2024 Vol. 44, No. 3
Article Contents

ZHANG Yao, MENG Xianwei, XIA Peng, ZHANG Daolai, ZHANG Jun, XU Yuanqin, PAN Lianghao, QIU Guanglong. Research progress on mangrove development in different time scales[J]. Marine Geology & Quaternary Geology, 2024, 44(3): 197-210. doi: 10.16562/j.cnki.0256-1492.2024032903
Citation: ZHANG Yao, MENG Xianwei, XIA Peng, ZHANG Daolai, ZHANG Jun, XU Yuanqin, PAN Lianghao, QIU Guanglong. Research progress on mangrove development in different time scales[J]. Marine Geology & Quaternary Geology, 2024, 44(3): 197-210. doi: 10.16562/j.cnki.0256-1492.2024032903

Research progress on mangrove development in different time scales

More Information
  • Mangroves provide multiple ecosystem services and are strategic locations for climate change mitigation and adaptation. The response of mangrove forests to future global changes can be understood by reconstructing the mangrove development in the past. Over the years, scholars from different disciplinary fields have conducted in-depth studies on mangrove development and its constraints in different time scales, which has greatly contributed to the development of palaeoecological studies on coastal vegetated habitats represented by mangroves, and laid the scientific foundation for the formulation of short-term/long-term mangrove protection and restoration programs for different strategic needs. We summarized the tracing indicators and key methods of mangrove development in different time scales, reviewed the history of mangrove dynamics at long time scales (i.e., since the Late Cretaceous and since the Holocene) and short time scales (i.e., in the last hundred years and in the last few decades), deeply revealed the controlling roles of changes in natural environments and anthropogenic factors on mangrove forests, and finally proposed key scientific objectives for future research in the field of mangrove development.

  • 加载中
  • [1] Giri C, Ochieng E, Tieszen L L, et al. Status and distribution of mangrove forests of the world using earth observation satellite data[J]. Global Ecology and Biogeography, 2011, 20(1):154-159. doi: 10.1111/j.1466-8238.2010.00584.x

    CrossRef Google Scholar

    [2] Duke N C, Meynecke J O, Dittmann S, et al. A world without mangroves?[J]. Science, 2007, 317(5834):41-42.

    Google Scholar

    [3] Lee S Y, Primavera J H, Dahdouh-Guebas F, et al. Ecological role and services of tropical mangrove ecosystems: a reassessment[J]. Global Ecology and Biogeography, 2014, 23(7):726-743. doi: 10.1111/geb.12155

    CrossRef Google Scholar

    [4] Himes-cornell A, Grose S O, Pendleton L. Mangrove ecosystem service values and methodological approaches to valuation: where do we stand?[J]. Frontiers in Marine Science, 2018, 5:376. doi: 10.3389/fmars.2018.00376

    CrossRef Google Scholar

    [5] Nellemann C, Corcoran E, Duarte C M, et al. Blue Carbon: the Role of Healthy Oceans in Binding Carbon[M]. United Nations Environment Programme, Arendal, Norway, 2009: 11-65.

    Google Scholar

    [6] Duarte C M, Losada I J, Hendriks I E, et al. The role of coastal plant communities for climate change mitigation and adaptation[J]. Nature Climate Change, 2013, 3(11):961-968. doi: 10.1038/nclimate1970

    CrossRef Google Scholar

    [7] Alongi D M. Carbon cycling and storage in mangrove forests[J]. Annual Review of Marine Science, 2014, 6:195-219. doi: 10.1146/annurev-marine-010213-135020

    CrossRef Google Scholar

    [8] Lovelock C E, Reef R. Variable impacts of climate change on blue carbon[J]. One Earth, 2020, 3(2):195-211. doi: 10.1016/j.oneear.2020.07.010

    CrossRef Google Scholar

    [9] Alongi D M. Mangrove forests: resilience, protection from tsunamis, and responses to global climate change[J]. Estuarine, Coastal and Shelf Science, 2008, 76(1):1-13. doi: 10.1016/j.ecss.2007.08.024

    CrossRef Google Scholar

    [10] Jennerjahn T C. Biogeochemical response of tropical coastal systems to present and past environmental change[J]. Earth-Science Reviews, 2012, 114(1-2):19-41. doi: 10.1016/j.earscirev.2012.04.005

    CrossRef Google Scholar

    [11] Ellison J C. Vulnerability assessment of mangroves to climate change and sea-level rise impacts[J]. Wetlands Ecology and Management, 2015, 23(2):115-137. doi: 10.1007/s11273-014-9397-8

    CrossRef Google Scholar

    [12] Lovelock C E, Cahoon D R, Friess D A, et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise[J]. Nature, 2015, 526(7574):559-563. doi: 10.1038/nature15538

    CrossRef Google Scholar

    [13] Woodroffe C D, Rogers K, Mckee K L, et al. Mangrove sedimentation and response to relative sea-level rise[J]. Annual Review of Marine Science, 2016, 8:243-266. doi: 10.1146/annurev-marine-122414-034025

    CrossRef Google Scholar

    [14] Friess D A, Rogers K, Lovelock C E, et al. The state of the world’s mangrove forests: past, present, and future[J]. Annual Review of Environment and Resources, 2019, 44:89-115. doi: 10.1146/annurev-environ-101718-033302

    CrossRef Google Scholar

    [15] Veettil B K, Ward R D, Quang N X, et al. Mangroves of Vietnam: historical development, current state of research and future threats[J]. Estuarine, Coastal and Shelf Science, 2019, 218:212-236. doi: 10.1016/j.ecss.2018.12.021

    CrossRef Google Scholar

    [16] Ellison J C. Long-term retrospection on mangrove development using sediment cores and pollen analysis: a review[J]. Aquatic Botany, 2008, 89(2):93-104. doi: 10.1016/j.aquabot.2008.02.007

    CrossRef Google Scholar

    [17] Rull V. Rise and fall of Caribbean mangroves[J]. Science of the Total Environment, 2023, 885:163851. doi: 10.1016/j.scitotenv.2023.163851

    CrossRef Google Scholar

    [18] Giri C. Observation and monitoring of mangrove forests using remote sensing: opportunities and challenges[J]. Remote Sensing, 2016, 8(9):783. doi: 10.3390/rs8090783

    CrossRef Google Scholar

    [19] Caratini C, Bentaleb I, Fontugne M, et al. A less humid climate since ca. 3500 yr B. P. from marine cores off Karwar, western India[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 109(2-4):371-384. doi: 10.1016/0031-0182(94)90186-4

    CrossRef Google Scholar

    [20] 王开发, 张玉兰, 李珍. 海滨红树林花粉与古环境研究进展[J]. 地球科学进展, 1997, 12(6):541-545

    Google Scholar

    WANG Kaifa, ZHANG Yulan, LI Zhen. Development of the study on paleoenvironment and coastal mangrove pollen[J]. Advance in Earth Sciences, 1997, 12(6):541-545.]

    Google Scholar

    [21] 张玉兰, 封卫青, 王开发, 等. 从海南岛全新世孢粉研究看海滨红树林的演化[J]. 海洋学报, 2000, 22(3):117-122

    Google Scholar

    ZHANG Yulan, FENG Weiqing, WANG Kaifa, et al. The evolution of mangrove forest on the basis of palynological study of Holocene in Hainan Island[J]. Acta Oceanologica Sinica, 2000, 22(3):117-122.]

    Google Scholar

    [22] Versteegh G J M, Schefuß E, Dupont L, et al. Taraxerol and Rhizophora pollen as proxies for tracking past mangrove ecosystems[J]. Geochimica et Cosmochimica Acta, 2004, 68(3):411-422. doi: 10.1016/s0016-7037(03)00456-3

    CrossRef Google Scholar

    [23] Li Z. Palynological assemblage and coastal evolution within the last hundred years in Guangxi, China[J]. Quaternary International, 2012, 279-280:278-279. doi: 10.1016/j.quaint.2012.08.722

    CrossRef Google Scholar

    [24] Guimarães J T F, Cohen M C L, Pessenda L C R, et al. Mid- and late-Holocene sedimentary process and palaeovegetation changes near the mouth of the Amazon River[J]. The Holocene, 2012, 22(3):359-370. doi: 10.1177/0959683611423693

    CrossRef Google Scholar

    [25] França M C, Alves I C C, Castro D F, et al. A multi-proxy evidence for the transition from estuarine mangroves to deltaic freshwater marshes, Southeastern Brazil, due to climatic and sea-level changes during the late Holocene[J]. Catena, 2015, 128:155-166. doi: 10.1016/j.catena.2015.02.005

    CrossRef Google Scholar

    [26] Cohen M C L, Lara R J, Cuevas E, et al. Effects of sea-level rise and climatic changes on mangroves from southwestern littoral of Puerto Rico during the middle and late Holocene[J]. CATENA, 2016, 143:187-200. doi: 10.1016/j.catena.2016.03.041

    CrossRef Google Scholar

    [27] Wooller M, Smallwood B, Scharler U, et al. A taphonomic study of δ13C and δ15N values in Rhizophora mangle leaves for a multi-proxy approach to mangrove palaeoecology[J]. Organic Geochemistry, 2003, 34(9):1259-1275. doi: 10.1016/s0146-6380(03)00116-5

    CrossRef Google Scholar

    [28] Lamb A L, Wilson G P, Leng M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Science Reviews, 2006, 75(1-4):29-57. doi: 10.1016/j.earscirev.2005.10.003

    CrossRef Google Scholar

    [29] Tue N T, Hamaoka H, Sogabe A, et al. The application of δ13C and C/N ratios as indicators of organic carbon sources and paleoenvironmental change of the mangrove ecosystem from Ba Lat Estuary, Red River, Vietnam[J]. Environmental Earth Sciences, 2011, 64(5):1475-1486. doi: 10.1007/s12665-011-0970-7

    CrossRef Google Scholar

    [30] Thimdee W, Deein G, Sangrungruang C, et al. Sources and fate of organic matter in Khung Krabaen Bay (Thailand) as traced by δ13C and C/N atomic ratiosand C/N atomic ratios[J]. Wetlands, 2003, 23(4):729-738. doi: 10.1672/0277-5212(2003)023[0729:SAFOOM]2.0.CO;2

    CrossRef Google Scholar

    [31] Xia P, Meng X W, Zhang Y, et al. The potential of mangrove-derived organic matter in sediments for tracing mangrove development during the Holocene[J]. Estuaries and Coasts, 2021, 44(4):1020-1035. doi: 10.1007/s12237-020-00826-w

    CrossRef Google Scholar

    [32] Xia P, Meng X W, Li Z, et al. Mangrove development and its response to environmental change in Yingluo Bay (SW China) during the last 150years: stable carbon isotopes and mangrove pollen[J]. Organic Geochemistry, 2015, 85:32-41. doi: 10.1016/j.orggeochem.2015.04.003

    CrossRef Google Scholar

    [33] Meng X W, Xia P, Li Z, et al. Mangrove degradation and response to anthropogenic disturbance in the Maowei Sea (SW China) since 1926 AD: mangrove-derived OM and pollen[J]. Organic Geochemistry, 2016, 98:166-175. doi: 10.1016/j.orggeochem.2016.06.001

    CrossRef Google Scholar

    [34] Zhang Y, Meng X W, Xia P, et al. High-frequency mangrove degradation events during the Holocene climatic optimum in the Maowei Sea of tropical China[J]. Journal of Sea Research, 2023, 194:102390. doi: 10.1016/j.seares.2023.102390

    CrossRef Google Scholar

    [35] Koch B P, Souza Filho P W M, Behling H, et al. Triterpenols in mangrove sediments as a proxy for organic matter derived from the red mangrove (Rhizophora mangle)[J]. Organic Geochemistry, 2011, 42(1):62-73. doi: 10.1016/j.orggeochem.2010.10.007

    CrossRef Google Scholar

    [36] Williams L A D. Rhizophora mangle (Rhizophoraceae) triterpenoids with insecticidal activity[J]. Naturwissenschaften, 1999, 86(9):450-452. doi: 10.1007/s001140050652

    CrossRef Google Scholar

    [37] Koch B P, Rullkötter J, Lara R J. Evaluation of triterpenols and sterols as organic matter biomarkers in a mangrove ecosystem in northern Brazil[J]. Wetlands Ecology and Management, 2003, 11(4):257-263. doi: 10.1023/A:1025063516054

    CrossRef Google Scholar

    [38] Xu Y P, Holmes C W, Jaffé R. Paleoenvironmental assessment of recent environmental changes in Florida Bay, USA: a biomarker based study[J]. Estuarine, Coastal and Shelf Science, 2007, 73(1-2):201-210. doi: 10.1016/j.ecss.2007.01.002

    CrossRef Google Scholar

    [39] He D, Nemiah ladd S, Park J, et al. Carbon and hydrogen isotopes of taraxerol in mangrove leaves and sediment cores: implications for paleo-reconstructions[J]. Geochimica et Cosmochimica Acta, 2022, 324:262-279. doi: 10.1016/j.gca.2022.02.018

    CrossRef Google Scholar

    [40] Chu M F, Sachs J P, Peng P, et al. Temporal variations of mangrove-derived organic carbon storage in two tropical estuaries in Hainan, China since 1960 CE[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 627:111726. doi: 10.1016/j.palaeo.2023.111726

    CrossRef Google Scholar

    [41] Basyuni M, Oku H, Baba S, et al. Isoprenoids of Okinawan mangroves as lipid input into estuarine ecosystem[J]. Journal of Oceanography, 2007, 63(4):601-608. doi: 10.1007/s10872-007-0053-2

    CrossRef Google Scholar

    [42] 张道来, 王许玲, 姜学钧, 等. 超声提取/气相色谱-质谱法测定红树林沉积物中蒲公英萜醇[J]. 分析测试学报, 2015, 34(6):658-663 doi: 10.3969/j.issn.1004-4957.2015.06.005

    CrossRef Google Scholar

    ZHANG Daolai, WANG Xuling, JIANG Xuejun, et al. Determination of Taraxerol in mangrove sediments by GC-MS with ultrasonic extraction[J]. Journal of Instrumental Analysis, 2015, 34(6):658-663.] doi: 10.3969/j.issn.1004-4957.2015.06.005

    CrossRef Google Scholar

    [43] Dittmar T, Lara R J, Kattner G. River or mangrove? Tracing major organic matter sources in tropical Brazilian coastal waters[J]. Marine Chemistry, 2001, 73(3-4):253-271. doi: 10.1016/S0304-4203(00)00110-9

    CrossRef Google Scholar

    [44] Andersson A. A systematic examination of a random sampling strategy for source apportionment calculations[J]. Science of the Total Environment, 2011, 412-413:232-238. doi: 10.1016/j.scitotenv.2011.10.031

    CrossRef Google Scholar

    [45] Andersson A, Deng J J, Du K, et al. Regionally-varying combustion sources of the January 2013 severe haze events over eastern China[J]. Environmental Science & Technology, 2015, 49(4):2038-2043. doi: 10.1021/es503855e

    CrossRef Google Scholar

    [46] Yu M, Eglinton T I, Haghipour N, et al. Contrasting fates of terrestrial organic carbon pools in marginal sea sediments[J]. Geochimica et Cosmochimica Acta, 2021, 309:16-30. doi: 10.1016/j.gca.2021.06.018

    CrossRef Google Scholar

    [47] Wu Y, Eglinton T I, Zhang J, et al. Spatiotemporal variation of the quality, origin, and age of particulate organic matter transported by the Yangtze river (Changjiang)[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(9):2908-2921. doi: 10.1029/2017jg004285

    CrossRef Google Scholar

    [48] Kaiser D, Unger D, Qiu G L. Particulate organic matter dynamics in coastal systems of the northern Beibu Gulf[J]. Continental Shelf Research, 2014, 82:99-118. doi: 10.1016/j.csr.2014.04.006

    CrossRef Google Scholar

    [49] Herbeck L S, Unger D, Krumme U, et al. Typhoon-induced precipitation impact on nutrient and suspended matter dynamics of a tropical estuary affected by human activities in Hainan, China[J]. Estuarine, Coastal and Shelf Science, 2011, 93(4):375-388. doi: 10.1016/j.ecss.2011.05.004

    CrossRef Google Scholar

    [50] Khan N S, Vane C H, Engelhart S E, et al. The application of δ13C, TOC and C/N geochemistry of mangrove sediments to reconstruct Holocene paleoenvironments and relative sea levels, Puerto Rico[J]. Marine Geology, 2019, 415:105963. doi: 10.1016/j.margeo.2019.105963

    CrossRef Google Scholar

    [51] Sasmito S D, Kuzyakov Y, Lubis A A, et al. Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems[J]. CATENA, 2020, 187:104414. doi: 10.1016/j.catena.2019.104414

    CrossRef Google Scholar

    [52] Yu F L, Zong Y Q, Lloyd J M, et al. Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China[J]. Estuarine, Coastal and Shelf Science, 2010, 87(4):618-630. doi: 10.1016/j.ecss.2010.02.018

    CrossRef Google Scholar

    [53] Zhang Y, Meng X W, Bai Y Z, et al. Sources and features of particulate organic matter in tropical small mountainous rivers (SW China) under the effects of anthropogenic activities[J]. Ecological Indicators, 2021, 125:107471. doi: 10.1016/j.ecolind.2021.107471

    CrossRef Google Scholar

    [54] He B, Dai M, Huang W, et al. Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions[J]. Biogeosciences, 2010, 7(10):3343-3362. doi: 10.5194/bg-7-3343-2010

    CrossRef Google Scholar

    [55] 杨国欢, 侯秀琼, 孙省利, 等. 流沙湾食物网结构的初探: 基于稳定同位素方法的分析结果[J]. 水生生物学报, 2013, 37(1):150-156 doi: 10.7541/2013.150

    CrossRef Google Scholar

    YANG Guohuan, HOU Xiuqiong, SUN Xingli, et al. Construction food web model of Liusha Bay-using stable isotope analysis results[J]. Acta Hydrobiologica Sinica, 2013, 37(1):150-156.] doi: 10.7541/2013.150

    CrossRef Google Scholar

    [56] Kwan K Y, Bopp J, Huang S Y, et al. Ontogenetic resource use and trophic dynamics of endangered juvenile Tachypleus tridentatus among diversified nursery habitats in the northern Beibu Gulf, China[J]. Integrative Zoology, 2021, 16(6):908-928. doi: 10.1111/1749-4877.12495

    CrossRef Google Scholar

    [57] Ricklefs R E, Schwarzbach A E, Renner S S, et al. Rate of lineage origin explains the diversity anomaly in the world’s mangrove vegetation[J]. The American Naturalist, 2006, 168(6):805-810. doi: 10.1086/508711

    CrossRef Google Scholar

    [58] 范航清, 陆露, 阎冰. 广西红树林演化史与研究历程[J]. 广西科学, 2018, 25(4):343-351

    Google Scholar

    FAN Hangqing, LU Lu, YAN Bing. Evolution history and research processes of Guangxi mangroves[J]. Guangxi Sciences, 2018, 25(4):343-351.]

    Google Scholar

    [59] Srivastava J, Prasad V. Evolution and paleobiogeography of mangroves[J]. Marine Ecology, 2019, 40(6):e12571. doi: 10.1111/maec.12571

    CrossRef Google Scholar

    [60] He Z W, Feng X, Chen Q P, et al. Evolution of coastal forests based on a full set of mangrove genomes[J]. Nature Ecology & Evolution, 2022, 6(6):738-749.

    Google Scholar

    [61] Lambeck K, Rouby H, Purcell A, et al. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(43):15296-15303.

    Google Scholar

    [62] Duke N C. Genetic diversity, distributional barriers and rafting continents—more thoughts on the evolution of mangroves[J]. Hydrobiologia, 1995, 295(1-3):167-181. doi: 10.1007/BF00029124

    CrossRef Google Scholar

    [63] Licht A, Boura A, De Franceschi D, et al. Late middle Eocene fossil wood of Myanmar: Implications for the landscape and the climate of the Eocene Bengal Bay[J]. Review of Palaeobotany and Palynology, 2015, 216:44-54. doi: 10.1016/j.revpalbo.2015.01.010

    CrossRef Google Scholar

    [64] Grant K M, Rohling E J, Ramsey C B, et al. Sea-level variability over five glacial cycles[J]. Nature Communications, 2014, 5(1):5076. doi: 10.1038/ncomms6076

    CrossRef Google Scholar

    [65] Woodroffe C D, Thom B G, Chappell J. Development of widespread mangrove swamps in mid-Holocene times in northern Australia[J]. Nature, 1985, 317(6039):711-713. doi: 10.1038/317711a0

    CrossRef Google Scholar

    [66] Cohen M C L, Pessenda L C R, Behling H, et al. Holocene palaeoenvironmental history of the Amazonian mangrove belt[J]. Quaternary Science Reviews, 2012, 55:50-58. doi: 10.1016/j.quascirev.2012.08.019

    CrossRef Google Scholar

    [67] Hait A K, Behling H. Holocene mangrove and coastal environmental changes in the western Ganga–Brahmaputra Delta, India[J]. Vegetation History and Archaeobotany, 2009, 18(2):159-169. doi: 10.1007/s00334-008-0203-5

    CrossRef Google Scholar

    [68] Setyaningsih C A, Biagioni S, Saad A, et al. Response of mangroves to late Holocene sea-level change: palaeoecological evidence from Sumatra, Indonesia[J]. Wetlands, 2019, 39(5):1103-1118. doi: 10.1007/s13157-019-01142-1

    CrossRef Google Scholar

    [69] Ellison J C, Stoddart D R. Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogues and implications[J]. Journal of Coastal Research, 1991, 7(1):151-165.

    Google Scholar

    [70] Proske U. Holocene freshwater wetland and mangrove dynamics in the eastern Kimberley, Australia[J]. Journal of Quaternary Science, 2016, 31(1):1-11. doi: 10.1002/jqs.2827

    CrossRef Google Scholar

    [71] Cordero-oviedo C, Correa-metrio A, Urrego L E, et al. Holocene establishment of mangrove forests in the western coast of the Gulf of Mexico[J]. CATENA, 2019, 180:212-223. doi: 10.1016/j.catena.2019.04.025

    CrossRef Google Scholar

    [72] Aragón-moreno A A, Islebe G A, Torrescano-valle N, et al. Middle and late Holocene mangrove dynamics of the Yucatan Peninsula, Mexico[J]. Journal of South American Earth Sciences, 2018, 85:307-311. doi: 10.1016/j.jsames.2018.05.015

    CrossRef Google Scholar

    [73] Decker V, Falkenroth M, Lindauer S, et al. Collapse of Holocene mangrove ecosystems along the coastline of Oman[J]. Quaternary Research, 2021, 100:52-76. doi: 10.1017/qua.2020.96

    CrossRef Google Scholar

    [74] Smith C B, Cohen M C L, Pessenda L C R, et al. Holocenic proxies of sedimentary organic matter and the evolution of Lake Arari-Amazon Region[J]. CATENA, 2012, 90:26-38. doi: 10.1016/j.catena.2011.10.002

    CrossRef Google Scholar

    [75] Meng X W, Xia P, Li Z, et al. Mangrove Development and Its Response to Asian Monsoon in the Yingluo Bay (SW China) over the Last 2000 years[J]. Estuaries and Coasts, 2017, 40(2):540-552. doi: 10.1007/s12237-016-0156-3

    CrossRef Google Scholar

    [76] Xu Y Q, Li P, Liu J, et al. Response of mangrove development to paleoclimate variation over the past 3, 550years in Phang Nga Province, Thailand[J]. Journal of Asian Earth Sciences, 2024, 262:106003. doi: 10.1016/j.jseaes.2023.106003

    CrossRef Google Scholar

    [77] Limaye R B, Kumaran K PN. Mangrove vegetation responses to Holocene climate change along Konkan coast of south-western India[J]. Quaternary International, 2012, 263:114-128. doi: 10.1016/j.quaint.2012.01.034

    CrossRef Google Scholar

    [78] Zhang Y, Meng X W, Xia P, et al. Response of mangrove development to air temperature variation over the past 3000 years in Qinzhou Bay, tropical China[J]. Frontiers in Earth Science, 2021, 9:678189. doi: 10.3389/feart.2021.678189

    CrossRef Google Scholar

    [79] Steffen W, Grinevald J, Crutzen P, et al. The Anthropocene: conceptual and historical perspectives[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1938):842-867. doi: 10.1098/rsta.2010.0327

    CrossRef Google Scholar

    [80] Syvitski J, Waters C N, Day J, et al. Extraordinary human energy consumption and resultant geological impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch[J]. Communications Earth & Environment, 2020, 1(1):32.

    Google Scholar

    [81] Crutzen P J, Stoermer E F. The ‘Anthropocene’ (2000)[M]//Benner S, Lax G, Crutzen P J, et al. Paul J. Crutzen and the Anthropocene: A New Epoch in Earth’s History. Cham: Springer, 2021: 19-21.

    Google Scholar

    [82] Miller K G, Schmelz W J, Browning J V, et al. Ancient sea level as key to the future[J]. Oceanography, 2020, 33(2):32-41.

    Google Scholar

    [83] Saintilan N, Khan N S, Ashe E, et al. Thresholds of mangrove survival under rapid sea level rise[J]. Science, 2020, 368(6495):1118-1121. doi: 10.1126/science.aba2656

    CrossRef Google Scholar

    [84] Bozi B S, Figueiredo B L, Rodrigues E, et al. Impacts of sea-level changes on mangroves from southeastern Brazil during the Holocene and Anthropocene using a multi-proxy approach[J]. Geomorphology, 2021, 390:107860. doi: 10.1016/j.geomorph.2021.107860

    CrossRef Google Scholar

    [85] Yao Q, Cohen M, Liu K B, et al. Mangrove expansion at poleward range limits in North and South America: Late-Holocene climate variability or Anthropocene global warming?[J]. Catena, 2022, 216:106413. doi: 10.1016/j.catena.2022.106413

    CrossRef Google Scholar

    [86] Cavanaugh K C, Kellner J R, Forde A J, et al. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(2):723-727.

    Google Scholar

    [87] Rodrigues E, Cohen M C L, Pessenda L C R, et al. Poleward mangrove expansion in South America coincides with MCA and CWP: a diatom, pollen, and organic geochemistry study[J]. Quaternary Science Reviews, 2022, 288:107598. doi: 10.1016/j.quascirev.2022.107598

    CrossRef Google Scholar

    [88] Hapsari K A, Jennerjahn T C, Lukas M C, et al. Intertwined effects of climate and land use change on environmental dynamics and carbon accumulation in a mangrove-fringed coastal lagoon in Java, Indonesia[J]. Global Change Biology, 2020, 26(3):1414-1431. doi: 10.1111/gcb.14926

    CrossRef Google Scholar

    [89] Punwong P, Sritrairat S, Selby K, et al. An 800 year record of mangrove dynamics and human activities in the upper Gulf of Thailand[J]. Vegetation History and Archaeobotany, 2018, 27(4):535-549. doi: 10.1007/s00334-017-0651-x

    CrossRef Google Scholar

    [90] Xia P, Meng X W, Yin P, et al. Eighty-year sedimentary record of heavy metal inputs in the intertidal sediments from the Nanliu River estuary, Beibu Gulf of South China Sea[J]. Environmental Pollution, 2011, 159(1):92-99. doi: 10.1016/j.envpol.2010.09.014

    CrossRef Google Scholar

    [91] Frederikse T, Landerer F, Caron L, et al. The causes of sea-level rise since 1900[J]. Nature, 2020, 584(7821):393-397. doi: 10.1038/s41586-020-2591-3

    CrossRef Google Scholar

    [92] 黄雪松, 周惠文, 黄梅丽, 等. 广西近50年来气温、降水气候变化[J]. 广西气象, 2005, 26(4):9-11

    Google Scholar

    HUANG Xuesong, ZHOU Huiwen, HUANG Meili, et al. Guangxi temperature, precipitation climatic change in nearly 50 years[J]. Journal of Guangxi Meteorology, 2005, 26(4):9-11.]

    Google Scholar

    [93] Hamilton S E, Casey D. Creation of a high spatio‐temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC‐21)[J]. Global Ecology and Biogeography, 2016, 25(6):729-738. doi: 10.1111/geb.12449

    CrossRef Google Scholar

    [94] Jia M M, Wang Z M, Mao D H, et al. Spatial-temporal changes of China’s mangrove forests over the past 50 years: An analysis towards the Sustainable Development Goals (SDGs)[J]. Chinese Science Bulletin, 2021, 66(30):3886-3901. doi: 10.1360/TB-2020-1412

    CrossRef Google Scholar

    [95] Murillo-Sandoval P J, Fatoyinbo L, Simard M. Mangroves cover change trajectories 1984-2020: the gradual decrease of mangroves in Colombia[J]. Frontiers in Marine Science, 2022, 9:892946. doi: 10.3389/fmars.2022.892946

    CrossRef Google Scholar

    [96] Wang L, Jia M M, Yin D M, et al. A review of remote sensing for mangrove forests: 1956-2018[J]. Remote Sensing of Environment, 2019, 231:111223. doi: 10.1016/j.rse.2019.111223

    CrossRef Google Scholar

    [97] Maurya K, Mahajan S, Chaube N. Remote sensing techniques: mapping and monitoring of mangrove ecosystem—a review[J]. Complex & Intelligent Systems, 2021, 7(6):2797-2818.

    Google Scholar

    [98] Goldsmith Y, Broecker W S, Xu H, et al. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(8):1817-1821. doi: 10.1073/pnas.1616708114

    CrossRef Google Scholar

    [99] Mendieta K L, Gerber S, Brenner M. Florida wildfires during the Holocene climatic optimum (9000-5000 cal yr BP)[J]. Journal of Paleolimnology, 2018, 60(1):51-66. doi: 10.1007/s10933-018-0023-2

    CrossRef Google Scholar

    [100] 相文玺, 王慧, 李文善, 等. 2021年中国沿海海平面变化及影响状况[J]. 气候变化研究进展, 2022, 18(4):516-522

    Google Scholar

    XIANG Wenxi, WANG Hui, LI Wenshan, et al. Coastal sea level change and impacts in China: the state of 2021[J]. Climate Change Research, 2022, 18(4):516-522.]

    Google Scholar

    [101] Bellprat O, Guemas V, Doblas-reyes F, et al. Towards reliable extreme weather and climate event attribution[J]. Nature Communications, 2019, 10(1):1732. doi: 10.1038/s41467-019-09729-2

    CrossRef Google Scholar

    [102] Yu K F, Zhao J X, Liu T S, et al. High-frequency winter cooling and reef coral mortality during the Holocene climatic optimum[J]. Earth and Planetary Science Letters, 2004, 224(1-2):143-155. doi: 10.1016/j.jpgl.2004.04.036

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(1540) PDF downloads(249) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint