2024 Vol. 44, No. 5
Article Contents

BI Naishuang, SHI Yirui, GE Chunhai, BA Qi, WU Xiao, WANG Houjie. Impacts of morphological evolution of the Huanghe River mouth by artificial regulation on deltaic sedimentation[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 1-14. doi: 10.16562/j.cnki.0256-1492.2024080102
Citation: BI Naishuang, SHI Yirui, GE Chunhai, BA Qi, WU Xiao, WANG Houjie. Impacts of morphological evolution of the Huanghe River mouth by artificial regulation on deltaic sedimentation[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 1-14. doi: 10.16562/j.cnki.0256-1492.2024080102

Impacts of morphological evolution of the Huanghe River mouth by artificial regulation on deltaic sedimentation

  • Since the water and sediment regulation scheme (WSRS) was implemented in 2002, the present active Huanghe (Yellow) River delta lobe has continuously prograded seaward and the slope of delta has become steeper due to the changes of the river runoff, and riverine sediment flux and components. The impact of morphological evolution of the river mouth on the sedimentation pattern during the WSRS has become a crucial scientific issue. A Delft3D-based three-dimensional hydro-sediment coupling numerical model was established to simulate the transport and sedimentation of riverine sediment in the river mouth during the WSRS conducted in 2002, 2008, 2014, and 2019. Results show that the hydrodynamics in the area were enhanced and the river mouth progressed. Meanwhile, the along-shore transport of sediment was increased while the cross-shore transport was weakened correspondingly. The along-shore extent of the deposition was increased by ~30% while the cross-shore extent was reduced by ~27%, and the thickness and shape of deposition center were changed significantly. This study provided a reference for better understanding the hydrodynamic-morphology coupling system off the Huanghe river mouth.

  • 加载中
  • [1] Syvitski J P M, Voeroesmarty C J, Kettner A J, et al. Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean[J]. Science, 2005, 308(5720):376-380. doi: 10.1126/science.1109454

    CrossRef Google Scholar

    [2] Syvitski J P M, Saito Y. Morphodynamics of deltas under the influence of humans[J]. Global and Planetary Change, 2007, 57(3):261-282.

    Google Scholar

    [3] Wright L D. Sediment transport and deposition at river mouths: A synthesis[J]. Geological Society of America Bulletin, 1977, 88(6):857-868. doi: 10.1130/0016-7606(1977)88<857:STADAR>2.0.CO;2

    CrossRef Google Scholar

    [4] Bi N S, Wang H J, Yang Z S. Recent changes in the erosion-accretion patterns of the active Huanghe (Yellow River) delta lobe caused by human activities[J]. Continental Shelf Research, 2014, 90:70-78.

    Google Scholar

    [5] Edmonds D A, Slingerland R L. Significant effect of sediment cohesion on delta morphology[J]. Nature Geoscience, 2009, 3(2):105-109.

    Google Scholar

    [6] Nittrouer J A, Best J L, Brantley C, et al. Mitigating land loss in coastal Louisiana by controlled diversion of Mississippi River sand[J]. Nature Geoscience, 2012, 5(8):534-537. doi: 10.1038/ngeo1525

    CrossRef Google Scholar

    [7] Nittrouer J A, Viparelli E. Sand as a stable and sustainable resource for nourishing the Mississippi River delta[J]. Nature Geoscience, 2014, 7(5):350-354. doi: 10.1038/ngeo2142

    CrossRef Google Scholar

    [8] Temmerman B S, Kirwan M L, Karina H. Building land with a rising sea[J]. Science, 2015, 349(6248):9-11.

    Google Scholar

    [9] Loicz IPO[Z]. Land-ocean interactions in the coastal zone: Science plan and implementation strategy, 2005.

    Google Scholar

    [10] Future Eearth Coasts IPO[Z]. Strategy for research 2018–2028, 2018.

    Google Scholar

    [11] Margins Office[Z]. NSF margins program science plans, 2003.

    Google Scholar

    [12] Milliman J D, Syvitski J P M. Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers[J]. Journal of Geology, 1992, 100(5):525-544. doi: 10.1086/629606

    CrossRef Google Scholar

    [13] Milliman J D, Meade R H. World-Wide Delivery of River Sediment to the Oceans[J]. Journal of Geology, 1983, 91(1):1-21. doi: 10.1086/628741

    CrossRef Google Scholar

    [14] Wang H J, Yang Z S, Saito Y, et al. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams[J]. Global and Planetary Change, 2006, 50:212-225. doi: 10.1016/j.gloplacha.2006.01.005

    CrossRef Google Scholar

    [15] Wang H J, Yang Z S, Saito Y, et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005): Impacts of climate change and human activities[J]. Global and Planetary Change, 2007, 57:331-354. doi: 10.1016/j.gloplacha.2007.01.003

    CrossRef Google Scholar

    [16] Wang H J, Wu X, Bi N S, et al. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): A review[J]. Global and Planetary Change, 2017, 157:93-113. doi: 10.1016/j.gloplacha.2017.08.005

    CrossRef Google Scholar

    [17] Wu X, Wang H J, Bi N S, et al. Impact of artificial floods on the quantity and grain size of river-borne sediment: A case study of a dam regulation scheme in the Yellow River catchment[J]. Water Resources Research, 2021, 57:e2021WR029581.

    Google Scholar

    [18] Bi N S, Sun Z Q, Wang H J, et al. Response of channel scouring and deposition to the regulation of large reservoirs: A case study of the lower reaches of the Yellow River (Huanghe)[J]. Journal of Hydrology, 2019, 568:972-984. doi: 10.1016/j.jhydrol.2018.11.039

    CrossRef Google Scholar

    [19] Wu X, Bi N S, Kanai Y, et al. Sedimentary records off the modern Huanghe (Yellow River) delta and their response to deltaic river channel shifts over the last 200 years[J]. Journal of Asian Earth Sciences, 2015, 108:68-80. doi: 10.1016/j.jseaes.2015.04.028

    CrossRef Google Scholar

    [20] Wang H J, Bi N S, Saito Y, et al. Recent changes in sediment delivery by the Huanghe (Yellow River) to the sea: Causes and environmental implications in its estuary[J]. Journal of Hydrology, 2010, 391(3-4):302-313. doi: 10.1016/j.jhydrol.2010.07.030

    CrossRef Google Scholar

    [21] Wang N, Li G X, Xu J S, et al. The marine dynamics and changing trend off the modern Yellow River Mouth[J]. Journal of Ocean University of China, 2015, 14(3):433-445. doi: 10.1007/s11802-015-2764-0

    CrossRef Google Scholar

    [22] 王永刚, 魏泽勋, 方国洪, 等. 黄河口及其邻近海域水深和岸线变化对M2分潮影响的数值研究[J]. 海洋科学进展, 2014, 32(2):141-147 doi: 10.3969/j.issn.1671-6647.2014.02.003

    CrossRef Google Scholar

    WANG Yonggang, WEI Zexun, Fang Guohong, et al. A numerical study on the effect of changes in water depth and coastline on M2 tidal component near the Yellow River Estuary[J]. Advances in Marine Science, 2014, 32(2):141-147.] doi: 10.3969/j.issn.1671-6647.2014.02.003

    CrossRef Google Scholar

    [23] Zhu L H, Hu R J, Zhu H J, et al. Modeling studies of tidal dynamics and the associated responses to coastline changes in the Bohai Sea, China[J]. Ocean Dynamics, 2018, 68:1625-1648. doi: 10.1007/s10236-018-1212-2

    CrossRef Google Scholar

    [24] Rafael J B, Alejandro L, Miguel O. Implications of delta retreat on wave propagation and longshore sediment transport - Guadalfeo case study (southern Spain)[J]. Marine Geology, 2016, 382:1-16. doi: 10.1016/j.margeo.2016.09.011

    CrossRef Google Scholar

    [25] 卢昱岑, 沈永明, 张明. 地形演变对黄河口切变锋位置及盐度分布的影响[J]. 水动力学研究与进展, 2012, 27(3):348-358

    Google Scholar

    LU Yucen, SHEN Yongming, ZHANG Ming. Influence of topography evolution on position of tidal shear front and distribution of salinity around Yellow River estuary[J]. Chinese Journal of Hydrodynamics, 2012, 27(3):348-358.]

    Google Scholar

    [26] Wang N, Li G X, Qiao L L, et al. Long-term evolution in the location, propagation, and magnitude of the tidal shear front off the Yellow River Mouth[J]. Continental Shelf Research, 2017, 137:1-12. doi: 10.1016/j.csr.2017.01.020

    CrossRef Google Scholar

    [27] Wang N, Li K, Song D H, et al. Impact of tidal shear fronts on terrigenous sediment transport in the Yellow River Mouth: Observations and a synthesis[J]. Marine Geology, 2024, 469:107222. doi: 10.1016/j.margeo.2024.107222

    CrossRef Google Scholar

    [28] 王厚杰, 杨作升, 毕乃双, 等. 2005年黄河调水调沙期间河口入海主流的快速摆动[J]. 科学通报, 2005, 50(23):2656-2662 doi: 10.3321/j.issn:0023-074X.2005.23.016

    CrossRef Google Scholar

    WANG Houjie, YANG Zuosheng, BI Naishuang, et al. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth[J]. Chinese Science Bulletin, 2005, 50(23):2656-2662.] doi: 10.3321/j.issn:0023-074X.2005.23.016

    CrossRef Google Scholar

    [29] 徐丛亮, 谷硕, 刘喆, 等. 黄河调水调沙14a来河口拦门沙形态变化特征[J]. 人民黄河, 2016, 38(10):69-73 doi: 10.3969/j.issn.1000-1379.2016.10.014

    CrossRef Google Scholar

    XU Congliang, GU Shuo, LIU Zhe, et al. Characteristic of the river mouth bar in the past 14 years of the Yellow River Water-Sediment Regulation[J]. Yellow River, 2016, 38(10):69-73.] doi: 10.3969/j.issn.1000-1379.2016.10.014

    CrossRef Google Scholar

    [30] 葛春海, 范勇勇, 巴旗, 等. 现行黄河口分汊河道的分流特征及其影响机制[J]. 海洋地质与第四纪地质, 2024, 44(2):131-145

    Google Scholar

    GE Chunhai, FAN Yongyong, BA Qi, et al. Diversion characteristics of the branching channels in the Yellow River mouth and its influencing mechanisms[J]. Marine Geology & Quaternary Geology, 2024, 44(2):131-145.]

    Google Scholar

    [31] Fan H, Huang H J, Zeng T Q, el al. River mouth bar formation, riverbed aggradation and channel migration in the modern Huanghe (Yellow River) delta, China[J]. Geomorphology, 2006, 74(1):124-136.

    Google Scholar

    [32] 杨卓媛, 夏军强, 周美蓉, 等. 黄河口尾闾河道近期自然出汊过程及其机理探讨[J]. 泥沙研究, 2022, 47(1):65-72

    Google Scholar

    YANG Zhuoyuan, XIA Junqiang, ZHOU Meirong, et al. Study on channel avulsion in the recent tail reach of the Yellow River Estuary[J]. Journal of Sediment Research, 2022, 47(1):65-72.]

    Google Scholar

    [33] 胡春宏, 曹文洪. 黄河口水沙变异与调控Ⅰ——黄河口水沙运动与演变基本规律[J]. 泥沙研究, 2003(5):1-8 doi: 10.3321/j.issn:0468-155X.2003.05.001

    CrossRef Google Scholar

    HU Chunhong, CAO Wenhong. Variation, Regulation and Control of Flow and Sediment in the Yellow River Estuary I: Mechanism of Flow-Sediment Transport and Evolution[J]. Journal of Sediment Research, 2003(5):1-8.] doi: 10.3321/j.issn:0468-155X.2003.05.001

    CrossRef Google Scholar

    [34] 侍茂崇, 赵进平. 黄河三角洲半日潮无潮区位置及水文特征分析[J]. 山东海洋学院学报, 1985, 15(1):127-136

    Google Scholar

    SHI Maochong, ZHAO Jinping. The analysis of hydrographical characteristics in the nontidal region M2 near the delta of the Huanghe River[J]. Journal of Shandong College of Oceanology, 1985, 15(1):127-136.]

    Google Scholar

    [35] 姬泓宇. 新入海水沙情势下黄河三角洲地貌动态变化与演变机制[D]. 华东师范大学博士学位论文, 2021

    Google Scholar

    JI Hongyu. Morphological variability of the Yellow River Delta and its dynamic mechanism under the new regime of river delivery[D]. Doctor dissertation of East China Normal University, 2021.]

    Google Scholar

    [36] 王宝灿, 黄仰松. 海岸动力地貌[M]. 上海: 华东师范大学出版社, 1989

    Google Scholar

    WANG Baocan, HUANG Yangsong. Coastal Dynamics[M]. Shanghai: East China Normal University Press, 1989.]

    Google Scholar

    [37] Wang H J, Yang Z S, Li G X, et al. Wave climate modeling on the abandoned Huanghe (Yellow River) delta lobe and related deltaic erosion[J]. Journal of Coastal Research, 2006, 224(4):906-918.

    Google Scholar

    [38] 藏启运. 黄河三角洲近岸泥沙[M]. 北京: 海洋出版社, 1996: 34-42

    Google Scholar

    ZANG Qiyun, Nearshore Sediment of the Huanghe River and Its Delta[M]. Beijing: China Ocean Press, 1996: 34-42.]

    Google Scholar

    [39] Qiao L L, Bao X W, Wu D X, et al. Numerical study of generation of the tidal shear front off the Yellow River mouth[J]. Continental Shelf Research, 2008, 28(14):1782-1790. doi: 10.1016/j.csr.2008.04.007

    CrossRef Google Scholar

    [40] Fagherazzi S, Edmonds D A, Nardin W, et al. Dynamics of river mouth deposits[J]. Reviews of Geophysics, 53(3): 642-672.

    Google Scholar

    [41] 刘猛, 毕乃双, 纪金龙, 等. 现行黄河三角洲叶瓣蚀积演化对动力环境的影响[J]. 海洋地质前沿, 2018, 34(6):8-18

    Google Scholar

    LIU Meng, BI Naishuang, JI Jinlong, et al. Evolution of the active deltaic lobe of Huanghe River and its response to hydrodynamics[J]. Marine Geology Frontiers, 2018, 34(6):8-18.]

    Google Scholar

    [42] 凡姚申. 黄河三角洲近岸海床侵蚀过程及其动力机制[D]. 华东师范大学博士学位论文, 2019

    Google Scholar

    FAN Yaoshen. Seabed erosion and its mechanism in the littoral area of Yellow River Delta[D]. Doctor dissertation of East China Normal University, 2019.]

    Google Scholar

    [43] Ji H Y, Pan S Q, Chen S L, et al. Impact of river discharge on hydrodynamics and sedimentary processes at Yellow River Delta[J]. Marine Geology, 2020, 425:106210. doi: 10.1016/j.margeo.2020.106210

    CrossRef Google Scholar

    [44] 乔璐璐, Le D, 李珏, 等. 超强台风“威马逊”作用下红河三角洲海域水动力环境变化的数值研究[J]. 海洋科学, 2021, 45(4):64-74 doi: 10.11759/hykx20190508002

    CrossRef Google Scholar

    QIAO Lulu, LE DUC Cuong, LI Yu, et al. Numerical modeling of hydrodynamic changes due to super Typhoon Rammasun in the Red River Delta coastal area[J]. Marine Sciences, 2021, 45(4):64-74.] doi: 10.11759/hykx20190508002

    CrossRef Google Scholar

    [45] Umgiesser G, Ferrarin C, Bajo M, et al. Hydrodynamic modelling in marginal and coastal seas — The case of the Adriatic Sea as a permanent laboratory for numerical approach[J]. Ocean Modelling, 2022, 179:102123. doi: 10.1016/j.ocemod.2022.102123

    CrossRef Google Scholar

    [46] Gratiot N, Bildstein A, Anh T T, et al. Sediment flocculation in the Mekong River estuary, Vietnam, an important driver of geomorphological changes[J]. Comptes Rendus Géoscience, 2017, 349(6-7):260-268.

    Google Scholar

    [47] 季有俊. 渤海海域泥沙输运对季节性因素及地形变化响应的数值模拟研究[D]. 中国海洋大学博士学位论文, 2010

    Google Scholar

    JI Youjun. Numerical study on response of suspended sediment transport to the changes of seasonal factors and topography in the Bohai Sea[D]. Doctor dissertation of Ocean University of China, 2010.]

    Google Scholar

    [48] Liu L, Wang H J, Yang Z S, et al. Coarsening of sediments from the Huanghe (Yellow River) delta-coast and its environmental implications[J]. Geomorphology, 401: 108105.

    Google Scholar

    [49] 窦国仁. 河口海岸全沙模型相似理论[J]. 水利水运工程学报, 2001(1):1-12 doi: 10.3969/j.issn.1009-640X.2001.01.001

    CrossRef Google Scholar

    DOU Guoren. Similarity theory of total sediment transport modeling for estuarine and coastal regions[J]. Hydro-Science and Engineering, 2001(1):1-12.] doi: 10.3969/j.issn.1009-640X.2001.01.001

    CrossRef Google Scholar

    [50] Zheng S, Wu B S, Wang K R, et al. Evolution of the Yellow River delta, China: Impacts of channel avulsion and progradation[J]. International Journal of Sediment Research, 2017, 32(1):34-44. doi: 10.1016/j.ijsrc.2016.10.001

    CrossRef Google Scholar

    [51] 刘清兰, 陈俊卿, 陈沈良. 调水调沙以来黄河尾闾河道冲淤演变及其影响因素[J]. 地理学报, 2021, 76(1):139-152 doi: 10.11821/dlxb202101011

    CrossRef Google Scholar

    LIU Qinglan, CHEN Junqing, CHEN Shenliang. Spatiotemporal evolution of Yellow River estuarine channel and its influencing factors since the water-sediment regulation scheme[J]. Acta Geographica Sinica, 2021, 76(1):139-152.] doi: 10.11821/dlxb202101011

    CrossRef Google Scholar

    [52] 董年虎, 王广月. 渤海湾黄河入海口区余流特性分析[J]. 黄渤海海洋, 1997(1):64-69

    Google Scholar

    DONG Nianhu, WANG Guangyue. Residual current analysis of the Yellow River mouth area in Bohai gulf[J]. Journal of Oceanography of Huanghai & Bohai Seas, 1997(1):64-69.]

    Google Scholar

    [53] 王楠. 现代黄河口沉积动力过程与地形演化[D]. 中国海洋大学博士学位论文, 2014

    Google Scholar

    WANG Nan. Sedimentary dynamics process and topographic evolution in the modern Yellow River Mouth[D]. Doctor dissertation of Ocean University of China, 2014.]

    Google Scholar

    [54] Wu G X, Wang K M, Liang B C, et al. Modeling the Morphological Responses of the Yellow River Delta to the Water-Sediment Regulation Scheme: The Role of Impulsive River Floods and Density-Driven Flows. Water Resources Research, 2023, 59(7): e2022WR033003.

    Google Scholar

    [55] 寿玮玮, 宗海波, 丁平兴. 夏季黄河入海径流对黄河口及附近海域环流影响的数值研究[J]. 海洋学报, 2016, 38(7):1-13 doi: 10.3969/j.issn.0253-4193.2016.07.001

    CrossRef Google Scholar

    SHOU Weiwei, ZONG Haibo, DING Xingping. Numerical study of the circulation influenced by runoff input in the Huanghe (Yellow) River estuary and adjacent waters in summer[J]. Haiyang Xuebao, 2016, 38(7):1-13.] doi: 10.3969/j.issn.0253-4193.2016.07.001

    CrossRef Google Scholar

    [56] LeBlond P H, Emery W J, Nicol T. A climatic model of runoff-driven coastal circulation[J]. Estuarine, Coastal and Shelf Science, 1986, 23(1):59-79. doi: 10.1016/0272-7714(86)90085-5

    CrossRef Google Scholar

    [57] Hill D F, Ciavola S J, Etherington L, et al. Estimation of freshwater runoff into Glacier Bay, Alaska and incorporation into a tidal circulation model[J]. Estuarine, Coastal and Shelf Science, 2009, 82(1):95-107. doi: 10.1016/j.ecss.2008.12.019

    CrossRef Google Scholar

    [58] Chao Shenn-Yu. River-forced estuarine plume[J]. Journal of Physical Oceanography, 1987, 18(1):72-88.

    Google Scholar

    [59] Cléa D, Budgell W P, Toumi R. The Congo River plume: impact of the forcing on the far-field dynamics[J]. Journal of Geographic Research: Oceans, 2013, 118(C2):964-989.

    Google Scholar

    [60] 梁书秀, 孙昭晨, Nakatsuji Keiji, 等. 渤海典型余环流及其影响因素研究[J]. 大连理工大学学报, 2006(1):103-110 doi: 10.3321/j.issn:1000-8608.2006.01.021

    CrossRef Google Scholar

    LIANG Shuxiu, SUN Zhaochen, NAKATSUJI Keiji, et al. Research on typical residual circulation and its driving factors in the Bohai Sea[J]. Journal of Dalian University of Technology, 2006(1):103-110.] doi: 10.3321/j.issn:1000-8608.2006.01.021

    CrossRef Google Scholar

    [61] 王悦, 林霄沛. 地形变化下渤海湾M2分潮潮致余流的相应变化及其对污染物输运的影响[J]. 中国海洋大学学报: 自然科学版, 2006, 36(1):1-6

    Google Scholar

    WANG Yue, LIN Xiaopei. The variation of M2 constituent corresponding to the change of topography in Bohai Bay and its effects on the transport of pollutants[J]. Journal of Ocean University of China, 2006, 36(1):1-6.]

    Google Scholar

    [62] Wang H J, Yang Z S, Li Y H, et al. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth[J]. Continental Shelf Research, 2007, 27:854-871. doi: 10.1016/j.csr.2006.12.002

    CrossRef Google Scholar

    [63] 王厚杰, 杨作升, 毕乃双. 黄河口泥沙输运三维数值模拟 Ⅰ——黄河口切变锋[J]. 泥沙研究, 2006, 2:1-9 doi: 10.3321/j.issn:0468-155X.2006.03.001

    CrossRef Google Scholar

    WANG Houjie, YANG Zuosheng, BI Naishuang. 3-D simulation of the suspended sediment transport in the Yellow River mouth Ⅰ: Shear front off the Yellow River mouth[J]. Journal of Sediment Research, 2006, 2:1-9.] doi: 10.3321/j.issn:0468-155X.2006.03.001

    CrossRef Google Scholar

    [64] Jiang C, Pan S Q, Chen S L. Recent morphological changes of the Yellow River (Huanghe) submerged delta: causes and environmental implications. Geomorphology, 2017, 293: 93-107.

    Google Scholar

    [65] Jiang C, Chen S L, Pan S Q, et al. Geomorphic evolution of the Yellow River Delta: quantification of basin-scale natural and anthropogenic impacts. Catena, 2018, 163: 361-377.

    Google Scholar

    [66] Wu X, Bi N S, Xu J P, et al. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976-2013): Dominant roles of riverine discharge and sediment grain size[J]. Geomorphology, 2017, 292:115-127. doi: 10.1016/j.geomorph.2017.04.042

    CrossRef Google Scholar

    [67] Xing G P, Wang H J, Yang Z S, et al. Spatial and temporal variation in erosion and accumulation of the subaqueous Yellow River Delta (1976-2004)[J]. Journal of coastal research, 2016, 74(10074):32-47.

    Google Scholar

    [68] Bi N S, Wang H J, Wu X, et al. Phase change in evolution of the modern Huanghe (Yellow River) Delta: Process, pattern, and mechanisms[J]. Marine Geology, 2021, 437:106516. doi: 10.1016/j.margeo.2021.106516

    CrossRef Google Scholar

    [69] Pritchard D W. Estuarine Hydrography[J]. Advances in Geophysics, 1952, 1:243-280.

    Google Scholar

    [70] Geyer W R, MacCready P. The Estuarine Circulation[J]. Annual Review of Fluid Mechanics, 2014, 46(46):175-197.

    Google Scholar

    [71] 谢荣耀, 刘锋, 罗向欣, 等. 河控型河口盐度层化对悬沙的捕集机制——以洪季磨刀门河口为例[J]. 海洋学报, 2021, 43(5):38-49

    Google Scholar

    XIE Rongyao, LIU Feng, LUO Xiangxin, et al. Sediment trapping mechanism by salinity stratification in a river-dominated estuary: A case study of the Modaomen Estuary in flood season[J]. Haiyang Xuebao, 2021, 43(5):38-49.]

    Google Scholar

    [72] 龚雪雷, 姬泓宇, 李鹏, 等. 黄河三角洲近岸潮汐动力对地貌演变的响应及其沉积效应[J]. 海洋学报, 2024, 46(2): 64-78

    Google Scholar

    Response of tidal dynamics to geomorphic evolution and depositional effects in the Huanghe River Delta[J]. Haiyang Xuebao, 2024, 46(2): 64-78.]

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(2)

Article Metrics

Article views(890) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint