2025 Vol. 45, No. 2
Article Contents

SUN Shicai, TIAN Wanxin, MENG Qingguo, BU Qingtao, WU Nengyou, HUANG Li. Effect of mineral type on the formation of natural gas hydrate[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 215-224. doi: 10.16562/j.cnki.0256-1492.2024053001
Citation: SUN Shicai, TIAN Wanxin, MENG Qingguo, BU Qingtao, WU Nengyou, HUANG Li. Effect of mineral type on the formation of natural gas hydrate[J]. Marine Geology & Quaternary Geology, 2025, 45(2): 215-224. doi: 10.16562/j.cnki.0256-1492.2024053001

Effect of mineral type on the formation of natural gas hydrate

More Information
  • The formation of natural gas hydrates in sediments is constrained by various factors, among which the physical and chemical properties of the sediments should not be overlooked. Based on the mineral composition of sediments in the South China Sea, the formation of natural gas hydrate was simulated experimentally by using four different minerals, olivine, carbonate, feldspar, and quartz. Results show that at low water saturation, the stronger hydrophilicity of the mineral, the longer the hydrate nucleation time; while at high water saturation, the effect of mineral hydrophilicity is weakened, the hydrate nucleation time is similar among the four minerals. The hydrate growth rate of olivine is the fastest, while quartz is the slowest. Additionally, the hydrate in all four minerals showed the characteristic of growing from sediment to the upper gas-phase space, which resulted in a trend of rapid growth followed by slow growth and then rapid growth of hydrates. The final hydrate saturation of the four minerals under same moisture content conditions was similar, ranging 12.52%~34.32%. The experimental results provide a reference for geological exploration and site selection for hydrate mining.

  • 加载中
  • [1] Malagar B R C, Lijith K P, Singh D N. Formation & dissociation of methane gas hydrates in sediments: a critical review[J]. Journal of Natural Gas Science and Engineering, 2019, 65:168-184. doi: 10.1016/j.jngse.2019.03.005

    CrossRef Google Scholar

    [2] Sloan E D. Gas hydrates: review of physical/chemical properties[J]. Energy & Fuels, 1998, 12(2):191-196.

    Google Scholar

    [3] Makogon Y F, Holditch S A, Makogon T Y. Natural gas-hydrates: a potential energy source for the 21st Century[J]. Journal of Petroleum Science and Engineering, 2007, 56(1-3):14-31. doi: 10.1016/j.petrol.2005.10.009

    CrossRef Google Scholar

    [4] Misyura S Y. The influence of porosity and structural parameters on different kinds of gas hydrate dissociation[J]. Scientific Reports, 2016, 6:30324. doi: 10.1038/srep30324

    CrossRef Google Scholar

    [5] Ren J J, Liu X H, Niu M Y, et al. Effect of sodium montmorillonite clay on the kinetics of CH4 hydrate-implication for energy recovery[J]. Chemical Engineering Journal, 2022, 437:135368. doi: 10.1016/j.cej.2022.135368

    CrossRef Google Scholar

    [6] Chen C, Zhang Y, Li X S, et al. Investigations into methane hydrate formation, accumulation, and distribution in sediments with different contents of Illite clay[J]. Applied Energy, 2024, 359:122661. doi: 10.1016/j.apenergy.2024.122661

    CrossRef Google Scholar

    [7] Mi F Y, He Z J, Zhao Y J, et al. Effects of surface property of mixed clays on methane hydrate formation in nanopores: a molecular dynamics study[J]. Journal of Colloid and Interface Science, 2022, 627:681-691. doi: 10.1016/j.jcis.2022.07.101

    CrossRef Google Scholar

    [8] 孙始财, 业渝光, 刘昌岭, 等. 甲烷水合物在石英砂中生成过程研究[J]. 石油与天然气化工, 2011, 40(2):123-127

    Google Scholar

    SUN Shicai. , YE Yuguang, LIU Changling, et al. Research of methane hydrate formation process in quartz sand[J]. Chemical Engineering of Oil and Gas, 2011, 40(2):123-127.]

    Google Scholar

    [9] Babu P, Yee D, Linga P, et al. Morphology of methane hydrate formation in porous media[J]. Energy & Fuels, 2013, 27(6):3364-3372.

    Google Scholar

    [10] Zhang B, Zhou L H, Liu C L, et al. Influence of sediment media with different particle sizes on the nucleation of gas hydrate[J]. Natural Gas Industry B, 2018, 5(6):652-659. doi: 10.1016/j.ngib.2018.11.001

    CrossRef Google Scholar

    [11] Eswari C V V, Raju B, Chari V D, et al. Laboratory study of methane hydrate formation kinetics and structural stability in sediments[J]. Marine and Petroleum Geology, 2014, 58:199-205. doi: 10.1016/j.marpetgeo.2014.08.010

    CrossRef Google Scholar

    [12] Maiti M, Bhaumik A K, Mandal A. Geological characterization of natural gas hydrate bearing sediments and their influence on hydrate formation and dissociation[J]. Journal of Natural Gas Science and Engineering, 2022, 100:104491. doi: 10.1016/j.jngse.2022.104491

    CrossRef Google Scholar

    [13] Qin X W, Lu C, Wang P K, et al. Hydrate phase transition and seepage mechanism during natural gas hydrates production tests in the South China Sea: a review and prospect[J]. China Geology, 2022, 5(2):201-217.

    Google Scholar

    [14] Sloan E D Jr, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. Boca Raton: CRC Press, 2007.

    Google Scholar

    [15] Esmail S, Beltran J G. Methane hydrate propagation on surfaces of varying wettability[J]. Journal of Natural Gas Science and Engineering, 2016, 35:1535-1543. doi: 10.1016/j.jngse.2016.06.068

    CrossRef Google Scholar

    [16] Qin Y, Shang L Y, Lv Z B, et al. Methane hydrate formation in porous media: overview and perspectives[J]. Journal of Energy Chemistry, 2022, 74:454-480. doi: 10.1016/j.jechem.2022.07.019

    CrossRef Google Scholar

    [17] 张郁, 吴慧杰, 李小森, 等. 多孔介质中甲烷水合物的生成特性的实验研究[J]. 化学学报, 2011, 69(19):2221-2227

    Google Scholar

    ZHANG Yu, WU Huijie, LI Xiaosen, et al. Experimental study on formation behavior of methane hydrate in porous media[J]. Acta Chimica Sinica, 2011, 69(19):2221-2227.

    Google Scholar

    [18] Ke W, Svartaas T M, Chen D Y. A review of gas hydrate nucleation theories and growth models[J]. Journal of Natural Gas Science and Engineering, 2019, 61:169-196. doi: 10.1016/j.jngse.2018.10.021

    CrossRef Google Scholar

    [19] Taylor C J, Miller K T, Koh C A, et al. Macroscopic investigation of hydrate film growth at the hydrocarbon/water interface[J]. Chemical Engineering Science, 2007, 62(23):6524-6533. doi: 10.1016/j.ces.2007.07.038

    CrossRef Google Scholar

    [20] Chen Y, Gao Y H, Zhang N T, et al. Microfluidics application for monitoring hydrate phase transition in flow throats and evaluation of its saturation measurement[J]. Chemical Engineering Journal, 2020, 383:123081. doi: 10.1016/j.cej.2019.123081

    CrossRef Google Scholar

    [21] Liang S, Kusalik P G. Explorations of gas hydrate crystal growth by molecular simulations[J]. Chemical Physics Letters, 2010, 494(4-6):123-133. doi: 10.1016/j.cplett.2010.05.088

    CrossRef Google Scholar

    [22] 王亚东, 赵建忠, 高强, 等. 石英砂介质中甲烷水合物生成过程和相平衡的实验研究[J]. 石油与天然气化工, 2018, 47(6):44-49 doi: 10.3969/j.issn.1007-3426.2018.06.009

    CrossRef Google Scholar

    WANG Yadong, ZHAO Jianzhong, GAO Qiang, et al. Experimental study on the formation and phase equilibria of methane hydrate in quartz sand media[J]. Chemical Engineering of Oil and Gas, 2018, 47(6):44-49.] doi: 10.3969/j.issn.1007-3426.2018.06.009

    CrossRef Google Scholar

    [23] Jin Y, Konno Y, Nagao J. Growth of methane clathrate hydrates in porous media[J]. Energy & Fuels, 2012, 26(4):2242-2247.

    Google Scholar

    [24] Guo G J, Li M, Zhang Y G, et al. Why can water cages adsorb aqueous methane? A potential of mean force calculation on hydrate nucleation mechanisms[J]. Physical Chemistry Chemical Physics, 2009, 11(44):10427-10437. doi: 10.1039/b913898f

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(18) PDF downloads(2) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint