2021 Vol. 42, No. 2
Article Contents

LI Yunfeng, ZHANG Qing, ZHOU Xiaoping, LU Yuanzhi, NIU Xiaonan, ZHAO Xiaodan, ZHOU Xun. 2021. Chemical characteristics and genetic model of mineral water in Dabie Mountain area of Anqing City. East China Geology, 42(2): 193-201. doi: 10.16788/j.hddz.32-1865/P.2021.02.008
Citation: LI Yunfeng, ZHANG Qing, ZHOU Xiaoping, LU Yuanzhi, NIU Xiaonan, ZHAO Xiaodan, ZHOU Xun. 2021. Chemical characteristics and genetic model of mineral water in Dabie Mountain area of Anqing City. East China Geology, 42(2): 193-201. doi: 10.16788/j.hddz.32-1865/P.2021.02.008

Chemical characteristics and genetic model of mineral water in Dabie Mountain area of Anqing City

  • Anqing Dabie Mountain area is located in the east side of Dabie Mountain orogenic belt. There are 2 strontium metasilicate mineral water points, 1 strontium mineral water point and 3 metasilicate mineral water points being studied. The genetic model is further discussed based on the analysis of the hydrochemical and isotopic characteristics of mineral water in the area. The main ions in the cold spring (well) water(AH1、AH3、AH4、AH5、AH8 and AH9) are Ca2+, Mg2+, Na+ and HCO3-, the hydrochemistry type is HCO3-Ca, HCO3-Ca·Na or HCO3-Ca·Mg, and the total dissolved solid is 90~239 mg/L. The main ions in hot spring water (AH2, AH6 and AH7) are Na+ and SO42-, the hydrochemistry type is SO4-Na or SO4·HCO3-Na, and the total dissolved solid is 253~426 mg/L. Based on the δ2H and δ18O values, the elevation of the recharge area of cold spring water is estimated to be 217~346 m, and the average temperature of the recharge area is 17.7 ℃. The elevation of the hot spring's recharge area is 457~668 m, and the average temperature of the recharge area is 12.6 ℃. The mineral water in the 9 places is supplied by atmospheric precipitation, which circulates along the fault zone and fissure zone to a certain depth and is exposed in the valley. The results show that the circulation depth of hot spring groundwater is large, the time of water rock interaction is long, and the TDS value and characteristic chemical component content of hot spring groundwater are higher than those of cold spring groundwater.
  • 加载中
  • [1] 中华人民共和国国家卫生健康委员会. GB/8537-2018食品安全国家标准饮用天然矿泉水标准[S]. 2019.

    Google Scholar

    [2] 王娟, 韩薇. 天然矿泉水中微量元素与人体健康[J]. 微量元素与健康研究, 2001, 18(2):77-78.

    Google Scholar

    [3] NEGREL P, FOUILLAC C, BRACH M, et al. Occurrence of mineral water springs in the stream channel of the Allier River (Massif Central, France):chemical and Sr isotope constraints[J]. Journal of Hydrology, 1997, 203(1/4):143-153.

    Google Scholar

    [4] 温红丽. 针对我市矿泉水发展中存在问题的思考及建议[J]. 科技展望, 2014(20):164-164.

    Google Scholar

    [5] 焦居仁, 史立人, 牛崇桓, 等. 我国东中西部水土保持发展战略[J]. 中国水土保持科学, 2006, 4(5):1-6.

    Google Scholar

    [6] 薛怀民, 董树文. 大别山超高压变质杂岩的折返[J]. 华东地质, 1999, 20(1):23-24.

    Google Scholar

    [7] 杨章贤. 安徽省饮用天然矿泉水类型及分布特征研究[J]. 地下水, 2018, 40(5):28-31.

    Google Scholar

    [8] 阎如璲, 孙庭芳, 贺平. 安徽省饮用天然矿泉水资源的基本特征与形成规律[J]. 安徽地质, 1996, 6(3):63-76.

    Google Scholar

    [9] 李肖雪, 吴立, 杨钊, 等. 安徽省地热温泉资源分布与特征[J]. 安徽师范大学学报:自然科学版, 2020, 43(4):364-370.

    Google Scholar

    [10] 薛怀民, 董树文. 南大别山超高压岩区变质作用的P-T-t研究——兼论花岗片麻岩[J]. 华东地质, 2000, 21(4):235-243.

    Google Scholar

    [11] 安徽省地质矿产局. 安徽省区域地质志[M]. 北京:地质出版社, 1987.

    Google Scholar

    [12] SHAN Z, WEI W. The Uncertainty Assessment of Arsenic Content in Drinking Water by Hydride Generation Atomic Fluorescence Spectrometry[J]. Journal of Environmental Hygiene, 2012, 2(4):182-186.

    Google Scholar

    [13] 吴海权, 李琴, 范董伟. 安徽大别山响肠超单元的岩石学和地球化学特征及成因探讨[J]. 宿州学院学报, 2019, 34(9):66-72

    Google Scholar

    [14] SHUTONG X, LAILI J, YICAN L, et al. Tectonic Framework and Evolution of the Dabie Mountains in Anhui, Eastern China[J]. Acta Geologica Sinica English Edition, 1992, 66(2):221-238.

    Google Scholar

    [15] 中华人民共和国卫生部. GB/T 5750.6/22.2-2006生活饮用水标准检验方法[S]. 2006.

    Google Scholar

    [16] 中华人民共和国地质矿产部.DZ/T 0064.51-1993地下水质检验方法[S]. 1993.

    Google Scholar

    [17] 中华人民共和国地质矿产部.DZ/T 0064.49-1993地下水质检验方法[S]. 1993.

    Google Scholar

    [18] 中华人民共和国地质矿产部.DZ/T 0064.80-1993地下水质检验方法[S]. 1993.

    Google Scholar

    [19] 中华人民共和国地质矿产部.DZ/T 0064.9-1993地下水质检验方法[S]. 1993.

    Google Scholar

    [20] 中华人民共和国地质矿产部.DZ/T 0184.19-1997水中氢同位素锌还原法测定[S]. 1993.

    Google Scholar

    [21] 中华人民共和国地质矿产部.DZ/T 0184.21-1997天然水中氧同位素二氧化碳-水平衡法测定[S]. 1997.

    Google Scholar

    [22] 谭梦如. 云南西双版纳地区部分温泉水化学和同位素特征及成因研究[D]. 北京:中国地质大学(北京), 2018:1-68.

    Google Scholar

    [23] 王正文, 张景润等温泉水浴治疗6种顽固性皮肤病193例的效果观察[J]. 云南医药, 2002, 23(3):218-220.

    Google Scholar

    [24] WANG X, ZHOU X, ZHAO J, et al. Hydrochemical evolution and reaction simulation of travertine deposition of the Lianchangping hot springs in Yunnan, China[J]. Quaternary International, 2015, 374:62-75.

    Google Scholar

    [25] YURTSEVER Y. Worldwide survey of stable isotopes in precipitation[J]. Rep. Sect. Isotope Hydrol, IAEA, 1975:40.

    Google Scholar

    [26] CHRISTOPHE R, BERTRAND M, JEANPIERRE G, et al. Stable isotope study of rainfall, river drainage and hot springs of the kerguelen archipelago, SW Indian Ocean[J]. Geothermics, 2020(83):101726.

    Google Scholar

    [27] 周训, 金晓媚, 梁四海, 等. 地下水科学专论[M]. 北京:地质出版社, 2017.

    Google Scholar

    [28] 柳鉴容, 宋献方, 袁国富, 等. 中国东部季风区大气降水δ18O的特征及水汽来源[J]. 科学通报, 2009, 54(22):3521-3531.

    Google Scholar

    [29] 郑淑惠, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983, 28(13):801-806.

    Google Scholar

    [30] 李延河. 同位素示踪技术在地质研究中的某些应用[J]. 地学前缘, 1998(2):106-112.

    Google Scholar

    [31] 苏贵芬, 李方根, 韩晓南. 安徽皖南地区构造盆地及深大断裂地热潜力研究[J]. 中外能源, 2018, 23(7):15-24.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(626) PDF downloads(23) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint