Citation: | YAN Zhonghui, YANG Rui, FENG Jing, LIU Xinxin, LIU Hong, WANG Xiaojie, JIANG Chuntao. Application of high-resolution small group interval processing technology and attribute analysis for hydrate identification[J]. Marine Geology & Quaternary Geology, 2024, 44(6): 46-59. doi: 10.16562/j.cnki.0256-1492.2024111901 |
Natural gas hydrate resources are playing more and more important role in energy exploration, and the type characteristics and accumulation patterns of shallow layer natural gas hydrate have attracted more and more attention. Shallow layer gas hydrates generally occur in the near-seabed strata, and require higher resolution in the exploration process. Conventional multi-channel seismic are difficult to meet this requirement due to their low dominant frequency. With the advantages of high resolution and flexible operation mode, the marine high-resolution small group interval seismic exploration technology has been widely used in shallow gas hydrate exploration. Due to the influence of acquisition equipment conditions, the actual high-resolution small group interval data often has the characteristics of low signal-to-noise ratio. Therefore, fine processing and attribute analysis were carried out according to the characteristics of high-resolution small group interval seismic data. First, the key technical methods such as multi-domain noise suppression method based on the f−x (f: frequency; x: the offset) domain and curvelet domain, adaptive ghost suppression based on frequency domain, and cable floating correction based on combination of gather coherence and ghost reflection traveltime were used to obtain seismic profiles with clearer wave group characteristics. The processed profile has the characteristics of high signal-to-noise ratio, good continuity, and clear stratigraphic configuration, which can better reveal the seismic reflection characteristics such as BSR characteristics, blank zone, and gas channel, and lay a foundation for identifying the geological information to locate the shallow gas hydrate occurrence area. Secondly, the seismic attributes such as instantaneous amplitude attribute, instantaneous frequency attribute, and hydrocarbon detection were further analyzed for the finely processed data for the identification of the distribution type and accumulation law of shallow gas hydrate.
[1] | 栾锡武, 赵克斌, 孙冬胜, 等. 海域天然气水合物勘测的地球物理方法[J]. 地球物理学进展, 2008, 23(1):210-219 LUAN Xiwu, ZHAO Kebin, SUN Dongsheng, et al. Geophysical methods for marine gas hydrates exploration[J]. Progress in Geophysics, 2008, 23(1):210-219.] |
[2] | 周大森, 杨册, 曾宪军, 等. 高精度小三维地震采集技术在深水天然气水合物勘探中的应用[J]. 地质学报, 2024, 98(9):2678-2685 ZHOU Dasen, YANG Ce, ZENG Xianjun, et al. Application of high-precision small 3D seismic acquisition technology in deep water gas hydrate exploration[J]. Acta Geologica Sinica, 2024, 98(9):2678-2685.] |
[3] | 魏峥嵘, 裴彦良, 刘保华. 深拖式多道高分辨率地震探测系统在南海首次应用[J]. 石油地球物理勘探, 2020, 55(5):965-972 WEI Zhengrong, PEI Yanliang, LIU Baohua. The first application of a deep tow multi-channel high-resolution seismic detection system in the South China Sea[J]. Petroleum Geophysical Exploration, 2020, 55(5):965-972.] |
[4] | 王祥春, 马文秀, 黄天蔚, 等. OBS技术在南海天然气水合物勘探中的应用[J]. 石油物探, 2021, 60(1):105-113 WANG Xiangchun, MA Wenxiu, HUANG Tianwei, et al. Application of an ocean bottom seismometer for gas hydrate exploration in the South China Sea[J]. Geophysical Prospecting for Petroleum, 2021, 60(1):105-113.] |
[5] | 李绪宣, 王建花, 张金淼, 等. 南海深水区地震资料采集设计和处理关键技术及其野外试验效果[J]. 中国海上油气, 2013, 25(6):8-14 LI Xuxuan, WANG Jianhua, ZHANG Jinmiao, et al. Some seismic acquisition designs and key processing techniques and their testing effects in the deep water areas, South China Sea[J]. China Offshore Oil and Gas, 2013, 25(6):8-14.] |
[6] | 邓桂林, 丁龙翔, 李福元, 等. 海洋长排列单源单缆准三维窄方位地震资料处理技术[J]. 物探与化探, 2019, 43(4):828-834 DENG Guilin, DING Longxiang, LI Fuyuan, et al. The processing technology of narrow azimuth Quasi three-dimensional seismic data acquisition by single source and single long streamer system in marine seismic exploration[J]. Geophysical and Geochemical Exploration, 2019, 43(4):828-834.] |
[7] | 邢磊. 海洋小多道地震高精度探测关键技术研究[D]. 中国海洋大学博士学位论文, 2012 XING Lei. Study of the key technologies of high-precision marine multichannel seismic survey[D]. Doctor Dissertation of Ocean University of China, 2012.] |
[8] | 骆迪, 蔡峰, 吴志强, 等. 海洋短排列高分辨率多道地震高精度成像关键技术[J]. 地球物理学报, 2019, 62(2):730-742 LUO Di, CAI Feng, WU Zhiqiang, et al. The key technologies of marine small scale high resolution multichannel seismic high-precision imaging[J]. Chinese Journal of Geophysics, 2019, 62(2):730-742.] |
[9] | 王威, 徐华源, 孙波, 等. 高分辨率多道地震勘探技术在南海天然气水合物调查中的应用[J]. 海洋地质前沿, 2019, 35(9):19-24 WANG Wei, XU Huayuan, SUN Bo, et al. Application of high resolution multichannel seismic survey technique to the investigation of natural gas hydrate resources in the south china sea[J]. Marine Geology Frontiers, 2019, 35(9):19-24.] |
[10] | 裴彦良, 刘保华, 连艳红, 等. 海洋高分辨率多道数字地震拖缆技术研究与应用[J]. 地球物理学进展, 2013, 28(6):3280-3286 PEI Yanliang, LIU Baohua, LIAN Yanhong, et al. Marine high resolution multi-channel digital seismic streamer and its application in the ocean engineering[J]. Progress in Geophysics, 2013, 28(6):3280-3286.] |
[11] | 王秀娟, 韩磊, 刘俊州, 等. 天然气水合物与游离气共存的地球物理特征与识别[J/OL]. 地学前缘, 2024: 1-22. [4-12-24]. http://kns.cnki.net/kcms/detail/11.3370.P.20240417.1503.010.html. WANG Xiujuan, HAN Lei, LIU Junzhou, et al. The geophysical characteristics and identification of the coexistence of gas hydrate and free gas[J]. Earth Science Frontiers, 2024: 1-22. [2024-12-24]. http://kns.cnki.net/kcms/detail/11.3370.P.20240417.1503.010.html. |
[12] | 文鹏飞, 刘斌, 徐云霞, 等. 面向海域水合物精细刻画的地震勘探技术: 耙缆式地震勘探[J]. 地球物理学进展, 2021, 36(5):2215-2221 WEN Pengfei, LIU Bin, XU Yunxia, et al. Novel seismic exploration technique targeting fine characterization of marine gas hydrates: seismic exploration with a harrow-like acquisition geometry[J]. Progress in Geophysics, 2021, 36(5):2215-2221.] |
[13] | Otsuka H, Morita S, Tanahashi M, et al. Foldback reflectors near methane hydrate bottom-simulating reflectors: indicators of gas distribution from 3D seismic images in the eastern Nankai Trough[J]. Island Arc, 2015, 24(2):145-158. doi: 10.1111/iar.12099 |
[14] | 张光学, 张明, 杨胜雄, 等. 海洋天然气水合物地震检测技术及其应用[J]. 海洋地质与第四纪地质, 2011, 31(4):51-58 ZHANG Guangxue, ZHANG Ming, YANG Shengxiong, et al. Application of seismic detecting technique to marine gas hydrate survey[J]. Marine Geology & Quaternary Geology, 2011, 31(4):51-58.] |
[15] | 颜中辉, 杨传胜, 王小杰, 等. 海洋低信噪比小道距地震处理关键技术[J]. 海洋科学进展, 2024, 42(3):501-514 YAN Zhonghui, YANG Chuansheng, WANG Xiaojie, et al. The key technology of marine low SNR seismic data processing for small group interval[J]. Advances in Marine Science, 2024, 42(3):501-514.] |
[16] | 褚宏宪, 孙运宝, 秦轲, 等. 小道距高分辨率多道地震对天然气水合物勘查的适用性[J]. 海洋地质前沿, 2015, 31(6):50-54 CHU Hongxian, SUN Yunbao, QIN Ke, et al. Application of small-scale array high-resolution multi-channel seismic to gas hydrates exploration[J]. Marine Geology Frontiers, 2015, 31(6):50-54.] |
[17] | Haines S S, Hart P E, Collett T S, et al. High-resolution seismic characterization of the gas and gas hydrate system at Green Canyon 955, Gulf of Mexico, USA[J]. Marine and Petroleum Geology, 2017, 82:220-237. doi: 10.1016/j.marpetgeo.2017.01.029 |
[18] | 刘鹏奇. 基于地震波频散特征的天然气水合物识别方法研究[D]. 中国石油大学(北京)博士学位论文, 2022 LIU Pengqi. Research on gas hydrate identification method based on seismic wave dispersion characteristics[D]. Doctor Dissertation of China University of Petroleum (Beijing), 2022.] |
[19] | 徐华宁, 陆敬安, 梁金强. 珠江口盆地东部海域近海底天然气水合物地震识别及地质成因[J]. 地学前缘, 2017, 24(4):57-65 XU Huaning, LU Jing’an, LIANG Jinqiang. Seismic identification and geological origin of gas hydrate in near seafloor sediments in the eastern part of the Pearl River Mouth Basin[J]. Earth Science Frontiers, 2017, 24(4):57-65.] |
[20] | 王秀娟, 吴时国, 董冬冬, 等. 琼东南盆地块体搬运体系对天然气水合物形成的控制作用[J]. 海洋地质与第四纪地质, 2011, 31(1):109-118 WANG Xiujuan, WU Shiguo, DONG Dongdong, et al. Control of mass transport deposits over the occurrence of gas hydrate in Qiongdongnan basin[J]. Marine Geology & Quaternary Geology, 2011, 31(1):109-118.] |
[21] | 王伟巍, 伍忠良, 龚跃华, 等. 地震属性在海洋天然气水合物识别中的应用[J]. 海洋技术学报, 2020, 39(3):75-81 WANG Weiwei, WU Zhongliang, GONG Yuehua, et al. Application of seismic attributes in the identification of marine gas-hydrate[J]. Journal of Ocean Technology, 2020, 39(3):75-81.] |
[22] | 杨睿, 霍元媛, 陈江欣, 等. 利用相干属性技术实现参量阵浅地层剖面上的水合物识别[J]. 地质论评, 2020, 66(S1):87-89 YANG Rui, HUO Yuanyuan, CHEN Jiangxin, et al. Gas hydrate identification of parametic array sub-bottom profile by coherence attribute analysis[J]. Geological Review, 2020, 66(S1):87-89.] |
[23] | Liu Y J, Liu X X, Liu D M, et al. Applications of seismic techniques to gas hydrates prediction[J]. Applied Geophysics, 2008, 5(1): 67-73. ]. |
[24] | 王兆湖, 王建民, 高振山, 等. 叠前自适应F-X域相干噪音衰减技术及应用[J]. 地球物理学进展, 2013, 28(5):2605-2610 doi: 10.6038/pg20130540 WANG Zhaohu, WANG Jianmin, GAO Zhenshan, et al. Pre-stack self-adapting F-X domain coherent noise attenuation technique and application[J]. Progress in Geophysics, 2013, 28(5):2605-2610.] doi: 10.6038/pg20130540 |
[25] | Hennenfent G, Fenelon L, Herrmann F J. Nonequispaced curvelet transform for seismic data reconstruction: a sparsity-promoting approach[J]. Geophysics, 2010, 75(6):WB203-WB210. doi: 10.1190/1.3494032 |
[26] | 杨凯, 刘伟, 潘永. 基于曲波域的软硬阈值折中地震信号去噪[J]. 工程地球物理学报, 2013, 10(4):437-441 YANG Kai, LIU Wei, PAN Yong. Random noise attenuation based on soft and hard threshold compromise in curvelet domain[J]. Chinese Journal of Engineering Geophysics, 2013, 10(4):437-441.] |
[27] | 王小杰, 颜中辉, 刘俊, 等. 基于模型优化的广义自由表面多次波压制技术在印度洋深水海域的应用[J]. 海洋地质与第四纪地质, 2021, 41(5):221-230 WANG Xiaojie, YAN Zhonghui, LIU Jun, et al. Generalized free surface multiple suppression technique based on model optimization and its application to the deep water of the Indian Ocean[J]. Marine Geology & Quaternary Geology, 2021, 41(5):221-230.] |
[28] | 颜中辉, 王小杰, 徐华宁, 等. 基于虚反射走时和道集相干联合的电缆等浮校正方法[J]. 石油地球物理勘探, 2023, 58(6):1365-1373 YAN Zhonghui, WANG Xiaojie, XU Huaning, et al. Method of cable floating correction based on combination of gather coherence and ghost reflection traveltime[J]. Oil Geophysical Prospecting, 2023, 58(6):1365-1373.] |
[29] | 张汛汛, 张繁昌, 刘汉卿. 基于快速匹配追踪算法的地震道集剩余时差校正[J]. 石油物探, 2015, 54(4):420-426 doi: 10.3969/j.issn.1000-1441.2015.04.008 ZHANG Xunxun, ZHANG Fanchang, LIU Hanqing. Seismic gathers residual moveout correction based on fast matching pursuit algorithm[J]. Geophysical Prospecting for Petroleum, 2015, 54(4):420-426.] doi: 10.3969/j.issn.1000-1441.2015.04.008 |
[30] | 周鹏, 张益明, 刘志斌, 等. 地震道集优化方法及应用[J]. 石油地球物理勘探, 2016, 51(2):232-237 ZHOU Peng, ZHANG Yiming, LIU Zhibin, et al. Seismic gather optimization[J]. Oil Geophysical Prospecting, 2016, 51(2):232-237.] |
[31] | 王冲, 顾汉明, 许自强, 等. 最小二乘反演迭代算法在压制海上变深度缆采集数据虚反射中的应用[J]. 地球物理学报, 2016, 59(5):1790-1803 WANG Chong, GU Hanming, XU Ziqiang, et al. The application of least-squares inversion iteration algorithm to deghost for marine variable-depth streamer data[J]. Chinese Journal of Geophysics, 2016, 59(5):1790-1803.] |
[32] | Fang Z Y, Shi W Y, Zhang X Y, et al. Complex sea-surface condition deghosting technology of towed streamer data[J]. Journal of Geophysics and Engineering, 2017, 14(5):1061-1071. doi: 10.1088/1742-2140/aa735c |
[33] | 董政, 李黎, 徐超, 等. 海上虚反射频率域自适应压制技术及应用: 以珠江口盆地陆丰A油田为例[J]. 中外能源, 2023, 28(6):59-64 DONG Zheng, LI Li, XU Chao, et al. Adaptive suppression technology for offshore ghosting frequency domain and its application: a case study of Lufeng a oilfield in pearl river mouth basin[J]. Sino-Global Energy, 2023, 28(6):59-64.] |
Shot gather before (a) and after (b) linear noise attenuation
Shot gather before (a) and after (b) hyperbolic noise attenuation
Diagram of curvelet transform
Stacked profile before noise suppression
Stacked profile after noise suppression
CMP gathers before (a) and after(b) cable float time correction
Stacked profile before cable float time correction
Stacked profile after cable float time correction
Stacked profile before ghost suppression
Stacked profile after ghost suppression
The spectrum before ghost suppression
The spectrum after ghost suppression
Comparison between Targeted fine processing and conventional processing
Structure and hydrate characteristics on seismic profile
Partial enlargement of of BSR and other abnormal responses
Structure and hydrate characteristics on seismic profile
Seismic interpretation profile and attributes
Seismic interpretation profile and attributes