2025 Vol. 45, No. 3
Article Contents

XU Hongfei, WU Feng, YE Maosong, ZHU Youhua, WANG Jingwen. Depositional evolution and controlling factors of the middle-late Holocene fringing reef in Hainan Island[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 1-12. doi: 10.16562/j.cnki.0256-1492.2024111101
Citation: XU Hongfei, WU Feng, YE Maosong, ZHU Youhua, WANG Jingwen. Depositional evolution and controlling factors of the middle-late Holocene fringing reef in Hainan Island[J]. Marine Geology & Quaternary Geology, 2025, 45(3): 1-12. doi: 10.16562/j.cnki.0256-1492.2024111101

Depositional evolution and controlling factors of the middle-late Holocene fringing reef in Hainan Island

More Information
  • The fringing reef systems in the Hainan Island are important coral reef resources, but the systematic research on their depositional evolution is still rare. By AMS14C dating, macroscopic core observation, and microscopic identification, the sedimentary characteristics (including lithologic facies and biological components) of the middle-late Holocene interval from core ZK-6 in the Hainan Island were described in detail, the sedimentary evolution sequence was established, and the factors controlling reef development were discussed. The AMS14C dating indicates that the fringing reef development occurred during the middle-late Holocene (75603410 aBP). The sedimentary facies were characterized by an alternation of reef flat and backreef. Sea-level change and paleo-seawater-temperature variation controlled the fringing reef development. Results show that the reef-flat facies developed mainly in relatively low sea level, and the backreef facies mainly in relatively high sea level. The paleo-seawater temperature mainly influenced the sedimentation rate of the fringing reef, with a rise in paleo-seawater temperature enhancing the sedimentation rate. It is proposed that sea-level change was the main factor that led to the changes in the sedimentary facies zonation of the fringing reef from 7560 to 3410 aBP in the northeastern Hainan Island. This study revealed the evolution of coral community ecosystem in the Hainan Island, providing an important theoretical support for the protection and restoration of the reef ecosystem.

  • 加载中
  • [1] Darwin C. The Structure and Distribution of Coral Reefs[M]. Berkeley: University of California Press, 1976.

    Google Scholar

    [2] Kennedy D M, Woodroffe C D. Fringing reef growth and morphology: a review[J]. Earth-Science Reviews, 2002, 57(3-4):255-277. doi: 10.1016/S0012-8252(01)00077-0

    CrossRef Google Scholar

    [3] Smithers S. Fringing reefs[M]//Hopley D. Encyclopedia of Modern Coral Reefs. Dordrecht: Springer, 2011: 430-446.

    Google Scholar

    [4] Tomascik T, Mah A J, Nontji A, et al. The Ecology of the Indonesian Seas[M]. Oxford: Oxford University Press, 1997.

    Google Scholar

    [5] Hartman G, Niemi T M, Ben-Avraham Z, et al. Distinct relict fringing reefs in the northern shelf of the Gulf of Elat/Aqaba: markers of Quaternary eustatic and climatic episodes[J]. Sedimentology, 2015, 62(2):516-540. doi: 10.1111/sed.12179

    CrossRef Google Scholar

    [6] Montaggioni L E. History of Indo-Pacific coral reef systems since the last glaciation: development patterns and controlling factors[J]. Earth-Science Reviews, 2005, 71(1-2):1-75. doi: 10.1016/j.earscirev.2005.01.002

    CrossRef Google Scholar

    [7] Salas-Saavedra M, Webb G E, Sanborn K L, et al. Holocene microbialite geochemistry records > 6000 years of secular influence of terrigenous flux on water quality for the southern Great Barrier Reef[J]. Chemical Geology, 2022, 604:120871. doi: 10.1016/j.chemgeo.2022.120871

    CrossRef Google Scholar

    [8] Elliff C I, Silva I R. Coral reefs as the first line of defense: shoreline protection in face of climate change[J]. Marine Environmental Research, 2017, 127:148-154. doi: 10.1016/j.marenvres.2017.03.007

    CrossRef Google Scholar

    [9] Zhao M X, Zhang H Y, Zhong Y, et al. The status of coral reefs and its importance for coastal protection: a case study of northeastern Hainan Island, South China Sea[J]. Sustainability, 2019, 11(16):4354. doi: 10.3390/su11164354

    CrossRef Google Scholar

    [10] Ferrario F, Beck M W, Storlazzi C D, et al. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation[J]. Nature Communications, 2014, 5(1):3794. doi: 10.1038/ncomms4794

    CrossRef Google Scholar

    [11] Liu M Y, Li C, Zhang F, et al. A persistent increase in primary productivity east off Hainan Island (northwestern South China Sea) over the last decades as inferred from sediment records[J]. Marine Pollution Bulletin, 2020, 158:111428. doi: 10.1016/j.marpolbul.2020.111428

    CrossRef Google Scholar

    [12] Smithers S G, Hopley D, Parnell K E. Fringing and nearshore coral reefs of the great barrier reef: episodic Holocene development and future prospects[J]. Journal of Coastal Research, 2006, 221(1):175-187.

    Google Scholar

    [13] Johnson J A, Perry C T, Smithers S G, et al. Palaeoecological records of coral community development on a turbid, nearshore reef complex: baselines for assessing ecological change[J]. Coral Reefs, 2017, 36(3):685-700. doi: 10.1007/s00338-017-1561-1

    CrossRef Google Scholar

    [14] Woodroffe C D, Linklater M, Brooke B P, et al. Reef growth and carbonate sedimentation at the southernmost Pacific reefs[J]. Marine Geology, 2023, 459:107033. doi: 10.1016/j.margeo.2023.107033

    CrossRef Google Scholar

    [15] Leonard N D, Lepore M L, Zhao J X, et al. Re-evaluating mid-Holocene reef “turn-off” on the inshore Southern Great Barrier Reef[J]. Quaternary Science Reviews, 2020, 244:106518. doi: 10.1016/j.quascirev.2020.106518

    CrossRef Google Scholar

    [16] Ryan E J, Smithers S G, Lewis S E, et al. Chronostratigraphy of Bramston Reef reveals a long-term record of fringing reef growth under muddy conditions in the central Great Barrier Reef[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441:734-747. doi: 10.1016/j.palaeo.2015.10.016

    CrossRef Google Scholar

    [17] Perry C T, Smithers S G, Gulliver P. Rapid vertical accretion on a ‘young’ shore-detached turbid zone reef: offshore Paluma Shoals, central Great Barrier Reef, Australia[J]. Coral Reefs, 2013, 32(4):1143-1148. doi: 10.1007/s00338-013-1063-8

    CrossRef Google Scholar

    [18] Solihuddin T, O’Leary M J, Blakeway D, et al. Holocene reef evolution in a macrotidal setting: buccaneer Archipelago, Kimberley Bioregion, Northwest Australia[J]. Coral Reefs, 2016, 35(3):783-794. doi: 10.1007/s00338-016-1424-1

    CrossRef Google Scholar

    [19] Sanborn K L, Webster J M, Webb G E, et al. A new model of Holocene reef initiation and growth in response to sea-level rise on the Southern Great Barrier Reef[J]. Sedimentary Geology, 2020, 397:105556. doi: 10.1016/j.sedgeo.2019.105556

    CrossRef Google Scholar

    [20] Lewis S E, Wüst R A J, Webster J M, et al. Development of an inshore fringing coral reef using textural, compositional and stratigraphic data from Magnetic Island, Great Barrier Reef, Australia[J]. Marine Geology, 2012, 299-302:18-32. doi: 10.1016/j.margeo.2012.01.003

    CrossRef Google Scholar

    [21] Ryan E J, Smithers S G, Lewis S E, et al. Fringing reef growth over a shallow last interglacial reef foundation at a mid-shelf high island: holbourne Island, central Great Barrier Reef[J]. Marine Geology, 2018, 398:137-150. doi: 10.1016/j.margeo.2017.12.007

    CrossRef Google Scholar

    [22] Palmer S E, Perry C T, Smithers S G, et al. Internal structure and accretionary history of a nearshore, turbid-zone coral reef: paluma Shoals, central Great Barrier Reef, Australia[J]. Marine Geology, 2010, 276(1-4):14-29. doi: 10.1016/j.margeo.2010.07.002

    CrossRef Google Scholar

    [23] Cabioch G, Montaggioni L F, Faure G. Holocene initiation and development of New Caledonian fringing reefs, SW Pacific[J]. Coral Reefs, 1995, 14(3):131-140. doi: 10.1007/BF00367230

    CrossRef Google Scholar

    [24] Roff G, Zhao J X, Pandolfi J M. Rapid accretion of inshore reef slopes from the central Great Barrier Reef during the late Holocene[J]. Geology, 2015, 43(4):343-346. doi: 10.1130/G36478.1

    CrossRef Google Scholar

    [25] Ryan E J, Smithers S G, Lewis S E, et al. The influence of sea level and cyclones on Holocene reef flat development: middle Island, central Great Barrier Reef[J]. Coral Reefs, 2016, 35(3):805-818. doi: 10.1007/s00338-016-1453-9

    CrossRef Google Scholar

    [26] Ryan E J, Smithers S G, Lewis S E, et al. The variable influences of sea level, sedimentation and exposure on Holocene reef development over a cross-shelf transect, central Great Barrier Reef[J]. Diversity, 2018, 10(4):110. doi: 10.3390/d10040110

    CrossRef Google Scholar

    [27] Twiggs E J, Collins L B. Development and demise of a fringing coral reef during Holocene environmental change, eastern Ningaloo Reef, Western Australia[J]. Marine Geology, 2010, 275(1-4):20-36. doi: 10.1016/j.margeo.2010.04.004

    CrossRef Google Scholar

    [28] 邵超. 海滩—珊瑚礁海岸侵蚀及适应性管理研究[D]. 国家海洋局第三海洋研究所硕士学位论文, 2016

    Google Scholar

    SHAO Chao. Study on coastal erosion of beach-coral system and its adaptive management[D]. Master Dissertation of Third Institute of Oceanography, State Oceanic Administration, 2016.]

    Google Scholar

    [29] 张明书, 刘健, 李浩, 等. 海南岛周缘珊瑚礁的基本特征和成礁时代[J]. 海洋地质与第四纪地质, 1990, 10(2):25-43

    Google Scholar

    ZHANG Mingshu, LIU Jian, LI Hao, et al. Basic characteristics and formation time of peripheral coral reefs in Hainan Island[J]. Marine Geology & Quaternary Geology, 1990, 10(2):25-43.]

    Google Scholar

    [30] 黄德银, 施祺, 张叶春, 等. 海南岛鹿回头造礁珊瑚的14C年代及珊瑚礁的发育演化[J]. 海洋通报, 2004, 23(6):31-37 doi: 10.3969/j.issn.1001-6392.2004.06.006

    CrossRef Google Scholar

    HUANG Deyin, SHI Qi, ZHANG Yechun, et al. The 14C ages and evolvement of coral reef in Luhuitou Peninsula, Hainan Island[J]. Marine Science Bulletin, 2004, 23(6):31-37.] doi: 10.3969/j.issn.1001-6392.2004.06.006

    CrossRef Google Scholar

    [31] 吴钟解, 陈石泉, 陈敏, 等. 海南岛造礁石珊瑚资源初步调查与分析[J]. 海洋湖沼通报, 2013(2):44-50

    Google Scholar

    WU Zhongjie, CHEN Shiquan, CHEN Min, et al. Preliminary survey and analysis of the resources of hermatypic corals in Hainan Island[J]. Transactions of Oceanology and Limnology, 2013(2):44-50.]

    Google Scholar

    [32] 黄德银, 施祺, 张叶春. 海南岛鹿回头珊瑚礁与全新世高海平面[J]. 海洋地质与第四纪地质, 2005, 25(4):1-7

    Google Scholar

    HUANG Deyin, SHI Qi, ZHANG Yechun. The coral reef and high sea level in Luhuitou, Hainan Island during Holocene[J]. Marine Geology & Quaternary Geology, 2005, 25(4):1-7.]

    Google Scholar

    [33] 颜廷礼. 海南潭门镇珊瑚岸礁的铀系年代及其对中全新世海平面变化的记录[D]. 广西大学硕士学位论文, 2022

    Google Scholar

    YAN Tingli. Records of sea level changes over the Mid-holocene from U-series ages of shore reefsin Tanmen, Hainan Island[D]. Master Dissertation of Guangxi University, 2022.]

    Google Scholar

    [34] 吕炳全, 王红罡, 大场忠道, 等. 海南岛沙老岸礁区滨珊瑚氧、碳同位素对气候的记录[J]. 地球化学, 2002, 31(4):315-320 doi: 10.3321/j.issn:0379-1726.2002.04.002

    CrossRef Google Scholar

    LÜ Bingquan, WANG Honggang, Oba T, et al. Monsoon climatic record of oxygen and carbon isotopic data from Porites lutea in Shalao fringing reef, Hainan Island[J]. Geochimica, 2002, 31(4):315-320.] doi: 10.3321/j.issn:0379-1726.2002.04.002

    CrossRef Google Scholar

    [35] 李悦儿. 海南岛滨珊瑚对中全新世海表温度及其季节性和年际变化的记录[D]. 广西大学硕士学位论文, 2024

    Google Scholar

    LI Yue'er. Porites coral records of the middle Holocene sea surface temperature and its seasonal and interannual variations from Hainan Island[D]. Master Dissertation of Guangxi University, 2024.]

    Google Scholar

    [36] 吕炳全, 王国忠, 全松青. 海南岛珊瑚岸礁的特征[J]. 地理研究, 1984, 3(3):1-16

    Google Scholar

    LÜ Bingquan, WANG Guozhong, QUAN Songqing. The characteristics of fringing reefs of Hainan Island[J]. Geographical Research, 1984, 3(3):1-16.]

    Google Scholar

    [37] 陈世敢, 滕骏华. 海南岛清澜港口及其东侧沿岸珊瑚岸礁分布航空遥感初探[J]. 台湾海峡, 1996, 15(1):75-80

    Google Scholar

    CHEN Shigan, TENG Junhua. Preliminary study of distribution of fringing reef at Qinglan Bay and eastern coast, Hainan Island[J]. Journal of Oceanography in Taiwan Strait, 1996, 15(1):75-80.]

    Google Scholar

    [38] 施祺, 赵美霞, 黄玲英, 等. 三亚鹿回头岸礁区人类活动及其对珊瑚礁的影响[J]. 热带地理, 2010, 30(5):486-490,509 doi: 10.3969/j.issn.1001-5221.2010.05.006

    CrossRef Google Scholar

    SHI Qi, ZHAO Meixia, HUANG Lingying, et al. Human activities and impacts on coral reef at the Luhuitou fringing reef, Sanya[J]. Tropical Geography, 2010, 30(5):486-490,509.] doi: 10.3969/j.issn.1001-5221.2010.05.006

    CrossRef Google Scholar

    [39] 廖芝衡. 南海珊瑚群落和底栖海藻的空间分布特征及其生态影响[D]. 广西大学博士学位论文, 2021

    Google Scholar

    LIAO Zhiheng. Spatial distribution of coral community and benthic algae and their ecological impacts across the South China sea[D]. Doctor Dissertation of Guangxi University, 2021.]

    Google Scholar

    [40] 李秀保, 王爱民, 刘胜, 等. 海南岛珊瑚礁的保护与修复[C]//第三届现代海洋(淡水)牧场学术研讨会摘要集. 海口: 中国水产学会, 2019

    Google Scholar

    LI Xiubao, WANG Aimin, LIU Sheng, et al. Protection and restoration of coral reef in Hainan Island[C]//Proceedings of the 3rd International Symposium on Modern Marine & Freshwater Ranching. Haikou: China Society of Fisheries, 2019.]

    Google Scholar

    [41] 何金宝. 近30年海南岛岸线时空变迁与分析预测[D]. 中国地质大学(北京)硕士学位论文, 2020

    Google Scholar

    HE Jinbao. Spatial-temporal changes and analysis of the coastline of Hainan Island in the past 30 years[D]. Master Dissertation of China University of Geosciences (Beijing), 2020.]

    Google Scholar

    [42] 李献华, 周汉文, 丁式江, 等. 海南岛“邦溪-晨星蛇绿岩片”的时代及其构造意义: Sm-Nd同位素制约[J]. 岩石学报, 2000, 16(3):425-432

    Google Scholar

    LI Xianhua, ZHOU Hanwen, DING Shijiang, et al. Sm-Nd isotopic constraints on the age of the Bangxi-Chenxing ophiolite in Hainan Island: implications for the tectonic evolution of eastern Paleo-Tethys[J]. Acta Petrologica Sinica, 2000, 16(3):425-432.]

    Google Scholar

    [43] 高抒, 周亮, 李高聪, 等. 海南岛全新世海岸演化过程与沉积记录[J]. 第四纪研究, 2016, 36(1):1-17 doi: 10.11928/j.issn.1001-7410.2016.01

    CrossRef Google Scholar

    GAO Shu, ZHOU Liang, LI Gaocong, et al. Processes and sedimentary records for Holocene coastal environmental changes, Hainan Island: an overview[J]. Quaternary Sciences, 2016, 36(1):1-17.] doi: 10.11928/j.issn.1001-7410.2016.01

    CrossRef Google Scholar

    [44] 刘瑞华, 张仲英. 海南岛的新构造运动特征[J]. 热带地理, 1989, 9(2):174-182

    Google Scholar

    LIU Ruihua, ZHANG Zhongying. Characteristics of neotectonic movement in Hainan Island[J]. Tropical Geography, 1989, 9(2):174-182.]

    Google Scholar

    [45] 张军龙, 田勤俭, 李峰, 等. 海南岛北西部新构造特征及其演化研究[J]. 地震, 2008, 28(3):85-94 doi: 10.3969/j.issn.1000-3274.2008.03.012

    CrossRef Google Scholar

    ZHANG Junlong, TIAN Qinjian, LI Feng, et al. Study on neotectonic characteristics and its evolution in northwestern Hainan Island[J]. Earthquake, 2008, 28(3):85-94.] doi: 10.3969/j.issn.1000-3274.2008.03.012

    CrossRef Google Scholar

    [46] 徐晓枫, 王惠琳, 胡久常, 等. 铺前-清澜断裂带附近地震的重定位及其构造意义的初步分析[J]. 华南地震, 2017, 37(2):10-16

    Google Scholar

    XU Xiaofeng, WANG Huilin, HU Jiuchang, et al. Relocation of earthquakes near the Puqian-Qinglan fault and preliminary analysis of tectonic significance[J]. South China Journal of Seismology, 2017, 37(2):10-16.]

    Google Scholar

    [47] 王颖. 海南岛海岸环境特征[J]. 海洋地质动态, 2002, 18(3):1-9

    Google Scholar

    WANG Ying. Features of Hainan Island coastal environment[J]. Marine Geology Letters, 2002, 18(3):1-9.]

    Google Scholar

    [48] 丘世钧. 海南岛珊瑚礁海岸地貌[J]. 热带地貌, 1985, 6(1):1-24

    Google Scholar

    QIU Shijun. Geomorphic development of coral reef of Hainan Island[J]. Tropical Geomorphology, 1985, 6(1):1-24.]

    Google Scholar

    [49] 杨晨. 文昌市云龙湾沿岸造礁石珊瑚生物多样性调查及眼斑双锯鱼的人工繁育[D]. 海南大学硕士学位论文, 2012

    Google Scholar

    YANG Chen. Diversity of coral species along the Yunlong bay, Wenchang city and Artifical breeding of amphiprion ocellaris[D]. Master Dissertation of Hainan University, 2012.]

    Google Scholar

    [50] 周红英, 姚雪梅, 黎李, 等. 海南岛周边海域造礁石珊瑚的群落结构及其分布[J]. 生物多样性, 2017, 25(10):1123-1130 doi: 10.17520/biods.2017079

    CrossRef Google Scholar

    ZHOU Hongying, YAO Xuemei, LI Li, et al. Scleractinian coral community structure and distribution in the coastal waters surrounding Hainan Island[J]. Biodiversity Science, 2017, 25(10):1123-1130.] doi: 10.17520/biods.2017079

    CrossRef Google Scholar

    [51] Douka K, Hedges R E M, Higham T F G. Improved AMS 14C dating of shell carbonates using high-precision X-ray diffraction and a novel density separation protocol (CarDS)[J]. Radiocarbon, 2010, 52(2):735-751. doi: 10.1017/S0033822200045756

    CrossRef Google Scholar

    [52] Southon J, Kashgarian M, Fontugne M, et al. Marine reservoir corrections for the Indian Ocean and Southeast Asia[J]. Radiocarbon, 2002, 44(1):167-180. doi: 10.1017/S0033822200064778

    CrossRef Google Scholar

    [53] 赵晋军. 西沙七连屿海鸟遗迹14C年代模型及生态意义[D]. 合肥工业大学硕士学位论文, 2018

    Google Scholar

    ZHAO Jinjun. Age models of seabird remains from the Qilian Yu in the Xisha Archipelago and its ecological implications[D]. Master Dissertation of Hefei University of Technology, 2018.]

    Google Scholar

    [54] Blaauw M. Methods and code for 'classical' age-modelling of radiocarbon sequences[J]. Quaternary Geochronology, 2010, 5(5):512-518. doi: 10.1016/j.quageo.2010.01.002

    CrossRef Google Scholar

    [55] Zweifler (Zvifler) A, O’Leary M, Morgan K, et al. Turbid coral reefs: past, present and future: a review[J]. Diversity, 2021, 13(6):251. doi: 10.3390/d13060251

    CrossRef Google Scholar

    [56] Yu K F. Coral reefs in the South China Sea: their response to and records on past environmental changes[J]. Science China Earth Sciences, 2012, 55(8):1217-1229. doi: 10.1007/s11430-012-4449-5

    CrossRef Google Scholar

    [57] 余克服. 珊瑚礁科学概论[M]. 北京: 科学出版社, 2018

    Google Scholar

    YU Kefu. Introduction to the Science of Coral Reefs[M]. Beijing: Science Press, 2018.]

    Google Scholar

    [58] 施雅风, 孔昭宸, 王苏民, 等. 中国全新世大暖期的气候波动与重要事件[J]. 中国科学B辑, 1992(12):1300-1308 doi: 10.3321/j.issn:1006-9240.1992.12.003

    CrossRef Google Scholar

    SHI Yafeng, KONG Zhaochen, WANG Sumin. Major events of the climate variations during the megathermal of Holocene in China[J]. Science in China (Series B), 1992(12):1300-1308.] doi: 10.3321/j.issn:1006-9240.1992.12.003

    CrossRef Google Scholar

    [59] Demenocal P, Ortiz J, Guilderson T, et al. Coherent high- and low-latitude climate variability during the Holocene warm period[J]. Science, 2000, 288(5474):2198-2202. doi: 10.1126/science.288.5474.2198

    CrossRef Google Scholar

    [60] Yang J W, Peng S Y, Xu J L, et al. A multiproxy reconstruction of Asian winter monsoon variability since the last glacial from southeast offshore Hainan Island, South China Sea[J]. Journal of Asian Earth Sciences, 2024, 263:106030. doi: 10.1016/j.jseaes.2024.106030

    CrossRef Google Scholar

    [61] 李悦儿, 余克服, 颜廷礼, 等. 中全新世海南潭门滨珊瑚的生长率特征及其气候意义[J]. 热带地理, 2023, 43(10):1843-1855

    Google Scholar

    LI Yue'er, YU Kefu, YAN Tingli, et al. Growth rate of Porites corals from Tanmen, Hainan Island: climatic significance during mid-Holocene[J]. Tropical Geography, 2023, 43(10):1843-1855.]

    Google Scholar

    [62] 江巧文, 曹志敏, 王道儒, 等. 琼东海域橙黄滨珊瑚骨骼生长特性及其主要影响因素[J]. 应用生态学报, 2016, 27(3):953-962

    Google Scholar

    JIANG Qiaowen, CAO Zhimin, WANG Daoru, et al. Growth characteristics of Porites lutea skeleton in east sea area of Hainan Island, China and main affecting environmental factors[J]. Chinese Journal of Applied Ecology, 2016, 27(3):953-962.]

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(85) PDF downloads(8) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint