2024 Vol. 44, No. 4
Article Contents

XU Xuechao, LIU Li, YANG Shengli, WEN Chen, LI Rui, ZHANG Jingzhao, WANG Haiyan. Environmental changes during the last glacial in the Eastern Tibetan Plateau revealed by loess sediments in the Aba Basin[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 168-179. doi: 10.16562/j.cnki.0256-1492.2024022803
Citation: XU Xuechao, LIU Li, YANG Shengli, WEN Chen, LI Rui, ZHANG Jingzhao, WANG Haiyan. Environmental changes during the last glacial in the Eastern Tibetan Plateau revealed by loess sediments in the Aba Basin[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 168-179. doi: 10.16562/j.cnki.0256-1492.2024022803

Environmental changes during the last glacial in the Eastern Tibetan Plateau revealed by loess sediments in the Aba Basin

More Information
  • Loess deposits are widespread in the Eastern Tibetan Plateau (TP), and act as crucial terrestrial archives for past climate changes and dust activity. Studying their environmental signatures in detail offers valuable evidence to unravel the TP's environmental evolution processes and mechanisms. This study employs quartz optically stimulated luminescence dating to establish a robust chronology for the Gemo loess sequence in the Aba Basin. Utilizing multiple environmental proxies, we reconstructed the environmental change history since ~47 ka in the Aba Basin. Magnetic susceptibility, color index, and carbonate content records suggest a strengthened Indian summer monsoon during the Marine Isotope Stage 3, leading to a relatively humid Tibetan Plateau. The grain size records of the Gemo loess revealed four Heinrich events and Younger Dryas event, indicating the periods of intense dust activity and rapid climate change on the TP during the last glacial period. Comparisons with regional records highlight the significant influence of high-latitude climate system in the Northern Hemisphere on rapid climate change in the TP. Our results suggest that the Atlantic Meridional Overturning Circulation may be the controlling factor of dust activity and climate change in the TP. This study provided crucial evidence for deep understanding of the environmental evolution in TP during the last glacial period.

  • 加载中
  • [1] Tierney J E, Poulsen C J, Montañez I P, et al. Past climates inform our future[J]. Science, 2020, 370(6517):eaay3701. doi: 10.1126/science.aay3701

    CrossRef Google Scholar

    [2] 秦蕴珊, 李铁刚, 苍树溪. 末次间冰期以来地球气候系统的突变[J]. 地球科学进展, 2000, 15(3):243-250

    Google Scholar

    QIN Yunshan, LI Tiegang, CANG Shuxi. Abrupt changes in Earth's climate system since last interglacial[J]. Advance in Earth Sciences, 2000, 15(3):243-250.]

    Google Scholar

    [3] Heinrich H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130 000 years[J]. Quaternary Research, 1988, 29(2):142-152. doi: 10.1016/0033-5894(88)90057-9

    CrossRef Google Scholar

    [4] Dansgaard W, Johnsen S J, Clausen H B, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364(6434):218-220. doi: 10.1038/364218a0

    CrossRef Google Scholar

    [5] Peteet D. Global younger dryas?[J]. Quaternary International, 1995, 28:93-104. doi: 10.1016/1040-6182(95)00049-O

    CrossRef Google Scholar

    [6] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 2016, 534(7609):640-646. doi: 10.1038/nature18591

    CrossRef Google Scholar

    [7] Song Y G, Luo D, Du J H, et al. Radiometric dating of Late Quaternary loess in the northern piedmont of South Tianshan Mountains: implications for reliable dating[J]. Geological Journal, 2018, 53(S2):417-426. doi: 10.1002/gj.3129

    CrossRef Google Scholar

    [8] Corrick E C, Drysdale R N, Hellstrom J C, et al. Synchronous timing of abrupt climate changes during the last glacial Period[J]. Science, 2020, 369(6506):963-969. doi: 10.1126/science.aay5538

    CrossRef Google Scholar

    [9] Huang J P, Zhou X J, Wu G X, et al. Global climate impacts of land-surface and atmospheric processes over the Tibetan Plateau[J]. Reviews of Geophysics, 2023, 61(3):e2022RG000771. doi: 10.1029/2022RG000771

    CrossRef Google Scholar

    [10] Qiu J. China: the third pole[J]. Nature, 2008, 454(7203):393-396. doi: 10.1038/454393a

    CrossRef Google Scholar

    [11] Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9):663-667. doi: 10.1038/nclimate1580

    CrossRef Google Scholar

    [12] Immerzeel W W, van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984):1382-1385. doi: 10.1126/science.1183188

    CrossRef Google Scholar

    [13] Yao T D, Xue Y K, Chen D L, et al. Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3):423-444. doi: 10.1175/BAMS-D-17-0057.1

    CrossRef Google Scholar

    [14] 施雅风, 贾玉连, 于革, 等. 40-30kaBP青藏高原及邻区高温大降水事件的特征、影响及原因探讨[J]. 湖泊科学, 2002, 14(1):1-11 doi: 10.18307/2002.0101

    CrossRef Google Scholar

    SHI Yafeng, JIA Yulian, YU Ge, et al. Features, impacts and causes of the high temperature and large precipitation event in the Tibetan Plateau and its adjacent area during 40-30 kaBP[J]. Journal of Lake Sciences, 2002, 14(1):1-11.] doi: 10.18307/2002.0101

    CrossRef Google Scholar

    [15] Thompson L G, Severinghaus J P, Yao T D, et al. Use of δ18Oatm in dating a Tibetan ice core record of Holocene/Late Glacial climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(45):e2205545119.

    Google Scholar

    [16] Hou S G, Zhang W B, Pang H X, et al. Apparent discrepancy of Tibetan ice core δ18O records may be attributed to misinterpretation of chronology[J]. The Cryosphere, 2019, 13(6):1743-1752. doi: 10.5194/tc-13-1743-2019

    CrossRef Google Scholar

    [17] 李炳元. 青藏高原大湖期[J]. 地理学报, 2000, 55(2):174-182

    Google Scholar

    LI Bingyuan. The last Greatest Lakes on the Xizang (Tibetan) Plateau[J]. Acta Geographica Sinica, 2000, 55(2):174-182.]

    Google Scholar

    [18] Lai Z P. Was Late Marine Isotope Stage (MIS) 3 warm and humid in nowadays arid northwestern China?[J]. Quaternary International, 2012, 279-280:261.

    Google Scholar

    [19] Zhang S, Zhang J F, Zhao H, et al. Spatiotemporal complexity of the "Greatest Lake Period" in the Tibetan Plateau[J]. Science Bulletin, 2020, 65(16):1317-1319. doi: 10.1016/j.scib.2020.05.004

    CrossRef Google Scholar

    [20] Wei T, Brahney J, Dong Z W, et al. Hf–Nd–Sr isotopic composition of the Tibetan Plateau dust as a fingerprint for regional to hemispherical transport[J]. Environmental Science & Technology, 2021, 55(14):10121-10132.

    Google Scholar

    [21] 方小敏, 韩永翔, 马金辉, 等. 青藏高原沙尘特征与高原黄土堆积: 以2003-03-04拉萨沙尘天气过程为例[J]. 科学通报, 2004, 49(11): 1084-1090

    Google Scholar

    FANG Xiaomin, HAN Yongxiang, MA Jinhui, et al. Dust storms and loess accumulation on the Tibetan Plateau: a case study of dust event on 4 March 2003 in Lhasa[J]. Chinese Science Bulletin, 2004, 49(9): 953-960.]

    Google Scholar

    [22] Huang X M, Miao X D, Chang Q F, et al. Tibetan dust accumulation linked to ecological and landscape response to global climate change[J]. Geophysical Research Letters, 2022, 49(1):e2021GL096615. doi: 10.1029/2021GL096615

    CrossRef Google Scholar

    [23] 刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985

    Google Scholar

    LIU Tungsheng. Loess and the Environment[M]. Beijing: Science Press, 1985.]

    Google Scholar

    [24] 潘保田, 王建民. 末次间冰期以来青藏高原东部季风演化的黄土沉积记录[J]. 第四纪研究, 1999, 19(4):330-335

    Google Scholar

    PAN Baotian, WANG Jianmin. Loess record of Qinghai-Xizang Plateau monsoon variations in the eastern part of the Plateau since the Last Interglacial[J]. Quaternary Sciences, 1999, 19(4):330-335.]

    Google Scholar

    [25] 方小敏, 陈富斌, 施雅风, 等. 甘孜黄土与青藏高原冰冻圈演化[J]. 科学通报, 1996, 41(20):1865-1867 doi: 10.1360/csb1996-41-20-1865

    CrossRef Google Scholar

    FANG Xiaomin, CHEN Fubin, SHI Yafeng, et al. Evolution of the Ganzi loess and the Tibetan Plateau cryosphere[J]. Chinese Science Bulletin, 1996, 41(20):1865-1867.] doi: 10.1360/csb1996-41-20-1865

    CrossRef Google Scholar

    [26] Qiao Y S, Qi L, Liu Z X, et al. Intensification of aridity in the eastern margin of the Tibetan Plateau since 300ka BP inferred from loess-soil sequences, western Sichuan province, southwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 414:192-199. doi: 10.1016/j.palaeo.2014.08.025

    CrossRef Google Scholar

    [27] Chen Z X, Yang S L, Luo Y L, et al. HIRM variation in the Ganzi loess of the eastern Tibetan Plateau since the last interglacial Period and its paleotemperature implications for the source region[J]. Gondwana Research, 2022, 101:233-242. doi: 10.1016/j.gr.2021.08.008

    CrossRef Google Scholar

    [28] Chen Z X, Li Q, Li P S, et al. High-resolution climate change during the Marine Isotope Stage 3 revealed by Zhouqu loess in the eastern margin of the Tibetan Plateau[J]. Progress in Physical Geography: Earth and Environment, 2024, 48(2):298-319. doi: 10.1177/03091333241236394

    CrossRef Google Scholar

    [29] Li Q, Li P S, Liu X J, et al. Aeolian process and climatic changes in loess records from the eastern Tibetan Plateau: implications for paleoenvironmental dynamics since MIS 3[J]. CATENA, 2023, 231:107361. doi: 10.1016/j.catena.2023.107361

    CrossRef Google Scholar

    [30] 汪阳春, 柴宗新, 刘淑珍, 等. 横断山地区的黄土及意义[J]. 山地学报, 1999, 17(4):300-304

    Google Scholar

    WANG Yangchun, CHAI Zongxin, LIU Shuzhen, et al. The loess in Hengduan Mountains and its significance[J]. Journal of Mountain Science, 1999, 17(4):300-304.]

    Google Scholar

    [31] 王建民. 青藏高原东北部近十五万年来黄土沉积与环境演化[D]. 兰州大学博士学位论文, 1995

    Google Scholar

    WANG Jianmin. Loess deposition and environmental evolution in the northeastern Tibetan Plateau over the past 150 000 years[D]. Doctor Dissertation of Lanzhou University, 1995.]

    Google Scholar

    [32] Liu X J, Miao X D, Nie J S, et al. Distribution and fate of Tibetan Plateau loess[J]. CATENA, 2023, 225:107022. doi: 10.1016/j.catena.2023.107022

    CrossRef Google Scholar

    [33] 陈诗越, 方小敏, 王苏民. 川西高原甘孜黄土与印度季风演化关系[J]. 海洋地质与第四纪地质, 2002, 22(3):41-46

    Google Scholar

    CHEN Shiyue, FANG Xiaomin, WANG Sumin. Relation between the loess stratigraphy on the eastern Tibetan Plateau and Indian monsoon[J]. Marine Geology & Quaternary Geology, 2002, 22(3):41-46.]

    Google Scholar

    [34] Yang S L, Chen Z X, Chen H, et al. Magnetic properties of the Ganzi loess and their implications for precipitation history in the eastern Tibetan Plateau since the Last Interglacial[J]. Paleoceanography and Paleoclimatology, 2022, 37(2):e2021PA004322. doi: 10.1029/2021PA004322

    CrossRef Google Scholar

    [35] Chen F H, Zhang J F, Liu J B, et al. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: a comprehensive review[J]. Quaternary Science Reviews, 2020, 243:106444. doi: 10.1016/j.quascirev.2020.106444

    CrossRef Google Scholar

    [36] Aitken M J. An Introduction to Optical Dating: the Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence[M]. New York: Oxford University Press, 1998.

    Google Scholar

    [37] Lai Z P, Wintle A G. Locating the boundary between the Pleistocene and the Holocene in Chinese loess using luminescence[J]. The Holocene, 2006, 16(6):893-899. doi: 10.1191/0959683606hol980rr

    CrossRef Google Scholar

    [38] Lai Z P, Wintle A G, Thomas D S G. Rates of dust deposition between 50 ka and 20 ka revealed by OSL dating at Yuanbao on the Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 248(3-4):431-439. doi: 10.1016/j.palaeo.2006.12.013

    CrossRef Google Scholar

    [39] Duller G A T. Distinguishing quartz and feldspar in single grain luminescence measurements[J]. Radiation Measurements, 2003, 37(2):161-165. doi: 10.1016/S1350-4487(02)00170-1

    CrossRef Google Scholar

    [40] Murray A S, Wintle A G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J]. Radiation Measurements, 2000, 32(1):57-73. doi: 10.1016/S1350-4487(99)00253-X

    CrossRef Google Scholar

    [41] Murray A S, Wintle A G. The single aliquot regenerative dose protocol: potential for improvements in reliability[J]. Radiation Measurements, 2003, 37(4-5):377-381. doi: 10.1016/S1350-4487(03)00053-2

    CrossRef Google Scholar

    [42] Galbraith R F, Roberts R G, Laslett G M, et al. Optical dating of single and multiple grains of Quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models[J]. Archaeometry, 1999, 41(2):339-364. doi: 10.1111/j.1475-4754.1999.tb00987.x

    CrossRef Google Scholar

    [43] Guérin G, Mercier N, Adamiec G. Dose-rate conversion factors: update[J]. Ancient TL, 2011, 29(1):5-8.

    Google Scholar

    [44] Prescott J R, Hutton J T. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations[J]. Radiation Measurements, 1994, 23(2-3):497-500. doi: 10.1016/1350-4487(94)90086-8

    CrossRef Google Scholar

    [45] Liang P, Forman S L. LDAC: an Excel-based program for luminescence equivalent dose and burial age calculations[J]. Ancient TL, 2019, 37(2):21-40.

    Google Scholar

    [46] Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6(3):457-474. doi: 10.1214/ba/1339616472

    CrossRef Google Scholar

    [47] Wintle A G, Murray A S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols[J]. Radiation Measurements, 2006, 41(4):369-391. doi: 10.1016/j.radmeas.2005.11.001

    CrossRef Google Scholar

    [48] Liu L, Yang S L, Cheng T, et al. Chronology and dust mass accumulation history of the Wenchuan loess on eastern Tibetan Plateau since the last glacial[J]. Aeolian Research, 2021, 53:100748. doi: 10.1016/j.aeolia.2021.100748

    CrossRef Google Scholar

    [49] Heller F, Tung-Sheng L. Palaeoclimatic and sedimentary history from magnetic susceptibility of loess in China[J]. Geophysical Research Letters, 1986, 13(11):1169-1172. doi: 10.1029/GL013i011p01169

    CrossRef Google Scholar

    [50] Yang S L, Liu N N, Li D X, et al. Quartz OSL chronology of the loess deposits in the western Qinling Mountains, China, and their palaeoenvironmental implications since the Last Glacial Period[J]. Boreas, 2021, 50(1):294-307. doi: 10.1111/bor.12473

    CrossRef Google Scholar

    [51] 李冬雪, 刘楠楠, 杨胜利, 等. 石英标准生长曲线在青藏高原东缘黄土光释光测年中的应用[J]. 第四纪研究, 2021, 41(1):111-122

    Google Scholar

    LI Dongxue, LIU Nannan, YANG Shengli, et al. Application of quartz OSL standardized growth curve for De determination in loess on the eastern Tibetan Plateau[J]. Quaternary Sciences, 2021, 41(1):111-122.]

    Google Scholar

    [52] An Z S, Kukla G J, Porter S C, et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130, 000 years[J]. Quaternary Research, 1991, 36(1):29-36. doi: 10.1016/0033-5894(91)90015-W

    CrossRef Google Scholar

    [53] 杨胜利, 方小敏, 李吉均, 等. 表土颜色和气候定性至半定量关系研究[J]. 中国科学(D辑), 2001, 31(S1): 175-181

    Google Scholar

    YANG Shengli, FANG Xiaomin, LI Jijun, et al. Transformation functions of soil color and climate[J]. Science in China Series D: Earth Sciences, 2001, 44(S1): 218-226.]

    Google Scholar

    [54] Li Y D, Li Y, Song Y G, et al. Effective moisture evolution since the last glacial maximum revealed by a loess record from the Westerlies-dominated Ili Basin, NW China[J]. Atmosphere, 2022, 13(11):1931. doi: 10.3390/atmos13111931

    CrossRef Google Scholar

    [55] Sun H Y, Song Y G, Chen X L, et al. Holocene dust deposition in the Ili Basin and its implications for climate variations in Westerlies-dominated Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550:109731. doi: 10.1016/j.palaeo.2020.109731

    CrossRef Google Scholar

    [56] Fang X M, Ono Y, Fukusawa H, et al. Asian summer monsoon instability during the past 60, 000 years: magnetic susceptibility and pedogenic evidence from the western Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 1999, 168(3-4):219-232. doi: 10.1016/S0012-821X(99)00053-9

    CrossRef Google Scholar

    [57] Fang X M, Lü L Q, Mason J A, et al. Pedogenic response to millennial summer monsoon enhancements on the Tibetan Plateau[J]. Quaternary International, 2003, 106-107:79-88. doi: 10.1016/S1040-6182(02)00163-5

    CrossRef Google Scholar

    [58] Herzschuh U. Palaeo-moisture evolution in monsoonal Central Asia during the last 50, 000 years[J]. Quaternary Science Reviews, 2006, 25(1-2):163-178. doi: 10.1016/j.quascirev.2005.02.006

    CrossRef Google Scholar

    [59] Cai Y J, An Z S, Cheng H, et al. High-resolution absolute-dated Indian Monsoon record between 53 and 36 ka from Xiaobailong Cave, southwestern China[J]. Geology, 2006, 34(8):621-624. doi: 10.1130/G22567.1

    CrossRef Google Scholar

    [60] Cai Y J, Fung I Y, Edwards R L, et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252, 000 y[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(10):2954-2959.

    Google Scholar

    [61] Stauch G, Lai Z P, Lehmkuhl F, et al. Environmental changes during the Late Pleistocene and the Holocene in the Gonghe Basin, north-eastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509:144-155. doi: 10.1016/j.palaeo.2016.12.032

    CrossRef Google Scholar

    [62] 沈才明, 唐领余, 王苏民, 等. 若尔盖盆地RM孔孢粉记录及其年代序列[J]. 科学通报, 2005, 50(3): 246-254

    Google Scholar

    SHEN Caiming, TANG Lingyu, WANG Sumin, et al. Pollen records and time scale for the RM core of the Zoige Basin, northeastern Qinghai-Tibetan Plateau[J]. Chinese Science Bulletin, 2005, 50(6): 553-562.]

    Google Scholar

    [63] Shi Y F, Yu G, Liu X D, et al. Reconstruction of the 30-40 ka BP enhanced Indian monsoon climate based on geological records from the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169(1-2):69-83. doi: 10.1016/S0031-0182(01)00216-4

    CrossRef Google Scholar

    [64] Han W X, Fang X M, Yang S L, et al. Differences between East Asian and Indian monsoon climate records during MIS3 attributed to differences in their driving mechanisms: evidence from the loess record in the Sichuan Basin, southwestern China and other continental and marine climate records[J]. Quaternary International, 2010, 218(1-2):94-103. doi: 10.1016/j.quaint.2010.01.002

    CrossRef Google Scholar

    [65] Zhao Y, Yu Z C, Tang Y, et al. Peatland initiation and carbon accumulation in China over the last 50, 000 years[J]. Earth-Science Reviews, 2014, 128:139-146. doi: 10.1016/j.earscirev.2013.11.003

    CrossRef Google Scholar

    [66] Vandenberghe J, Nugteren G. Rapid climatic changes recorded in loess successions[J]. Global and Planetary Change, 2001, 28(1-4):1-9. doi: 10.1016/S0921-8181(00)00060-6

    CrossRef Google Scholar

    [67] Krauß L, Klasen N, Schulte P, et al. New results concerning the pedo‐ and chronostratigraphy of the loess–palaeosol sequence Attenfeld (Bavaria, Germany) derived from a multi‐methodological approach[J]. Journal of Quaternary Science, 2021, 36(8):1382-1396. doi: 10.1002/jqs.3298

    CrossRef Google Scholar

    [68] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):PA1003.

    Google Scholar

    [69] North Greenland Ice Core Project Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial Period[J]. Nature, 2004, 431(7005):147-151. doi: 10.1038/nature02805

    CrossRef Google Scholar

    [70] 吕连清, 方小敏, 鹿化煜, 等. 青藏高原东北缘黄土粒度记录的末次冰期千年尺度气候变化[J]. 科学通报, 2004, 49(11):1091-1098 doi: 10.1360/csb2004-49-11-1091

    CrossRef Google Scholar

    LV Lianqing, FANG Xiaomin, LU Huayu, et al. Millennial-scale climate change during the last glacial Period recorded in loess grain size on the northeastern margin of the Tibetan Plateau[J]. Chinese Science Bulletin, 2004, 49(11):1091-1098.] doi: 10.1360/csb2004-49-11-1091

    CrossRef Google Scholar

    [71] Sun Y B, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2012, 5(1):46-49. doi: 10.1038/ngeo1326

    CrossRef Google Scholar

    [72] Rasmussen S O, Bigler M, Blockley S P, et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial Period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy[J]. Quaternary Science Reviews, 2014, 106:14-28. doi: 10.1016/j.quascirev.2014.09.007

    CrossRef Google Scholar

    [73] Böhm E, Lippold J, Gutjahr M, et al. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle[J]. Nature, 2015, 517(7532):73-76. doi: 10.1038/nature14059

    CrossRef Google Scholar

    [74] McManus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428(6985):834-837. doi: 10.1038/nature02494

    CrossRef Google Scholar

    [75] Vandenberghe J. Grain size of fine-grained windblown sediment: a powerful proxy for process identification[J]. Earth-Science Reviews, 2013, 121:18-30. doi: 10.1016/j.earscirev.2013.03.001

    CrossRef Google Scholar

    [76] Xiong J G, Zhong Y Z, Liu C C, et al. Mineral magnetic variation of the minle loess/palaeosol sequence of the Late glacial to Holocene Period in the northeastern Tibetan Plateau[J]. Geophysical Journal International, 2023, 235(2):1624-1638. doi: 10.1093/gji/ggad305

    CrossRef Google Scholar

    [77] Thompson L G, Yao T D, Davis M E, et al. Ice core evidence for an orbital-scale climate transition on the Northwest Tibetan Plateau[J]. Quaternary Science Reviews, 2024, 324:108443. doi: 10.1016/j.quascirev.2023.108443

    CrossRef Google Scholar

    [78] Thompson L G, Yao T D, Davis M E, et al. Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan Ice core[J]. Science, 1997, 276(5320):1821-1825. doi: 10.1126/science.276.5320.1821

    CrossRef Google Scholar

    [79] Seierstad I K, Abbott P M, Bigler M, et al. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint[J]. Quaternary Science Reviews, 2014, 106:29-46. doi: 10.1016/j.quascirev.2014.10.032

    CrossRef Google Scholar

    [80] Zhang X, Lohmann G, Knorr G, et al. Abrupt glacial climate shifts controlled by ice sheet changes[J]. Nature, 2014, 512(7514):290-294. doi: 10.1038/nature13592

    CrossRef Google Scholar

    [81] Ding Z L, Liu T, Rutter N W, et al. Ice-volume forcing of East Asian winter monsoon variations in the past 800, 000 years[J]. Quaternary Research, 1995, 44(2):149-159. doi: 10.1006/qres.1995.1059

    CrossRef Google Scholar

    [82] Mori M, Watanabe M, Shiogama H, et al. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades[J]. Nature Geoscience, 2014, 7(12):869-873. doi: 10.1038/ngeo2277

    CrossRef Google Scholar

    [83] 刘维明, 杨胜利, 方小敏. 川西高原黄土记录的末次冰期气候变化[J]. 吉林大学学报: 地球科学版, 2013, 43(3):974-982

    Google Scholar

    LIU Weiming, YANG Shengli, FANG Xiaomin. Loess recorded climatic change during the last glaciation on the eastern Tibetan Plateau, western Sichuan[J]. Journal of Jilin University: Earth Science Edition, 2013, 43(3):974-982.]

    Google Scholar

    [84] Zhang X, Knorr G, Lohmann G, et al. Abrupt North Atlantic circulation changes in response to gradual CO2 forcing in a glacial climate state[J]. Nature Geoscience, 2017, 10(7):518-523. doi: 10.1038/ngeo2974

    CrossRef Google Scholar

    [85] Wang W C, Wang J, Qiu J K, et al. Anti-phase glacier fluctuations on the millennial-scale on the southern Tibetan Plateau and New Zealand during the last glacial Period[J]. Quaternary Science Reviews, 2024, 329:108565. doi: 10.1016/j.quascirev.2024.108565

    CrossRef Google Scholar

    [86] Held F, Cheng H, Edwards R L, et al. Dansgaard-Oeschger cycles of the penultimate and last glacial Period recorded in stalagmites from Türkiye[J]. Nature Communications, 2024, 15(1):1183. doi: 10.1038/s41467-024-45507-5

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(355) PDF downloads(34) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint