acta, 1975, 39(3):285-304.

    Google Scholar

    [18] ROGOWSKI A S, TAMURA T. Movement of 137Cs by runoff, erosion and infiltration on the alluvial Captina silt loam[J]. Health Physics, 1965, 11(12):1333-1340.

    Google Scholar

    [19] PRANDLE D. A modelling study of the mixing of 137Cs in the sea of the European Continental Shelf[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1984, 310(1513):407-436.

    Google Scholar

    [20] GOSSE, J C, PHILLIPS, F M. Terrestrial in situ cosmogenic nuclides:Theory and application[J]. Quaternary Science Reviews, 2001, 20(14):1475-1560.

    Google Scholar

    [21] 孔屏.宇宙成因核素在地球科学中的应用[J]. 地学前缘, 2002, 9(3):41-48.

    Google Scholar

    [22] FINKEL R C, SUTTER M. AMS in the earth sciences:technique and application[J]. Advances in Analytical Geochemistry, 1993, 1:1-114.

    Google Scholar

    [23] SRINIVASAN A, KIM D, RICHARDS R K, et al. Comments on assignment of stereochemistry to 2-acylaminocrotonates[J]. Tetrahedron Letters, 1976, 17(12):891-894.

    Google Scholar

    [24] 刘彧, 王世杰, 刘秀明.宇宙成因核素在地质年代学研究中的新进展[J]. 地球科学进展, 2012, 27(4):386-397.

    Google Scholar

    [25] LIBBY W F, ANDERSON E C, ARNOLD J R. Age determination by radiocarbon content:world-wide assay of natural radiocarbon[J]. Science, 1949, 109(2827):227-228.

    Google Scholar

    [26] REIMER P J, BARD E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50, 000 years cal BP[J]. Radiocarbon, 2013, 55(4):1869-1887.

    Google Scholar

    [27] STUIVER M, BRAZIUNAS T F. Modeling atmospheric 14C influences and 14C ages of marine samples to 10, 000 BC[J]. Radiocarbon, 1993, 35(1):137-189.

    Google Scholar

    [28] COPLEN T B. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances (technical report)[J]. Pure and Applied Chemistry, 1994, 66(2):273-276.

    Google Scholar

    [29] COOK E R, KAIRIUKSTIS L A. Methods of dendrochronology:applications in the environmental scie-nces[M]. Berlin:Springer Science & Business Media, 2013:97-100.

    Google Scholar

    [30] BROCK F, HIGHAM T, DITCHFIELD P, et al. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU)[J]. Radiocarbon, 2010, 52(1):103-112.

    Google Scholar

    [31] LIN D C, CHEN M T, YAMAMOTO M, et al. Precisely dated AMS 14C marine cores reveal the complexity of millennial-scale Asian monsoon variability in the northern South China Sea (MD972146, MD972148)[J]. Journal of Asian Earth Sciences, 2013, 69:93-101.

    Google Scholar

    [32] RUAN J, XU Y, DING S, et al. A high-resolution record of sea surface temperature in southern Okinawa Trough for the past 15000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 426(15):209-215.

    Google Scholar

    [33] CABARCOS E, FLORES J A, SINGH A D, et al. Monsoonal dynamics and evolution of the primary productivity in the eastern Arabian Sea over the past 30 ka[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 411:249-256.

    Google Scholar

    [34] MAIO C V, GONTZ A M, WEIDMAN C R, et al. Late Holocene marine transgression and the drowning of a coastal forest:Lessons from the past, Cape Cod, Massachusetts, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 393:146-158.

    Google Scholar

    [35] ANDREW S, MURRAY A, RICHARD G R. Determining the burial time of single grains of quartz using optically stimulated luminescence[J]. Earth & Planetary Science Letters, 1997, 152(1/4):163-180.

    Google Scholar

    [36] BØTTER-JRNSEN L, MCKEEVER S W, WINTLE A G. Optically stimulated luminescence dosimetry[M]. Amsterdam:Elsevier Science, 2003:15-20.

    Google Scholar

    [37] WINTLE A G, MURRAY A S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols[J]. Radiation measurements, 2006, 41(4):369-391.

    Google Scholar

    [38] 赖忠平, 欧先交.光释光测年基本流程[J]. 地理科学进展, 2013, 32(5):683-693.

    Google Scholar

    [39] ATHERTON N M. Principles of electron spin resonance[M]. Herts:Ellis Horwood Limited, 1993.

    Google Scholar

    [40] JONAS M. Concepts and methods of ESR dating[J]. Radiation Measurements, 1997, 27(5/6):943-973.

    Google Scholar

    [41] 尹功明, 林敏.沉积物电子自旋共振测年现状[J]. 核技术, 2005, 28(5):399-402.

    Google Scholar

    [42] 业渝光, 和杰, 刁少波, 等.南海全新世珊瑚礁ESR和铀系年龄的研究[J]. 地质论评, 1991, 37(2):165-171.

    Google Scholar

    [43] BERGER A. Milankovitch theory and climate[J]. Reviews of Geophysics, 1988, 26(4):624-657.

    Google Scholar

    [44] BERGER A, LOUTRE M. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4):297-317.

    Google Scholar

    [45] BERGER A. Long-term variations of daily insolation and Quaternary climatic changes[J]. Journal of the Atmospheric Sciences, 1978, 35(12):2362-2367.

    Google Scholar

    [46] LASKAR J, ROBUTEL P, JOUTEL F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1):261-285.

    Google Scholar

    [47] YU Z W, DING Z L. An automatic orbital tuning method for paleoclimate records[J]. Geophysical Research Letters, 1998, 25(24):4525-4528.

    Google Scholar

    [48] HAYS I J. The orbital theory of Pleistocene climate:Support from a revised chronology of the marine δ18O record[J]. Mathematical and Physical Sciences, 1984, 126:269-305.

    Google Scholar

    [49] 鹿化煜, 杨文峰, 刘晓东, 等.轨道调谐建立洛川黄土地层的时间标尺[J]. 地球物理学报, 1998, 41(6):804-810.

    Google Scholar

    [50] TIAN J, WANG P X, CHENG X R, et al. Astronomically tuned Plio-Pleistocene benthic δ18O record from South China Sea and Atlantic-Pacific comparison[J]. Earth and Planetary Science Letters, 2002, 203(3/4):1015-1029.

    Google Scholar

    [51] AO H, DEKKERS M J, QIN L, et al. An updated astronomical timescale for the Plio-Pleistocene deposits from South China Sea and new insights into Asian monsoon evolution[J]. Quaternary Science Reviews, 2011, 30(13):1560-1575.

    Google Scholar

    [52] DANSGAARD W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4):436-468.

    Google Scholar

    [53] MUEHLENBACHS K, CLAYTON R N. Oxygen isotope composition of the oceanic crust and its bearing on seawater[J]. Journal of Geophysical Research, 1976, 81(23):4365-4369.

    Google Scholar

    [54] LISIRCKI L E, RAYMO M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O re-cords[J]. Paleoceanography, 2005, 20(1):1-17.

    Google Scholar

    [55] GROOTES P M, STUIVER M, WHITE J, et al. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores[J]. Nature, 1993, 366(6455):552-554.

    Google Scholar

    [56] BOND G, SHOWERS W, CHESEBY M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278(5341):1257-1266.

    Google Scholar

    [57] 郑范, 李前裕, 陈木宏, 等.南海西南部晚更新世500 ka以来的古海洋学特征[J]. 地球科学:中国地质大学学报, 2005, 30(5):534-542, 549.

    Google Scholar

    [58] 梁静之, 黄宝琦, 董轶婷, 等.南海北部MD12-3432站MIS11期以来底栖有孔虫反映的古环境变化[J]. 地学前缘, 2016, 23(4):292-300.

    Google Scholar

    [59] HAUG G H, GANOPOLSKI A, SIGMAN D M, et al. North Pacific seasonality and the glaciation of North America 2.7 million years ago[J]. Nature, 2005, 433(7028):821-825.

    Google Scholar

    [60] SHEMESH A, CHARLES C D, FAIRBANKS R G. Oxygen isotopes in biogenic silica:global changes in ocean temperature and isotopic composition[J]. Science, 1992, 256(5062):1434-1436.

    Google Scholar

    [61] 段威武, 李学杰, 申佑林.西南极布兰斯菲尔德海峡PC10孔硅藻氧同位素记录及其沉积学意义[J]. 极地研究, 1997, 9(2):105-111.

    Google Scholar

    [62] MIKKELSEN N, LABEYRIE L, BERGER W H. Silica oxygen isotopes in diatoms:a 20, 000 yr record in deep-sea sediments[J]. Nature, 1978, 271(5645):536-538.

    Google Scholar

    [63] 安芷生.古地磁方法在第四纪研究中的应用[J]. 地质地球化学, 1975(1):3-8.

    Google Scholar

    [64] COX A, DOELL R R, Dalrymple G B. Geomagnetic polarity epochs and Pleistocene geochronometry[J]. Nature, 1963, 198(4885):1049-1051.

    Google Scholar

    [65] COX A. Geomagnetic reversals[J]. Science, 1969, 163(3864):237-245.

    Google Scholar

    [66] MANKINEN E A, DAKRYMPLE G B. Revised geomagnetic polarity time scale for the interval 0-5 m.y.B.P[J]. Journal of Geophysical Research Solid Earth, 1979, 84(B2):615-626.

    Google Scholar

    [67] PITMAN W C, HERRON E M, HEIRTZLER J R. Magnetic anomalies in the Pacific and sea floor spreading[J]. Journal of Geophysical Research, 1968, 73(6):2069-2085.

    Google Scholar

    [68] CANDE S C, KENT D V. Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic[J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B4):6093-6095.

    Google Scholar

    [69] 何学贤, 杨淳, 刘敦一.第四纪年代学的利器:热电离质谱铀系定年技术[J]. 地学前缘, 2003, 10(2):335-340.

    Google Scholar

    [70] BAYON G, HENDERSON G M, ETOUBLEAU J, et al. U-Th isotope constraints on gas hydrate and pockmark dynamics at the Niger delta margin[J]. Marine Geology, 2015, 370:87-98.

    Google Scholar

    [71] BANTAN R A, ABU-ZIED R H, HAREDY R A. Lithology, fauna and environmental conditions of the late Pleistocene raised reefal limestone of the Jeddah coastal plain, Saudi Arabia[J]. Arabian Journal of Geosciences, 2015, 8(11):9887-9904.

    Google Scholar

    [72] 金爱春, 蒋庆丰, 陈晔, 等.新疆乌伦古湖的210Pb, 137Cs测年与现代沉积速率[J]. 现代地质, 2010, 24(2):377-382.

    Google Scholar

    [73] 杨彪, 王福, 田立柱, 等.独流减河盐沼210Pbexc137Cs剖面记录的现代洪水事件沉积[J]. 海洋学研究, 2016, 34(2):25-34.

    Google Scholar

    [74] SEIDENKRANTZ M S, RONCAGLIA L, FISCHEL A, et al. Variable North Atlantic climate seesaw patterns documented by a late Holocene marine record from Disko Bugt, West Greenland[J]. Marine Micropaleontology, 2008, 68(1/2):66-83.

    Google Scholar

    [75] 陈强, 业渝光, 刁少波.多片再生法在海洋沉积物测年中的应用[J]. 核技术, 2011, 34(2):107-110.

    Google Scholar

    [76] 王张华, 赵宝成, 陈静, 等.长江三角洲地区晚第四纪年代地层框架及两次海侵问题的初步探讨[J]. 古地理学报, 2008, 10(1):99-110.

    Google Scholar

    [77] 陈双喜, 赵信文, 孙荣涛, 等.现代珠江三角洲地区晚第四纪海侵的微体古生物记录[J]. 微体古生物学报, 2015, 32(3):292-307.

    Google Scholar

    [78] 业渝光, 和杰, 刁少波, 等.南黄海QC2孔晚更新世ESR年代学的初步研究[J]. 科学通报, 1993, 38(4):352-355.

    Google Scholar

    [79] 缪卫东, 李世杰, 冯金顺, 等.长江三角洲NB5孔第四纪地层划分及环境变化信息[J]. 中国地质, 2016, 43(6):2022-2035.

    Google Scholar

    [80] WESTAWAY K E, LOUYS J, AWE R D, et al. An early modern human presence in Sumatra 73, 000-63, 000 years ago[J]. Nature, 2017, 548(7667):322-325.

    Google Scholar

    [81] 缪卫东, 李世杰, 王润华.长江三角洲北翼J9孔揭示地层和古地磁特征[J]. 中国地质, 2008, 35(3):489-495.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1822) PDF downloads(90) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint