2025 Vol. 45, No. 3
Article Contents

WANG Yanping, SONG Yougui, HAN Li, LI Yue, XIAO Jingyun. Potential of calcite crystallinity in paleoclimate reconstruction of loess in Northern Central Asia[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 144-156. doi: 10.16562/j.cnki.0256-1492.2025022802
Citation: WANG Yanping, SONG Yougui, HAN Li, LI Yue, XIAO Jingyun. Potential of calcite crystallinity in paleoclimate reconstruction of loess in Northern Central Asia[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 144-156. doi: 10.16562/j.cnki.0256-1492.2025022802

Potential of calcite crystallinity in paleoclimate reconstruction of loess in Northern Central Asia

More Information
  • In the Loess Plateau of China, carbonate minerals are important proxies for paleoclimate reconstruction. However, relationships between carbonate mineral characteristics and climatic factors remain poorly constrained in the arid region of the Central Asia, concerning particularly the discrimination between different genesis of calcites and their crystallinity as climatic proxies. This study focuses on the climatic significance of calcite crystallinity in topsoils and loess in the arid region of Central Asia, aiming to assess its potential for paleoclimatic reconstruction. A total of 48 topsoils of loess sediments and 6 samples from two loess profiles deposited since the last glacial periods were collected from northern Xinjiang, China, and southern Kazakhstan. X-ray diffraction (XRD) analysis was performed to analyze the mineralogical characteristics of calcite. The crystallinity was quantified using a peak shape parameter (height/area ratio, H/A value) of the calcite (104) diffraction peak. Generalized Additive Models were employed to systematically evaluate the relationship between various climatic factors and calcite crystallinity of topsoils. Results demonstrate that secondary calcite exhibited significantly lower H/A values (4.21±0.62) compared to mixed-origin calcite (6.25±0.82). The H/A values show a significant negative correlation with annual evapotranspiration, suggesting their potential as a proxy of paleo-evapotranspiration intensity. Except for winter, the separate introduction of precipitation and temperature factors in other seasons did not significantly improve the explanatory power of the model.. However, non-linear interactions between annual evapotranspiration and mean annual temperature accounted for 76% of the variance in H/A values. The H/A values were closely related to the evapotranspiration as a single factor in the cold (0~2°C) or warm (6~10.5°C) thermal regimes; however, there was a threshold effect of the H/A value change with the evapotranspiration in the transitional thermal regimes (2.5~5.5°C or 11~12°C). This research provids critical insights into applying calcite crystallinity for paleoclimate reconstruction in the Central Asia, which deepens understanding of the paleoclimate characteristics and offers a novel mineralogical tool for deciphering Quaternary environmental evolution in arid Central Asia.

  • 加载中
  • [1] 刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985

    Google Scholar

    LIU Tungsheng. Loess and Environment[M]. Beijing: Science Press, 1985.]

    Google Scholar

    [2] 卢演俦. 黄土地层中CaCO3含量变化与更新世气候旋迴[J]. 地质科学, 1981(02):122-131

    Google Scholar

    LU Yanchou. Pleistocene climatic cycles and variation of CaCO3 contents in a loess profile[J]. Scientia Geologica Sinica, 1981(02):122-131.]

    Google Scholar

    [3] 赵景波. 黄土形成与演变模式[J]. 土壤学报, 2002, 39(4):459-466

    Google Scholar

    ZHAO Jingbo. Pattern of loess Formation and evolution[J]. Acta Pedologica Sinica, 2002, 39(4):459-466.]

    Google Scholar

    [4] Cerling T E. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters, 1984, 71(2):229-240. doi: 10.1016/0012-821X(84)90089-X

    CrossRef Google Scholar

    [5] Zhang H W, Cai Y J, Tan L C, et al. Stable isotope composition alteration produced by the aragonite-to-calcite transformation in speleothems and implications for paleoclimate reconstructions[J]. Sedimentary Geology, 2014, 309:1-14. doi: 10.1016/j.sedgeo.2014.05.007

    CrossRef Google Scholar

    [6] Tremaine D M, Froelich P N, Wang Y. Speleothem calcite farmed in situ: modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system[J]. Geochimica et Cosmochimica Acta, 2011, 75(17):4929-4950. doi: 10.1016/j.gca.2011.06.005

    CrossRef Google Scholar

    [7] Rinderknecht C J, Hasiuk F J, Oborny S C. Mg zonation and heterogeneity in low-Mg calcite microcrystals of a depositional chalk[J]. Journal of Sedimentary Research, 2021, 91(8):795-811. doi: 10.2110/jsr.2020.173

    CrossRef Google Scholar

    [8] Zhang R, Zhang H, Spötl C, et al. Dual pathways of aragonite-to-calcite transformation in stalagmites: implications for paleoclimate reconstructions[J]. Geochimica et Cosmochimica Acta, 2024, 378:45-57. doi: 10.1016/j.gca.2024.06.003

    CrossRef Google Scholar

    [9] Solotchina E P, Sklyarov E V, Solotchin P A, et al. Authigenic carbonate sedimentation in Eravnoe group lakes (western Transbaikalia): response to Holocene climate change[J]. Russian Geology and Geophysics, 2017, 58(11):1390-1400. doi: 10.1016/j.rgg.2017.11.005

    CrossRef Google Scholar

    [10] Fan J W, Xiao J L, Wen R L, et al. Mineralogy and carbonate geochemistry of the Dali Lake sediments: implications for paleohydrological changes in the East Asian summer monsoon margin during the Holocene[J]. Quaternary International, 2019, 527:103-112. doi: 10.1016/j.quaint.2018.03.019

    CrossRef Google Scholar

    [11] 梁莲姬, 孙有斌, Beets C J, 等. 黄土中的碳酸盐矿物特征与化学风化[J]. 第四纪研究, 2014, 34(3):645-653 doi: 10.3969/j.issn.1001-7410.2014.03.18

    CrossRef Google Scholar

    LIANG Lianji, SUN Youbin, Beets C J, et al. Characteristics of carbonate minerals in loess and its implication for chemical weathering[J]. Quaternary Sciences, 2014, 34(3):645-653.] doi: 10.3969/j.issn.1001-7410.2014.03.18

    CrossRef Google Scholar

    [12] 张文翔, 史正涛, 刘勇, 等. 西风区黄土-古土壤的碳酸盐含量对磁化率影响研究[J]. 地球环境学报, 2014, 5(2):155-162

    Google Scholar

    ZHANG Wenxiang, SHI Zhengtao, LIU Yong, et al. Study on the influence of carbonate content on magnetic susceptibility of Talede loess-paleosol sequences in westerly area of China[J]. Journal of Earth Environment, 2014, 5(2):155-162.]

    Google Scholar

    [13] 孟先强. 中国北方黄土中碳酸盐矿物的来源、分布与古季风变迁[D]. 南京大学博士学位论文, 2018

    Google Scholar

    MENG Xianqiang. The origin and distribution of carbonates in the loess deposits from northern China: implications for palaeomonsoon changes[D]. Doctor Dissertation of Nanjing University, 2018.]

    Google Scholar

    [14] Liu W G, Yang H, Sun Y B, et al. δ13C values of loess total carbonate: a sensitive proxy for Asian summer monsoon in arid northwestern margin of the Chinese loess Plateau[J]. Chemical Geology, 2011, 284(3-4):317-322. doi: 10.1016/j.chemgeo.2011.03.011

    CrossRef Google Scholar

    [15] Sun Y B, Kutzbach J, An Z S, et al. Astronomical and glacial forcing of East Asian summer monsoon variability[J]. Quaternary Science Reviews, 2015, 115:132-142. doi: 10.1016/j.quascirev.2015.03.009

    CrossRef Google Scholar

    [16] 董吉宝, Eiler J. 黄土高原全新世土壤碳酸盐团簇同位素的温度重建[J]. 第四纪研究, 2024, 44(5):1411-1420

    Google Scholar

    DONG Jibao, Eiler J. Temperature reconstruction using the clumped isotope for the Holocene soil carbonates on the Chinese Loess Plateau[J]. Quaternary Sciences, 2024, 44(5):1411-1420.]

    Google Scholar

    [17] Yang J D, Chen J, Tao X C, et al. Sr isotope ratios of acid-leached loess residues from Luochuan, China: a tracer of continental weathering intensity over the past 2.5 Ma[J]. Geochemical Journal, 2001, 35(6):403-412. doi: 10.2343/geochemj.35.403

    CrossRef Google Scholar

    [18] Álvarez D, Torres-Guerrero C A, Travé A, et al. Biogenic carbonates (queras) in loess-palaeosol sequences of the Ebro Basin and their potential use as a palaeoenvironmental proxy[J]. CATENA, 2024, 240:107969. doi: 10.1016/j.catena.2024.107969

    CrossRef Google Scholar

    [19] 曾蒙秀, 宋友桂. 西风区昭苏黄土剖面中碳酸盐矿物组成及其古环境意义辨识[J]. 第四纪研究, 2013, 33(3):424-436

    Google Scholar

    ZENG Mengxiu, SONG Yougui. Carbonate minerals of Zhaosu loess section in westerly area and their paleoenvironmental significance[J]. Quaternary Sciences, 2013, 33(3):424-436.]

    Google Scholar

    [20] Versteegen A. Biotic and abiotic controls on calcium carbonate Formation in soils[D]. Doctor Dissertation of Cranfield University, 2010.

    Google Scholar

    [21] He M, Cai Y J, Zhao X N, et al. Calcite recrystallization and its impact on speleothem geochemistry[J]. Sedimentary Geology, 2024, 470:106725. doi: 10.1016/j.sedgeo.2024.106725

    CrossRef Google Scholar

    [22] Zhao Y, Huang K J, Guo Y Q, et al. Primary and secondary calcite in Chinese loess distinguished by crystallinity and implications for illuviation depth and East Asian summer monsoon intensity[J/OL]. Journal of Earth Science. https://link.cnki.net/urlid/42.1788.P.20240108.1022.002. (2025-02-24).

    Google Scholar

    [23] Meng X Q, Liu L W, Balsam W, et al. Dolomite abundance in Chinese loess deposits: a new proxy of monsoon precipitation intensity[J]. Geophysical Research Letters, 2015, 42(23):10391-10398.

    Google Scholar

    [24] 隋玉柱. 从彭阳剖面看黄土成壤模式及气候变化[D]. 兰州大学博士学位论文, 2007

    Google Scholar

    SUI Yuzhu. The soil-forming mode and paleoclimatic changes of Pengyang loess section[D]. Doctor Dissertation of Lanzhou University, 2007.]

    Google Scholar

    [25] 周杰, 沈吉. 中国西部环境演变过程研究[M]. 北京: 科学出版社, 2007: 4-5

    Google Scholar

    ZHOU Jie, SHEN Ji. Study on Environmental Evolution in Western China[M]. Beijing: Science Press, 2007: 4-5.]

    Google Scholar

    [26] Li Y, Song Y G, Kaskaoutis D G, et al. Atmospheric dust dynamics in southern Central Asia: Implications for buildup of Tajikistan loess sediments[J]. Atmospheric Research, 2019, 229:74-85. doi: 10.1016/j.atmosres.2019.06.013

    CrossRef Google Scholar

    [27] Chen F H, Chen J H, Huang W, et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192:337-354. doi: 10.1016/j.earscirev.2019.03.005

    CrossRef Google Scholar

    [28] Zhang L C, Qin K Z, Xiao W J. Multiple mineralization events in the eastern Tianshan district, NW China: Isotopic geochronology and geological significance[J]. Journal of Asian Earth Sciences, 2008, 32(2-4):236-246. doi: 10.1016/j.jseaes.2007.10.011

    CrossRef Google Scholar

    [29] Zhang M Y, Song Y G, Shukurov S, et al. Provenance and fluvial‐aeolian process of Kyzylkum desert: constrained by detrital zircon U–Pb dating[J]. Geophysical Research Letters, 2024, 51(13):e2024GL108951. doi: 10.1029/2024GL108951

    CrossRef Google Scholar

    [30] Song Y G, Chen X L, Qian L B, et al. Distribution and composition of loess sediments in the Ili Basin, Central Asia[J]. Quaternary International, 2014, 334-335:61-73. doi: 10.1016/j.quaint.2013.12.053

    CrossRef Google Scholar

    [31] Gessner U, Naeimi V, Klein I, et al. The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia[J]. Global and Planetary Change, 2013, 110:74-87. doi: 10.1016/j.gloplacha.2012.09.007

    CrossRef Google Scholar

    [32] Yang J D, Chen J, An Z S, et al. Variations in 87Sr/86Sr ratios of calcites in Chinese loess: a proxy for chemical weathering associated with the East Asian summer monsoon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 157(1-2):151-159. doi: 10.1016/S0031-0182(99)00159-5

    CrossRef Google Scholar

    [33] Sulimai N H, Rani R A, Khusaimi Z, et al. Facile synthesis of CaCO3 and investigation on structural and optical properties of high purity crystalline calcite[J]. Materials Science and Engineering: B, 2019, 243:78-85. doi: 10.1016/j.mseb.2019.03.006

    CrossRef Google Scholar

    [34] Li Y, Song Y G, Xiao J Y, et al. Precipitation changes during the last glacial Period in the Ili Basin, northern Central Asia, as inferred from the records of loess dolomite[J]. Global and Planetary Change, 2024, 242:104599. doi: 10.1016/j.gloplacha.2024.104599

    CrossRef Google Scholar

    [35] 曾蒙秀, 宋友桂. 基于麦夸特算法的X射线衍射物相定量分析的影响因素研究[J]. 岩矿测试, 2012, 31(5):798-806

    Google Scholar

    ZENG Mengxiu, SONG Yougui. Study on the influencing factors of the Levenberg-Marquardt algorithm for X-ray diffraction quantitative phase analysis[J]. Rock and Mineral Analysis, 2012, 31(5):798-806.]

    Google Scholar

    [36] Solotchina E P, Sklyarov E V, Solotchin P A, et al. Reconstruction of the Holocene climate based on a carbonate sedimentary record from shallow saline Lake Verkhnee Beloe (western Transbaikalia)[J]. Russian Geology and Geophysics, 2012, 53(12):1351-1365. doi: 10.1016/j.rgg.2012.10.008

    CrossRef Google Scholar

    [37] Karger D N, Conrad O, Böhner J, et al. Climatologies at high resolution for the earth’s land surface areas[J]. Scientific Data, 2017, 4(1):170122. doi: 10.1038/sdata.2017.122

    CrossRef Google Scholar

    [38] Rienecker M M, Suarez M J, Gelaro R, et al. MERRA: NASA’s modern-era retrospective analysis for research and applications[J]. Journal of Climate, 2011, 24(14):3624-3648. doi: 10.1175/JCLI-D-11-00015.1

    CrossRef Google Scholar

    [39] Zheng C L, Jia L, Hu G C. Global land surface evapotranspiration monitoring by ETMonitor model driven by multi-source satellite earth observations[J]. Journal of Hydrology, 2022, 613:128444. doi: 10.1016/j.jhydrol.2022.128444

    CrossRef Google Scholar

    [40] 沈永平. 1879-2003年(部分年份)中亚地区哈萨克斯坦逐月平均降水量数据[DB/OL]. 国家冰川冻土沙漠科学数据中心, 2019. (2025-01-02). https://www.ncdc.ac.cn/portal/metadata/e7692dfc-645f-4fe9-82c1-d106ff3ab829

    Google Scholar

    SHEN Yongping. Monthly average precipitation data of Kazakhstan in Central Asia from 1879 to 2003 (partial years)[DB/OL]. National Cryosphere Desert Data Center, 2019. (2025-01-02). https://www.ncdc.ac.cn/portal/metadata/e7692dfc-645f-4fe9-82c1-d106ff3ab829.]

    Google Scholar

    [41] 沈永平. 1848-2003年(部分年份)中亚地区哈萨克斯坦逐月平均气温数据[DB/OL]. 国家冰川冻土沙漠科学数据中心, 2019. (2025-01-02). https://www.ncdc.ac.cn/portal/metadata/6aab912b-5809-4fab-a381-e4dd9887c4c8

    Google Scholar

    SHEN Yongping. Monthly average temperature data of Kazakhstan in Central Asia from 1848 to 2003 (partial years)[DB/OL]. National Cryosphere Desert Data Center, 2019. (2025-01-02). https://www.ncdc.ac.cn/portal/metadata/6aab912b-5809-4fab-a381-e4dd9887c4c8.]

    Google Scholar

    [42] Hastie T J. Generalized Additive Models[M]. New York: Routledge, 2017.

    Google Scholar

    [43] 贺祥, 林振山. 基于GAM模型分析影响因素交互作用对PM2.5浓度变化的影响[J]. 环境科学, 2017, 38(1):22-32

    Google Scholar

    HE Xiang, LIN Zhenshan. Interactive effects of the influencing factors on the changes of PM2.5 concentration based on GAM model[J]. Environmental Science, 2017, 38(1):22-32.]

    Google Scholar

    [44] Wood S N. Generalized Additive Models: An Introduction with R[M]. 2nd ed. New York: Chapman and Hall/CRC, 2017.

    Google Scholar

    [45] Dziak J J, Coffman D L, Lanza S T, et al. Sensitivity and specificity of information criteria[J]. Briefings in Bioinformatics, 2020, 21(2):553-565. doi: 10.1093/bib/bbz016

    CrossRef Google Scholar

    [46] 盛雪芬. 黄土碳酸盐的环境地球化学研究[D]. 南京大学博士学位论文, 2004

    Google Scholar

    SHENG Xuefeng. Environmental geochemistry of loess carbonates[D]. Doctor Dissertation of Nanjing University, 2004.]

    Google Scholar

    [47] Lu J S, Li Q H, Song W F, et al. The influence of crystal modifiers on the crystallinity, particle morphology and brightness of precipitated calcite powders hydrothermally prepared from black marble waste[J]. Powder Technology, 2020, 373:535-542. doi: 10.1016/j.powtec.2020.07.002

    CrossRef Google Scholar

    [48] Jaillard B, Guyon A, Maurin A F. Structure and composition of calcified roots, and their identification in calcareous soils[J]. Geoderma, 1991, 50(3):197-210. doi: 10.1016/0016-7061(91)90034-Q

    CrossRef Google Scholar

    [49] Barta G. Secondary carbonates in loess-paleosoil sequences: a general review[J]. Open Geosciences, 2011, 3(2):129-146. doi: 10.2478/s13533-011-0013-7

    CrossRef Google Scholar

    [50] Bolan N, Srivastava P, Rao C S, et al. Distribution, characteristics and management of calcareous soils[J]. Advances in Agronomy, 2023, 182:81-130.

    Google Scholar

    [51] Yu W J, Weintraub S R, Hall S J. Climatic and geochemical controls on soil carbon at the continental scale: interactions and thresholds[J]. Global Biogeochemical Cycles, 2021, 35(3):e2020GB006781. doi: 10.1029/2020GB006781

    CrossRef Google Scholar

    [52] Zhang J P, Zhi M M, Zhang Y. Combined generalized additive model and random forest to evaluate the influence of environmental factors on phytoplankton biomass in a large eutrophic lake[J]. Ecological Indicators, 2021, 130:108082. doi: 10.1016/j.ecolind.2021.108082

    CrossRef Google Scholar

    [53] Ye Z X, Hong S, He C, et al. Evaluation of different factors on metal leaching from nickel tailings using generalized additive model (GAM)[J]. Ecotoxicology and Environmental Safety, 2022, 236:113488. doi: 10.1016/j.ecoenv.2022.113488

    CrossRef Google Scholar

    [54] Liu H X, Jiang M D, Yu Z C, et al. Contrasting north-south pattern in Holocene lacustrine carbon accumulation in China: summer monsoon dynamics and human disturbance[J]. Quaternary Science Reviews, 2024, 324:108465. doi: 10.1016/j.quascirev.2023.108465

    CrossRef Google Scholar

    [55] 代鹏超, 牛苏娟, 毋兆鹏, 等. 新疆精河流域实际蒸散发时空变化特征[J]. 生态与农村环境学报, 2017, 33(7):600-606

    Google Scholar

    DAI Pengchao, NIU Sujuan, WU Zhaopeng, et al. Temporal and spatial characteristics of actual evapotranspiration in Jinghe watershed, Xinjiang[J]. Journal of Ecology and Rural Environment, 2017, 33(7):600-606.]

    Google Scholar

    [56] 郑倩倩, 代鹏超, 张金燕, 等. 基于SEBS模型的精河流域蒸散发研究[J]. 干旱区地理, 2021, 37(6): 1378-1387

    Google Scholar

    ZHENG Qianqian, DAI Pengchao, ZHANG Jinyan, et al. Evapotranspiration in the Jinghe River Basin based on the surface energy balance system[J]. Arid Zone Research, 2020, 37(6): 1378-1387.]

    Google Scholar

    [57] 阿迪来·乌甫, 玉素甫江·如素力, 热伊莱·卡得尔, 等. 基于MODIS数据的新疆地表蒸散量时空分布及变化趋势分析[J]. 地理研究, 2017, 36(7):1245-1256

    Google Scholar

    ADILAI Wufu, YUSUFUJIANG Rusuli, REYILAI Kadeer, et al. Spatio-temporal distribution and evolution trend of evapotranspiration in Xinjiang based on MOD16 data[J]. Geographical Research, 2017, 36(7):1245-1256.]

    Google Scholar

    [58] Farooq I, Shah A R, Sahana M, et al. Assessment of drought conditions over different climate zones of Kazakhstan using standardised precipitation evapotranspiration index[J]. Earth Systems and Environment, 2023, 7(1):283-296. doi: 10.1007/s41748-022-00314-0

    CrossRef Google Scholar

    [59] Wang S J, Zhang M J, Che Y J, et al. Contribution of recycled moisture to precipitation in oases of arid central Asia: a stable isotope approach[J]. Water Resources Research, 2016, 52(4):3246-3257. doi: 10.1002/2015WR018135

    CrossRef Google Scholar

    [60] Bower C A, Wilcox L V. Precipitation and solution of calcium carbonate in irrigation operations[J]. Soil Science Society of America Journal, 1965, 29(1):93-94. doi: 10.2136/sssaj1965.03615995002900010028x

    CrossRef Google Scholar

    [61] Bellanca A, Neri R. Dissolution and precipitation of gypsum and carbonate minerals in soils on evaporite deposits, central Sicily - isotope geochemistry and microfabric analysis[J]. Geoderma, 1993, 59(1-4):263-277. doi: 10.1016/0016-7061(93)90073-T

    CrossRef Google Scholar

    [62] Li Q L, Shi G S, Shangguan W, et al. A 1 km daily soil moisture dataset over China using in situ measurement and machine learning[J]. Earth System Science Data, 2022, 14(12):5267-5286. doi: 10.5194/essd-14-5267-2022

    CrossRef Google Scholar

    [63] Oberhänsli H, Novotná K, Píšková A, et al. Variability in precipitation, temperature and river runoff in W Central Asia during the past~ 2000yrs[J]. Global and Planetary Change, 2011, 76(1-2):95-104. doi: 10.1016/j.gloplacha.2010.12.008

    CrossRef Google Scholar

    [64] 赵彤, 蒋跃利, 闫浩, 等. 黄土丘陵区不同坡向对土壤微生物生物量和可溶性有机碳的影响[J]. 环境科学, 2013, 34(8):3223-3230

    Google Scholar

    ZHAO Tong, JIANG Yueli, YAN Hao, et al. Effects of different aspects on soil microbial biomass and dissolved organic carbon of the loess hilly area[J]. Environmental Science, 2013, 34(8):3223-3230.]

    Google Scholar

    [65] 荣辉, 钱春香, 李龙志. 微生物水泥胶结机理[J]. 硅酸盐学报, 2013, 41(3):314-319 doi: 10.7521/j.issn.04545648.2013.03.07

    CrossRef Google Scholar

    RONG Hui, QIAN Chunxiang, LI Longzhi, et al. Cementation mechanism of microbe cement[J]. Journal of the Chinese Ceramic Society, 2013, 41(3):314-319.] doi: 10.7521/j.issn.04545648.2013.03.07

    CrossRef Google Scholar

    [66] Fuchs L, Zhou B, Magill C, et al. Multiproxy records of temperature, precipitation and vegetation on the central Chinese Loess Plateau over the past 200, 000 years[J]. Quaternary Science Reviews, 2022, 288:107579. doi: 10.1016/j.quascirev.2022.107579

    CrossRef Google Scholar

    [67] Lu H X, Liu W G, Yang H, et al. 800-kyr land temperature variations modulated by vegetation changes on Chinese Loess Plateau[J]. Nature Communications, 2019, 10(1):1958. doi: 10.1038/s41467-019-09978-1

    CrossRef Google Scholar

    [68] Hua L J, Zhao T B, Zhong L H. Future changes in drought over Central Asia under CMIP6 forcing scenarios[J]. Journal of Hydrology: Regional Studies, 2022, 43:101191. doi: 10.1016/j.ejrh.2022.101191

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(80) PDF downloads(7) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint