2024 Vol. 44, No. 5
Article Contents

CHEN Chonghao, LYU Jixuan, WANG Shimin, HE Chipeng, WANG Yaping, GAO Jianhua. Riverine primary productivity dominated the source of particulate organic carbon in Liaohe River System[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 107-118. doi: 10.16562/j.cnki.0256-1492.2024062101
Citation: CHEN Chonghao, LYU Jixuan, WANG Shimin, HE Chipeng, WANG Yaping, GAO Jianhua. Riverine primary productivity dominated the source of particulate organic carbon in Liaohe River System[J]. Marine Geology & Quaternary Geology, 2024, 44(5): 107-118. doi: 10.16562/j.cnki.0256-1492.2024062101

Riverine primary productivity dominated the source of particulate organic carbon in Liaohe River System

More Information
  • As a crucial terrestrial source, the source, transport, and flux of riverine particulate organic carbon (POC) to the ocean are currently of significant interest. However, human activities, such as the construction of reservoirs, are changing the composition of river POC, potentially impacting the source-sink processes between land and sea, as well as biogeochemical cycles. To address this issue, the Liaohe River System was selected for this study, in which 14 samples were collected in July 2023, and the trends in POC content and sources within the drainage basin were analyzed using biogeochemical methods and gene detection technology. The potential mechanisms by which riverine primary production (Rpp) has become a dominant POC source in the Liaohe River System was explored and those in other typical Chinese rivers were compared. Results indicate that the Rpp was the predominant source of POC in the Liaohe River System, and Trebouxiophyceae and Cyanobacteria were the primary contributors. Additionally, animals may also play a significant role as POC sources in rivers, warranting further attention in future analyses. The retention effect in reservoirs could alter the composition of river plankton and thus significantly affect the POC sources. Moreover, the proportions of plankton-derived POC in the Changjiang River, Huanghe River, and Zhujiang River in the continent, and rivers in Taiwan and Hainan islands have also seen notable increases. These changing trends could lead to substantial shifts in the patterns of POC sources and sinks across watersheds, estuaries, and continental shelves, meriting considerable attention.

  • 加载中
  • [1] Drake T W, Raymond P A, Spencer R G M. Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty[J]. Limnology and Oceanography Letters, 2018, 3(3):132-142. doi: 10.1002/lol2.10055

    CrossRef Google Scholar

    [2] Mckee B. The transport, transformation, and fate of carbon in river-dominated ocean margins[C]//Proceedings of the RiOMar Workshop New Orleans: Tulane University, 2003.

    Google Scholar

    [3] Galy V, Peucker-Ehrenbrink B, Eglinton T. Global carbon export from the terrestrial biosphere controlled by erosion[J]. Nature, 2015, 521(7551):204-207. doi: 10.1038/nature14400

    CrossRef Google Scholar

    [4] Ludwig W, Probst J L, Kempe S. Predicting the oceanic input of organic carbon by continental erosion[J]. Global Biogeochemical Cycles, 1996, 10(1):23-41. doi: 10.1029/95GB02925

    CrossRef Google Scholar

    [5] Schlünz B, Schneider R R. Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux-and burial rates[J]. International Journal of Earth Sciences, 2000, 88(4):599-606. doi: 10.1007/s005310050290

    CrossRef Google Scholar

    [6] Boyd P W, Claustre H, Levy M, et al. Multi-faceted particle pumps drive carbon sequestration in the ocean[J]. Nature, 2019, 568(7752):327-335. doi: 10.1038/s41586-019-1098-2

    CrossRef Google Scholar

    [7] Liu D, Tian L Q, Jiang X T, et al. Human activities changed organic carbon transport in Chinese rivers during 2004-2018[J]. Water Research, 2022, 222:118872. doi: 10.1016/j.watres.2022.118872

    CrossRef Google Scholar

    [8] Repasch M, Scheingross J S, Hovius N, et al. Fluvial organic carbon cycling regulated by sediment transit time and mineral protection[J]. Nature Geoscience, 2021, 14(11):842-848. doi: 10.1038/s41561-021-00845-7

    CrossRef Google Scholar

    [9] Bouchez J, Galy V, Hilton R G, et al. Source, transport and fluxes of Amazon River particulate organic carbon: insights from river sediment depth-profiles[J]. Geochimica et Cosmochimica Acta, 2014, 133:280-298. doi: 10.1016/j.gca.2014.02.032

    CrossRef Google Scholar

    [10] Hilton R G. Climate regulates the erosional carbon export from the terrestrial biosphere[J]. Geomorphology, 2017, 277:118-132. doi: 10.1016/j.geomorph.2016.03.028

    CrossRef Google Scholar

    [11] van Hoek W J, Vilmin L, Beusen A H W, et al. CARBON-DISC 1.0-A coupled, process-based model of global in-stream carbon biogeochemistry[J]. Geoscientific Model Development Discussions, 2019: 1-31.

    Google Scholar

    [12] Dudgeon D, Arthington A H, Gessner M O, et al. Freshwater biodiversity: importance, threats, status and conservation challenges[J]. Biological Reviews, 2006, 81(2):163-182. doi: 10.1017/S1464793105006950

    CrossRef Google Scholar

    [13] Lin B Z, Liu Z F, Eglinton T I, et al. Perspectives on provenance and alteration of suspended and sedimentary organic matter in the subtropical Pearl River system, South China[J]. Geochimica et Cosmochimica Acta, 2019, 259:270-287. doi: 10.1016/j.gca.2019.06.018

    CrossRef Google Scholar

    [14] Mendonça R, Kosten S, Sobek S, et al. Hydroelectric carbon sequestration[J]. Nature Geoscience, 2012, 5(12):838-840. doi: 10.1038/ngeo1653

    CrossRef Google Scholar

    [15] Battin T J, Lauerwald R, Bernhardt E S, et al. River ecosystem metabolism and carbon biogeochemistry in a changing world[J]. Nature, 2023, 613(7944):449-459. doi: 10.1038/s41586-022-05500-8

    CrossRef Google Scholar

    [16] Bauer J E, Cai W J, Raymond P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7478):61-70. doi: 10.1038/nature12857

    CrossRef Google Scholar

    [17] Syvitski J, Ángel J R, Saito Y, et al. Earth’s sediment cycle during the Anthropocene[J]. Nature Reviews Earth & Environment, 2022, 3(3):179-196.

    Google Scholar

    [18] Li G, Wang X T, Yang Z F, et al. Dam-triggered organic carbon sequestration makes the Changjiang (Yangtze) river basin (China) a significant carbon sink[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(1):39-53. doi: 10.1002/2014JG002646

    CrossRef Google Scholar

    [19] Engel F, Attermeyer K, AyalA A I, et al. Phytoplankton gross primary production increases along cascading impoundments in a temperate, low-discharge river: insights from high frequency water quality monitoring[J]. Scientific Reports, 2019, 9(1):6701. doi: 10.1038/s41598-019-43008-w

    CrossRef Google Scholar

    [20] Kang S J, Kim J H, Kim D, et al. Temporal variation in riverine organic carbon concentrations and fluxes in two contrasting estuary systems: geum and Seomjin, South Korea[J]. Environment International, 2019, 133:105126. doi: 10.1016/j.envint.2019.105126

    CrossRef Google Scholar

    [21] Kronvang B, Hejzlar J, Boers P, et al. Nutrient retention handbook. Software manual for EUROHARP-NUTRET and scientific review on nutrient retention[R]. Oslo, Norway: Norwegian Institute for Water Research, 2005.

    Google Scholar

    [22] Lyu J, Shi Y, Zhang S, et al. The reservoirs gradually changed the distribution, source, and flux of particulate organic carbon within the Changjiang River catchment[J]. Journal of Hydrology, 2023, 623:129808. doi: 10.1016/j.jhydrol.2023.129808

    CrossRef Google Scholar

    [23] Burford M A, O'Donohue M J. A comparison of phytoplankton community assemblages in artificially and naturally mixed subtropical water reservoirs[J]. Freshwater Biology, 2006, 51(5):973-982. doi: 10.1111/j.1365-2427.2006.01536.x

    CrossRef Google Scholar

    [24] Xiao Y, Li Z, Guo J S, et al. Succession of phytoplankton assemblages in response to large-scale reservoir operation: a case study in a tributary of the Three Gorges Reservoir, China[J]. Environmental Monitoring and Assessment, 2016, 188(3):153. doi: 10.1007/s10661-016-5132-7

    CrossRef Google Scholar

    [25] Li Z, Lu L H, Guo J S, et al. Responses of spatial-temporal dynamics of bacterioplankton community to large-scale reservoir operation: a case study in the Three Gorges Reservoir, China[J]. Scientific Reports, 2017, 7(1):42469. doi: 10.1038/srep42469

    CrossRef Google Scholar

    [26] Li Y L, Liu K, Li L, et al. Relationship of land use/cover on water quality in the Liao River basin, China[J]. Procedia Environmental Sciences, 2012, 13:1484-1493. doi: 10.1016/j.proenv.2012.01.140

    CrossRef Google Scholar

    [27] 曲凤垚, 李瑞. 辽河干流主要水库工程防洪作用与防洪效果分析[J]. 水利科学与寒区工程, 2021, 4(5):151-155 doi: 10.3969/j.issn.2096-5419.2021.05.035

    CrossRef Google Scholar

    QU Fengyao, LI Rui. Analysis on flood control function and effect of Liaohe main reservoir project[J]. Hydro Science and Cold Zone Engineering, 2021, 4(5):151-155.] doi: 10.3969/j.issn.2096-5419.2021.05.035

    CrossRef Google Scholar

    [28] Yue F J, Li S L, Liu C Q, et al. Using dual isotopes to evaluate sources and transformation of nitrogen in the Liao River, northeast China[J]. Applied Geochemistry, 2013, 36:1-9. doi: 10.1016/j.apgeochem.2013.06.009

    CrossRef Google Scholar

    [29] 翁巧然, 吕旭波, 孙明东, 等. 基于控制单元划分的大辽河流域污染物空间分布及来源解析[J]. 环境工程技术学报, 2023, 13(1):171-179 doi: 10.12153/j.issn.1674-991X.20210573

    CrossRef Google Scholar

    WENG Qiaoran, LYU Xubo, SUN Mingdong, et al. Spatial distribution and source analysis of pollutants in Daliao River Basin based on control unit division[J]. Journal of Environmental Engineering Technology, 2023, 13(1):171-179.] doi: 10.12153/j.issn.1674-991X.20210573

    CrossRef Google Scholar

    [30] 杜甫, 闫晓惠, 陈小强. 基于Delft3D的大辽河水动力水质数值模拟[J]. 水电能源科学, 2024, 42(1):32-35,161

    Google Scholar

    DU Fu, YAN Xiaohui, CHEN Xiaoqiang. Numerical simulation of hydrodynamic water quality of Daliao River based on Delft3D[J]. Water Resources and Power, 2024, 42(1):32-35,161.]

    Google Scholar

    [31] 许晓艳, 高世斌. 辽河流域洪水河库联合调度实践探析[J]. 东北水利水电, 2022, 40(1):42-43,49,72 doi: 10.3969/j.issn.1002-0624.2022.1.dbslsd202201016

    CrossRef Google Scholar

    XU Xiaoyan, GAO Shibin. Practice analysis on combined flood and river storage operation in Liaohe River Basin[J]. Water Resources & Hydropower of Northeast China, 2022, 40(1):42-43,49,72.] doi: 10.3969/j.issn.1002-0624.2022.1.dbslsd202201016

    CrossRef Google Scholar

    [32] 杨赫男. 大凌河流域河流中氮磷变化特征分析[J]. 水土保持应用技术, 2024(4):49-52 doi: 10.3969/j.issn.1673-5366.2024.04.20

    CrossRef Google Scholar

    YANG Henan. Variation characteristics of nitrogen and phosphorus in the Daling River basin[J]. Technology of Soil and Water Conservation, 2024(4):49-52.] doi: 10.3969/j.issn.1673-5366.2024.04.20

    CrossRef Google Scholar

    [33] 董浩. 小凌河流域土壤侵蚀强度空间分布特征研究[J]. 水土保持应用技术, 2024(4):9-10 doi: 10.3969/j.issn.1673-5366.2024.04.04

    CrossRef Google Scholar

    DONG Hao. Spatial distribution characteristics of soil erosion intensity in Xiaoling River Basin[J]. Technology of Soil and Water Conservation, 2024(4):9-10.] doi: 10.3969/j.issn.1673-5366.2024.04.04

    CrossRef Google Scholar

    [34] Xu S, Yue F J, Li S L, et al. Carbon and nitrogen isotope constraints on source and variation of particulate organic matter in high-latitude agricultural rivers, Northeast China[J]. Journal of Cleaner Production, 2021, 321:128974. doi: 10.1016/j.jclepro.2021.128974

    CrossRef Google Scholar

    [35] Duan X W, Xie Y, Ou T H, et al. Effects of soil erosion on long-term soil productivity in the black soil region of northeastern China[J]. Catena, 2011, 87(2):268-275. doi: 10.1016/j.catena.2011.06.012

    CrossRef Google Scholar

    [36] Lu L, Cheng H G, Pu X, et al. Identifying organic matter sources using isotopic ratios in a watershed impacted by intensive agricultural activities in Northeast China[J]. Agriculture, Ecosystems & Environment, 2016, 222: 48-59.

    Google Scholar

    [37] 水电知识网. 辽河[Z]. 2019

    Google Scholar

    Hydropower knowledge Network. Liaohe River[Z]. 2019.]

    Google Scholar

    [38] Xing L, Zhang H L, Yuan Z N, et al. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf[J]. Continental Shelf Research, 2011, 31(10):1106-1115. doi: 10.1016/j.csr.2011.04.003

    CrossRef Google Scholar

    [39] Andersson A, Deng J J, Du K, et al. Regionally-varying combustion sources of the january 2013 severe haze events over eastern China[J]. Environmental Science & Technology, 2015, 49(4):2038-2043.

    Google Scholar

    [40] Chen S F, Zhou Y Q, Chen Y R, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17):884-890. doi: 10.1093/bioinformatics/bty560

    CrossRef Google Scholar

    [41] Magoč T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21):2957-2963. doi: 10.1093/bioinformatics/btr507

    CrossRef Google Scholar

    [42] Wang Q, Garrity G M, Tiedje J M, et al. Naive bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16):5261-5267. doi: 10.1128/AEM.00062-07

    CrossRef Google Scholar

    [43] Stackebrandt E, Goebel B M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology[J]. International Journal of Systematic and Evolutionary Microbiology, 1994, 44(4):846-849. doi: 10.1099/00207713-44-4-846

    CrossRef Google Scholar

    [44] Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10):996-998. doi: 10.1038/nmeth.2604

    CrossRef Google Scholar

    [45] Douglas G M, Maffei V J, Zaneveld J R, et al. PICRUSt2 for prediction of metagenome functions[J]. Nature Biotechnology, 2020, 38(6):685-688. doi: 10.1038/s41587-020-0548-6

    CrossRef Google Scholar

    [46] Ren Y, Yu G, Shi C P, et al. Majorbio cloud: a one-stop, comprehensive bioinformatic platform for multiomics analyses[J]. iMeta, 2022, 1(2):e12. doi: 10.1002/imt2.12

    CrossRef Google Scholar

    [47] Schwestermann T, Eglinton T I, Haghipour N, et al. Event-dominated transport, provenance, and burial of organic carbon in the Japan Trench[J]. Earth and Planetary Science Letters, 2021, 563:116870. doi: 10.1016/j.jpgl.2021.116870

    CrossRef Google Scholar

    [48] Hedges J I, Clark W A, Quay P D, et al. Compositions and fluxes of particulate organic material in the Amazon River1[J]. Limnology and Oceanography, 1986, 31(4):717-738. doi: 10.4319/lo.1986.31.4.0717

    CrossRef Google Scholar

    [49] Mayer L M, Schick L L, Hardy K R, et al. Organic matter in small mesopores in sediments and soils[J]. Geochimica et Cosmochimica Acta, 2004, 68(19):3863-3872. doi: 10.1016/j.gca.2004.03.019

    CrossRef Google Scholar

    [50] Goni M A, Monacci N, Gisewhite R, et al. Terrigenous organic matter in sediments from the Fly River delta-clinoform system (Papua New Guinea)[J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F1):F01S10.

    Google Scholar

    [51] Lamb A L, Wilson G P, Leng M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Science Reviews, 2006, 75(1-4):29-57. doi: 10.1016/j.earscirev.2005.10.003

    CrossRef Google Scholar

    [52] Wei B B, Mollenhauer G, Hefter J, et al. Dispersal and aging of terrigenous organic matter in the Pearl River Estuary and the northern South China Sea Shelf[J]. Geochimica et Cosmochimica Acta, 2020, 282:324-339. doi: 10.1016/j.gca.2020.04.032

    CrossRef Google Scholar

    [53] Yu F L, Zong Y Q, Lloyd J M, et al. Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China[J]. Estuarine, Coastal and Shelf Science, 2010, 87(4):618-630. doi: 10.1016/j.ecss.2010.02.018

    CrossRef Google Scholar

    [54] Hedges J I, Cowie G L, Richey J E, et al. Origins and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids[J]. Limnology and Oceanography, 1994, 39(4):743-761. doi: 10.4319/lo.1994.39.4.0743

    CrossRef Google Scholar

    [55] Qu Y X, Jin Z D, Wang J, et al. The sources and seasonal fluxes of particulate organic carbon in the Yellow River[J]. Earth Surface Processes and Landforms, 2020, 45(9):2004-2019. doi: 10.1002/esp.4861

    CrossRef Google Scholar

    [56] Wu Y, Zhang J, Liu S M, et al. Sources and distribution of carbon within the Yangtze River system[J]. Estuarine, Coastal and Shelf Science, 2007, 71(1-2):13-25. doi: 10.1016/j.ecss.2006.08.016

    CrossRef Google Scholar

    [57] 中华人民共和国水利部. 2022年全国水利发展统计公报[M]. 北京: 中国水利水电出版社, 2022

    Google Scholar

    Ministry of Water Resources of the People’s Republic of China. 2022 National Water Conservancy Development Statistical Bulletin[M]. Beijing: China Water & Power Press, 2022.]

    Google Scholar

    [58] Lu T A, Wang H J, Wu X, et al. Transport of particulate organic carbon in the lower Yellow River (Huanghe) as modulated by dam operation[J]. Global and Planetary Change, 2022, 217:103948. doi: 10.1016/j.gloplacha.2022.103948

    CrossRef Google Scholar

    [59] Huisman J, Codd G A, Paerl H W, et al. Cyanobacterial blooms[J]. Nature Reviews Microbiology, 2018, 16(8):471-483. doi: 10.1038/s41579-018-0040-1

    CrossRef Google Scholar

    [60] Imtiazy M N, Hunter K, Sereda J, et al. Effects of regional climate, hydrology and river impoundment on long-term patterns and characteristics of dissolved organic matter in semi-arid northern plains rivers[J]. Science of The Total Environment, 2023, 870:161961. doi: 10.1016/j.scitotenv.2023.161961

    CrossRef Google Scholar

    [61] Pradhan U K, Wu Y, Shirodkar P V, et al. Multi-proxy evidence for compositional change of organic matter in the largest tropical (peninsular) river basin of India[J]. Journal of Hydrology, 2014, 519:999-1009. doi: 10.1016/j.jhydrol.2014.08.018

    CrossRef Google Scholar

    [62] Voss B M, Wickland K P, Aiken G R, et al. Biological and land use controls on the isotopic composition of aquatic carbon in the Upper Mississippi River Basin[J]. Global Biogeochemical Cycles, 2017, 31(8):1271-1288. doi: 10.1002/2017GB005699

    CrossRef Google Scholar

    [63] Wang H, Ran X B, Bouwman A F, et al. Damming alters the particulate organic carbon sources, burial, export and estuarine biogeochemistry of rivers[J]. Journal of Hydrology, 2022, 607:127525. doi: 10.1016/j.jhydrol.2022.127525

    CrossRef Google Scholar

    [64] Wang H J, Yang Z S, Saito Y, et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005): impacts of climate change and human activities[J]. Global and Planetary Change, 2007, 57(3-4):331-354. doi: 10.1016/j.gloplacha.2007.01.003

    CrossRef Google Scholar

    [65] Dethier E N, Renshaw C E, Magilligan F J. Rapid changes to global river suspended sediment flux by humans[J]. Science, 2022, 376(6600):1447-1452. doi: 10.1126/science.abn7980

    CrossRef Google Scholar

    [66] Ran X B, Wu W T, Song Z L, et al. Decadal change in dissolved silicate concentration and flux in the Changjiang (Yangtze) River[J]. Science of The Total Environment, 2022, 839:156266. doi: 10.1016/j.scitotenv.2022.156266

    CrossRef Google Scholar

    [67] Maavara T, Chen Q W, Van Meter K, et al. River dam impacts on biogeochemical cycling[J]. Nature Reviews Earth & Environment, 2020, 1(2):103-116.

    Google Scholar

    [68] Raymond P A, Bauer J E, Caraco N F, et al. Controls on the variability of organic matter and dissolved inorganic carbon ages in Northeast US rivers[J]. Marine Chemistry, 2004, 92(1-4):353-366. doi: 10.1016/j.marchem.2004.06.036

    CrossRef Google Scholar

    [69] Yang M X, Liu Z H, Sun H L, et al. Organic carbon source tracing and DIC fertilization effect in the Pearl River: insights from lipid biomarker and geochemical analysis[J]. Applied Geochemistry, 2016, 73:132-141. doi: 10.1016/j.apgeochem.2016.08.008

    CrossRef Google Scholar

    [70] Liu Z H, Zhao M, Sun H L, et al. “Old” carbon entering the South China Sea from the carbonate-rich Pearl River Basin: coupled action of carbonate weathering and aquatic photosynthesis[J]. Applied Geochemistry, 2017, 78:96-104. doi: 10.1016/j.apgeochem.2016.12.014

    CrossRef Google Scholar

    [71] Prats J, Armengol J, Marcé R, et al. Dams and reservoirs in the lower ebro river and its effects on the river thermal cycle[M]//Barceló D, Petrovic M. The Ebro River Basin. Berlin, Heidelberg: Springer, 2010: 77-95.

    Google Scholar

    [72] Ge T T, Xue Y J, Jiang X Y, et al. Sources and radiocarbon ages of organic carbon in different grain size fractions of Yellow River-transported particles and coastal sediments[J]. Chemical Geology, 2020, 534:119452. doi: 10.1016/j.chemgeo.2019.119452

    CrossRef Google Scholar

    [73] Hu B Q, Li J, Bi N S, et al. Effect of human-controlled hydrological regime on the source, transport, and flux of particulate organic carbon from the lower Huanghe (Yellow River)[J]. Earth Surface Processes and Landforms, 2015, 40(8):1029-1042. doi: 10.1002/esp.3702

    CrossRef Google Scholar

    [74] Tao S Q, Eglinton T I, Montluçon D B, et al. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: regional significance and global relevance[J]. Earth and Planetary Science Letters, 2015, 414:77-86. doi: 10.1016/j.jpgl.2015.01.004

    CrossRef Google Scholar

    [75] Tao S Q, Eglinton T I, Zhang L, et al. Temporal variability in composition and fluxes of Yellow River particulate organic matter[J]. Limnology and Oceanography, 2018, 63(S1):S119-S141.

    Google Scholar

    [76] Wang S J, Yan Y X, Li Y K. Spatial and temporal variations of suspended sediment deposition in the alluvial reach of the upper Yellow River from 1952 to 2007[J]. Catena, 2012, 92:30-37. doi: 10.1016/j.catena.2011.11.012

    CrossRef Google Scholar

    [77] Xue Y J, Zou L, Ge T T, et al. Mobilization and export of millennial-aged organic carbon by the Yellow River[J]. Limnology and Oceanography, 2017, 62(S1):S95-S111.

    Google Scholar

    [78] Yu M, Eglinton T I, Haghipour N, et al. Molecular isotopic insights into hydrodynamic controls on fluvial suspended particulate organic matter transport[J]. Geochimica et Cosmochimica Acta, 2019, 262:78-91. doi: 10.1016/j.gca.2019.07.040

    CrossRef Google Scholar

    [79] Ke Y T, Calmels D, Bouchez J, et al. Channel cross-section heterogeneity of particulate organic carbon transport in the Huanghe[J]. Earth Surface Dynamics, 2023, 12(1):347-365.

    Google Scholar

    [80] Lu T A, Wang H J, Hu L M, et al. Dynamic transport of particulate organic carbon in the Yellow River during dam-orientated Water-Sediment Regulation[J]. Marine Geology, 2023, 460:107054. doi: 10.1016/j.margeo.2023.107054

    CrossRef Google Scholar

    [81] Wang Z H, Bai Y, He X Q, et al. Assessing the effect of strong wind events on the transport of particulate organic carbon in the Changjiang River estuary over the last 40 years[J]. Remote Sensing of Environment, 2023, 288:113477. doi: 10.1016/j.rse.2023.113477

    CrossRef Google Scholar

    [82] Wei X G, Yi W X, Shen C D, et al. 14C as a tool for evaluating riverine POC sources and erosion of the Zhujiang (Pearl River) drainage basin, South China[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(7-8):1094-1097. doi: 10.1016/j.nimb.2009.10.107

    CrossRef Google Scholar

    [83] Wei X G, Shen C D, Li N L, et al. Apparent ages of suspended sediment and soil erosion of the Pearl River (Zhujiang) drainage basin[J]. Chinese Science Bulletin, 2010, 55(15):1547-1553. doi: 10.1007/s11434-010-3067-x

    CrossRef Google Scholar

    [84] Guo W, Ye F, Xu S D, et al. Seasonal variation in sources and processing of particulate organic carbon in the Pearl River estuary, South China[J]. Estuarine, Coastal and Shelf Science, 2015, 167:540-548. doi: 10.1016/j.ecss.2015.11.004

    CrossRef Google Scholar

    [85] Liu D, Bai Y, He X Q, et al. Changes in riverine organic carbon input to the ocean from mainland China over the past 60 years[J]. Environment International, 2020, 134:105258. doi: 10.1016/j.envint.2019.105258

    CrossRef Google Scholar

    [86] He B Y, Dai M H, Zhai W D, et al. Distribution, degradation and dynamics of dissolved organic carbon and its major compound classes in the Pearl River estuary, China[J]. Marine Chemistry, 2010, 119(1-4):52-64. doi: 10.1016/j.marchem.2009.12.006

    CrossRef Google Scholar

    [87] Hilton R G, Galy A, Hovius N, et al. The isotopic composition of particulate organic carbon in mountain rivers of Taiwan[J]. Geochimica et Cosmochimica Acta, 2010, 74(11):3164-3181. doi: 10.1016/j.gca.2010.03.004

    CrossRef Google Scholar

    [88] Bao H Y, Lee T Y, Huang J C, et al. Importance of Oceanian small mountainous rivers (SMRs) in global land-to-ocean output of lignin and modern biospheric carbon[J]. Scientific Reports, 2015, 5(1):16217. doi: 10.1038/srep16217

    CrossRef Google Scholar

    [89] Wu Y, Bao H Y, Unger D, et al. Biogeochemical behavior of organic carbon in a small tropical river and estuary, Hainan, China[J]. Continental Shelf Research, 2013, 57:32-43. doi: 10.1016/j.csr.2012.07.017

    CrossRef Google Scholar

    [90] Pradhan U K, Wu Y, Wang X N, et al. Signals of typhoon induced hydrologic alteration in particulate organic matter from largest tropical river system of Hainan Island, South China Sea[J]. Journal of Hydrology, 2016, 534:553-566. doi: 10.1016/j.jhydrol.2016.01.046

    CrossRef Google Scholar

    [91] Galy V V, Eglinton T I. Protracted storage of biospheric carbon in the Ganges-Brahmaputra basin[J]. Nature Geoscience, 2011, 4(12):843-847. doi: 10.1038/ngeo1293

    CrossRef Google Scholar

    [92] Keller P S, Marcé R, Obrador B, et al. Global carbon budget of reservoirs is overturned by the quantification of drawdown areas[J]. Nature Geoscience, 2021, 14(6):402-408. doi: 10.1038/s41561-021-00734-z

    CrossRef Google Scholar

    [93] Maavara T, Lauerwald R, Regnier P, et al. Global perturbation of organic carbon cycling by river damming[J]. Nature Communications, 2017, 8(1):15347. doi: 10.1038/ncomms15347

    CrossRef Google Scholar

    [94] Schädel C, Schuur E A G, Bracho R, et al. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data[J]. Global Change Biology, 2014, 20(2):641-652. doi: 10.1111/gcb.12417

    CrossRef Google Scholar

    [95] Cotrufo M F, Soong J L, Horton A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J]. Nature Geoscience, 2015, 8(10):776-779. doi: 10.1038/ngeo2520

    CrossRef Google Scholar

    [96] Syvitski J P M, Vörösmarty C J, Kettner A J, et al. Impact of humans on the flux of terrestrial sediment to the global coastal ocean[J]. Science, 2005, 308(5720):376-380. doi: 10.1126/science.1109454

    CrossRef Google Scholar

    [97] Bianchi T S, Cui X Q, Blair N E, et al. Centers of organic carbon burial and oxidation at the land-ocean interface[J]. Organic Geochemistry, 2018, 115:138-155. doi: 10.1016/j.orggeochem.2017.09.008

    CrossRef Google Scholar

    [98] Scavia D, Field J C, Boesch D F, et al. Climate change impacts on U. S. coastal and marine ecosystems[J]. Estuaries, 2002, 25(2):149-164. doi: 10.1007/BF02691304

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(5)

Article Metrics

Article views(455) PDF downloads(35) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint