2024 Vol. 44, No. 2
Article Contents

CHEN Tianran, XIAO Guoqiao, LIN Xinru, PAN Qing. Progress and outlooks on magnetostratigraphy of Chinese loess[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 1-15. doi: 10.16562/j.cnki.0256-1492.2024013001
Citation: CHEN Tianran, XIAO Guoqiao, LIN Xinru, PAN Qing. Progress and outlooks on magnetostratigraphy of Chinese loess[J]. Marine Geology & Quaternary Geology, 2024, 44(2): 1-15. doi: 10.16562/j.cnki.0256-1492.2024013001

Progress and outlooks on magnetostratigraphy of Chinese loess

More Information
  • The Chinese loess is one of the most important terrestrial records of the Quaternary climate changes. Magnetostratigraphy is one of the primary methods for establishing the chronological framework of the Quaternary loess. The measured positions of the Brunhes/Matuyama, Jaramillo, Olduvai, and Matuyama/Gauss polarity reversal boundaries in Chinese loess were summarized and compared against corresponding marine records. It was found that the positions of each polarity reversal boundary are inconsistent among different loess sections, and the difference spanned more than one loess-paleosol cycle. This discrepancy cannot be attributed to the lock-in effect, regional climate, sedimentation rate or different loess stratigraphic divisions. This may indicate that the polarity reversal boundaries recorded by loess deposits had probably experienced significant remagnetization, leading to a large discrepancy between loess geochronometer in magnetostratigraphy at orbital scale and marine oxygen isotope records by different researchers. In the future, studies shall focus more on the relative paleointensity (RPI) of loess to confirm the true position of each polarity reversal boundary and ultimately resolve the discrepancy in the comparison scheme between Chinese loess data and deep-sea sediment record.

  • 加载中
  • [1] An Z S. The history and variability of the East Asian paleomonsoon climate[J]. Quaternary Science Reviews, 2000, 19(1-5):171-187. doi: 10.1016/S0277-3791(99)00060-8

    CrossRef Google Scholar

    [2] An Z S. Late Cenozoic Climate Change in Asia: Loess, Monsoon and Monsoon-Arid Environment Evolution[M]. Dordrecht: Springer, 2014: 1-582.

    Google Scholar

    [3] Guo Z T, Biscaye P, Wei L Y, et al. Summer monsoon variations over the last 1.2 Ma from the weathering of loess-soil sequences in China[J]. Geophysical Research Letters, 2000, 27(12):1751-1754. doi: 10.1029/1999GL008419

    CrossRef Google Scholar

    [4] Hao Q Z, Wang L, Oldfield F, et al. Delayed build-up of Arctic ice sheets during 400, 000-year minima in insolation variability[J]. Nature, 2012, 490(7420):393-396. doi: 10.1038/nature11493

    CrossRef Google Scholar

    [5] Liu T, Ding Z L. Chinese loess and the paleomonsoon[J]. Annual Review of Earth and Planetary Sciences, 1998, 26:111-145. doi: 10.1146/annurev.earth.26.1.111

    CrossRef Google Scholar

    [6] Cohen K M, Gibbard P L. Global chronostratigraphical correlation table for the last 2.7 million years, version 2019 QI-500[J]. Quaternary International, 2019, 500:20-31. doi: 10.1016/j.quaint.2019.03.009

    CrossRef Google Scholar

    [7] Gradstein F M, Ogg J G, Schmitz M D, et al. Geologic Time Scale 2020[M]. Amsterdam: Elsevier, 2020: 1-1357.

    Google Scholar

    [8] Heller F, Tung-sheng L. Magnetostratigraphical dating of loess deposits in China[J]. Nature, 1982, 300(5891):431-433. doi: 10.1038/300431a0

    CrossRef Google Scholar

    [9] Heller F, Tungsheng L. Magnetism of Chinese loess deposits[J]. Geophysical Journal International, 1984, 77(1):125-141. doi: 10.1111/j.1365-246X.1984.tb01928.x

    CrossRef Google Scholar

    [10] Kukla G, Heller F, Ming L X, et al. Pleistocene climates in China dated by magnetic susceptibility[J]. Geology, 1988, 16(9):811-814. doi: 10.1130/0091-7613(1988)016<0811:PCICDB>2.3.CO;2

    CrossRef Google Scholar

    [11] Hovan S A, Rea D K, Pisias N G, et al. A direct link between the China loess and marine δ18O records: aeolian flux to the north Pacific[J]. Nature, 1989, 340(6231):296-298. doi: 10.1038/340296a0

    CrossRef Google Scholar

    [12] Ding Z, Yu Z, Rutter N W, et al. Towards an orbital time scale for Chinese loess deposits[J]. Quaternary Science Reviews, 1994, 13(1):39-70. doi: 10.1016/0277-3791(94)90124-4

    CrossRef Google Scholar

    [13] Lu H U, Liu X D, Zhang F Q, et al. Astronomical calibration of loess-paleosol deposits at Luochuan, central Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 154(3):237-246. doi: 10.1016/S0031-0182(99)00113-3

    CrossRef Google Scholar

    [14] Heslop D, Langereis C G, Dekkers M J. A new astronomical timescale for the loess deposits of Northern China[J]. Earth and Planetary Science Letters, 2000, 184(1):125-139. doi: 10.1016/S0012-821X(00)00324-1

    CrossRef Google Scholar

    [15] Ding Z L, Derbyshire E, Yang S L, et al. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record[J]. Paleoceanography, 2002, 17(3):1033.

    Google Scholar

    [16] Sun Y B, Clemens S C, An Z S, et al. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2006, 25(1-2):33-48. doi: 10.1016/j.quascirev.2005.07.005

    CrossRef Google Scholar

    [17] Zhu Z Y, Dennell R, Huang W W, et al. Hominin occupation of the Chinese Loess Plateau since about 2.1 million years ago[J]. Nature, 2018, 559(7715):608-612. doi: 10.1038/s41586-018-0299-4

    CrossRef Google Scholar

    [18] Ao H, Rohling E J, Stringer C, et al. Two-stage mid-Brunhes climate transition and mid-Pleistocene human diversification[J]. Earth-Science Reviews, 2020, 210:103354. doi: 10.1016/j.earscirev.2020.103354

    CrossRef Google Scholar

    [19] Beck J W, Zhou W J, Li C, et al. A 550, 000-year record of East Asian monsoon rainfall from 10Be in loess[J]. Science, 2018, 360(6391):877-881. doi: 10.1126/science.aam5825

    CrossRef Google Scholar

    [20] Han Y M, An Z S, Marlon J R, et al. Asian inland wildfires driven by glacial-interglacial climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(10):5184-5189.

    Google Scholar

    [21] Sun Y B, McManus J F, Clemens S C, et al. Persistent orbital influence on millennial climate variability through the Pleistocene[J]. Nature Geoscience, 2021, 14(11):812-818. doi: 10.1038/s41561-021-00794-1

    CrossRef Google Scholar

    [22] Sun Y B, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2012, 5(1):46-49. doi: 10.1038/ngeo1326

    CrossRef Google Scholar

    [23] Lu H X, Liu W G, Yang H, et al. 800-kyr land temperature variations modulated by vegetation changes on Chinese Loess Plateau[J]. Nature Communications, 2019, 10(1):1958. doi: 10.1038/s41467-019-09978-1

    CrossRef Google Scholar

    [24] Zhou L P, Shackleton N J. Misleading positions of geomagnetic reversal boundaries in Eurasian loess and implications for correlation between continental and marine sedimentary sequences[J]. Earth and Planetary Science Letters, 1999, 168(1-2):117-130. doi: 10.1016/S0012-821X(99)00052-7

    CrossRef Google Scholar

    [25] Liu Q S, Roberts A P, Rohling E J, et al. Post-depositional remanent magnetization lock-in and the location of the Matuyama-Brunhes geomagnetic reversal boundary in marine and Chinese loess sequences[J]. Earth and Planetary Science Letters, 2008, 275(1-2):102-110. doi: 10.1016/j.jpgl.2008.08.004

    CrossRef Google Scholar

    [26] Zhou W J, Beck J W, Kong X H, et al. Timing of the Brunhes-Matuyama magnetic polarity reversal in Chinese loess using 10Be[J]. Geology, 2014, 42(6):467-470. doi: 10.1130/G35443.1

    CrossRef Google Scholar

    [27] Liu Q S, Jin C S, Hu P X, et al. Magnetostratigraphy of Chinese loess-paleosol sequences[J]. Earth-Science Reviews, 2015, 150:139-167. doi: 10.1016/j.earscirev.2015.07.009

    CrossRef Google Scholar

    [28] Jin C S, Liu Q S, Xu D K, et al. A new correlation between Chinese loess and deep-sea δ18O records since the middle Pleistocene[J]. Earth and Planetary Science Letters, 2019, 506:441-454. doi: 10.1016/j.jpgl.2018.11.022

    CrossRef Google Scholar

    [29] 强小科, 徐新文, 陈艇, 等. 黄土高原黄土序列松山-布容地磁极性倒转界线空间分布特征与影响因素探讨[J]. 第四纪研究, 2016, 36(5):1125-1138 doi: 10.11928/j.issn.1001-7410.2016.05.09

    CrossRef Google Scholar

    QIANG Xiaoke, XU Xinwen, CHEN Ting, et al. Spatial characteristics and influencing factors of Matuyama-Brunhes polarity reversal boundary (MBB) in eolian sequences from the Chinese Loess Plateau[J]. Quaternary Sciences, 2016, 36(5):1125-1138.] doi: 10.11928/j.issn.1001-7410.2016.05.09

    CrossRef Google Scholar

    [30] 刘维明, 张立原, 孙继敏. 高分辨率洛川剖面黄土磁性地层学[J]. 地球物理学报, 2010, 53(4):888-894 doi: 10.3969/j.issn.0001-5733.2010.04.013

    CrossRef Google Scholar

    LIU Weiming, ZHANG Liyuan, SUN Jimin. High resolution magnetostratigraphy of the Luochuan loess-paleosol sequence in the central Chinese Loess Plateau[J]. Chinese Journal of Geophysics, 2010, 53(4):888-894.] doi: 10.3969/j.issn.0001-5733.2010.04.013

    CrossRef Google Scholar

    [31] Pan Q, Xiao G Q, Zhao Q Y, et al. The Jaramillo subchron in Chinese loess-paleosol sequences[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 572:110423. doi: 10.1016/j.palaeo.2021.110423

    CrossRef Google Scholar

    [32] Channell J E T, Xuan C, Hodell D A. Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500)[J]. Earth and Planetary Science Letters, 2009, 283(1-4):14-23. doi: 10.1016/j.jpgl.2009.03.012

    CrossRef Google Scholar

    [33] Lisiecki L E, Raymo M E. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):PA1003.

    Google Scholar

    [34] Wang X S, Løvlie R, Chen Y, et al. The Matuyama-Brunhes polarity reversal in four Chinese loess records: high-fidelity recording of geomagnetic field behavior or a less than reliable chronostratigraphic marker?[J]. Quaternary Science Reviews, 2014, 101:61-76. doi: 10.1016/j.quascirev.2014.07.005

    CrossRef Google Scholar

    [35] Xiao G Q, Pan Q, Zhao Q Y, et al. Early Pleistocene integration of the Yellow River II: evidence from the Plio-Pleistocene sedimentary record of the Fenwei Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 577:110550. doi: 10.1016/j.palaeo.2021.110550

    CrossRef Google Scholar

    [36] Zheng H B, Huang X T, Ji J L, et al. Ultra-high rates of loess sedimentation at Zhengzhou since Stage 7: implication for the Yellow River erosion of the Sanmen Gorge[J]. Geomorphology, 2007, 85(3-4):131-142. doi: 10.1016/j.geomorph.2006.03.014

    CrossRef Google Scholar

    [37] Wang D J, Wang Y C, Han J T, et al. Geomagnetic anomalies recorded in L9 of the Songjiadian loess section in southeastern Chinese Loess Plateau[J]. Chinese Science Bulletin, 2010, 55(6):520-529. doi: 10.1007/s11434-009-0565-9

    CrossRef Google Scholar

    [38] Wang X S, Løvlie R, Yang Z Y, et al. Remagnetization of Quaternary eolian deposits: a case study from SE Chinese Loess Plateau[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(6):Q06H18.

    Google Scholar

    [39] Pan Y X, Zhu R X, Liu Q S, et al. Geomagnetic episodes of the last 1.2 Myr recorded in Chinese loess[J]. Geophysical Research Letters, 2002, 29(8):1282.

    Google Scholar

    [40] Yang T S, Hyodo M, Yang Z Y, et al. Multiple rapid polarity swings during the Matuyama-Brunhes transition from two high-resolution loess-paleosol records[J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B5):B05101.

    Google Scholar

    [41] Meng X Q, Liu L W, Wang X T, et al. Mineralogical evidence of reduced East Asian summer monsoon rainfall on the Chinese loess plateau during the early Pleistocene interglacials[J]. Earth and Planetary Science Letters, 2018, 486:61-69. doi: 10.1016/j.jpgl.2017.12.048

    CrossRef Google Scholar

    [42] Song Y G, Fang X M, Li J J, et al. The Late Cenozoic uplift of the Liupan Shan, China[J]. Science in China Series D:Earth Sciences, 2001, 44(1):176-184.

    Google Scholar

    [43] Ding Z L, Sun J M, Liu D S. Stepwise advance of the Mu Us Desert since late Pliocene: evidence from a red clay-loess record[J]. Chinese Science Bulletin, 1999, 44(13):1211-1214. doi: 10.1007/BF02885968

    CrossRef Google Scholar

    [44] Niu Y N, Fan Y X, Qiao Y S, et al. Chronostratigraphy of a loess-paleosol sequence in the western Chinese Loess Plateau based on ESR dating and magnetostratigraphy[J]. Quaternary International, 2022, 637:1-11. doi: 10.1016/j.quaint.2022.08.005

    CrossRef Google Scholar

    [45] Zhang J, Li J J, Guo B H, et al. Magnetostratigraphic age and monsoonal evolution recorded by the thickest Quaternary loess deposit of the Lanzhou region, western Chinese Loess Plateau[J]. Quaternary Science Reviews, 2016, 139:17-29. doi: 10.1016/j.quascirev.2016.02.025

    CrossRef Google Scholar

    [46] Sun Y B, Yin Q Z, Crucifix M, et al. Diverse manifestations of the mid-Pleistocene climate transition[J]. Nature Communications, 2019, 10(1):352. doi: 10.1038/s41467-018-08257-9

    CrossRef Google Scholar

    [47] 杨东, 方小敏, 董光荣, 等. 1.8 Ma BP以来陇西断岘黄土剖面沉积特征及其反映的腾格里沙漠演化[J]. 中国沙漠, 2006, 26(1):6-13 doi: 10.3321/j.issn:1000-694X.2006.01.002

    CrossRef Google Scholar

    YANG Dong, FANG Xiaomin, DONG Guangrong, et al. Loess deposit characteristic in Duanxian section of Longxi Basin and its reflected evolution of Tengger Desert at north of China since last 1.8 Ma[J]. Journal of Desert Research, 2006, 26(1):6-13.] doi: 10.3321/j.issn:1000-694X.2006.01.002

    CrossRef Google Scholar

    [48] An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya–Xizang plateau since Late Miocene times[J]. Nature, 2001, 411(6833):62-66. doi: 10.1038/35075035

    CrossRef Google Scholar

    [49] Spassov S, Heller F, Evans M E, et al. A lock-in model for the complex Matuyama-Brunhes boundary record of the loess/palaeosol sequence at Lingtai (Central Chinese Loess Plateau)[J]. Geophysical Journal International, 2003, 155(2):350-366. doi: 10.1046/j.1365-246X.2003.02026.x

    CrossRef Google Scholar

    [50] Sun Y B, Qiang X K, Liu Q S, et al. Timing and lock-in effect of the Laschamp geomagnetic excursion in Chinese Loess[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(11):4952-4961. doi: 10.1002/2013GC004828

    CrossRef Google Scholar

    [51] Zhu R X, Pan Y X, Guo B, et al. A recording phase lag between ocean and continent climate changes: constrained by the Matuyama/Brunhes polarity boundary[J]. Chinese Science Bulletin, 1998, 43(19):1593-1599. doi: 10.1007/BF02883400

    CrossRef Google Scholar

    [52] Jin C S, Liu Q S. Reliability of the natural remanent magnetization recorded in Chinese loess[J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B4):B04103.

    Google Scholar

    [53] Løvlie R, Wang R H, Wang X S. In situ remagnetization experiments of loess on the Chinese Loess Plateau: evidence for localized post-depositional remanent magnetization[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(12):Q12015.

    Google Scholar

    [54] Channell J E T, Hodell D A, Curtis J H. Relative paleointensity (RPI) and oxygen isotope stratigraphy at IODP Site U1308: North Atlantic RPI stack for 1.2-2.2 Ma (NARPI-2200) and age of the Olduvai Subchron[J]. Quaternary Science Reviews, 2016, 131:1-19. doi: 10.1016/j.quascirev.2015.10.011

    CrossRef Google Scholar

    [55] Channell J E T, Singer B S, Jicha B R. Timing of Quaternary geomagnetic reversals and excursions in volcanic and sedimentary archives[J]. Quaternary Science Reviews, 2020, 228:106114. doi: 10.1016/j.quascirev.2019.106114

    CrossRef Google Scholar

    [56] Valet J P, Bassinot F, Simon Q, et al. Constraining the age of the last geomagnetic reversal from geochemical and magnetic analyses of Atlantic, Indian, and Pacific Ocean sediments[J]. Earth and Planetary Science Letters, 2019, 506:323-331. doi: 10.1016/j.jpgl.2018.11.012

    CrossRef Google Scholar

    [57] Valet J P, Meynadier L, Guyodo Y. Geomagnetic dipole strength and reversal rate over the past two million years[J]. Nature, 2005, 435(7043):802-805. doi: 10.1038/nature03674

    CrossRef Google Scholar

    [58] Guyodo Y, Valet J P. Global changes in intensity of the Earth's magnetic field during the past 800 kyr[J]. Nature, 1999, 399(6733):249-252. doi: 10.1038/20420

    CrossRef Google Scholar

    [59] Izett G A, Obradovich J D. 40Ar/39Ar age constraints for the Jaramillo Normal Subchron and the Matuyama‐Brunhes geomagnetic boundary[J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B2):2925-2934. doi: 10.1029/93JB03085

    CrossRef Google Scholar

    [60] Singer B S, Hoffman K A, Chauvin A, et al. Dating transitionally magnetized lavas of the late Matuyama Chron: toward a new 40Ar/39Ar timescale of reversals and events[J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B1):679-693. doi: 10.1029/1998JB900016

    CrossRef Google Scholar

    [61] 赵志中, 吴锡浩, 蒋复初, 等. 三门峡地区黄土与古季风[J]. 地质力学学报, 2000, 6(4):19-26,66 doi: 10.3969/j.issn.1006-6616.2000.04.003

    CrossRef Google Scholar

    ZHAO Zhizhong, WU Xihao, JIANG Fuchu, et al. The loess stratigraphy in Sanmenxia area[J]. Journal of Geomechanics, 2000, 6(4):19-26,66.] doi: 10.3969/j.issn.1006-6616.2000.04.003

    CrossRef Google Scholar

    [62] Rutter N, Ding Z L, Evans M E, et al. Magnetostratigraphy of the Baoji loess-paleosol section in the north-central China Loess Plateau[J]. Quaternary International, 1990, 7-8:97-102. doi: 10.1016/1040-6182(90)90043-4

    CrossRef Google Scholar

    [63] Ding Z L, Sun J M, Yang S L, et al. Preliminary magnetostratigraphy of a thick eolian red clay-loess sequence at Lingtai, the Chinese Loess Plateau[J]. Geophysical Research Letters, 1998, 25(8):1225-1228. doi: 10.1029/98GL00836

    CrossRef Google Scholar

    [64] Sun D H, Shaw J, An Z S, et al. Magnetostratigraphy and paleoclimatic interpretation of a continuous 7.2 Ma Late Cenozoic eolian sediments from the Chinese Loess Plateau[J]. Geophysical Research Letters, 1998, 25(1):85-88. doi: 10.1029/97GL03353

    CrossRef Google Scholar

    [65] Li T, Liu F, Abels H A, et al. Continued obliquity pacing of East Asian summer precipitation after the mid-Pleistocene transition[J]. Earth and Planetary Science Letters, 2017, 457:181-190. doi: 10.1016/j.jpgl.2016.09.045

    CrossRef Google Scholar

    [66] Guo B, Zhu R X, Florindo F, et al. A short, reverse polarity interval within the Jaramillo subchron: evidence from the Jingbian section, northern Chinese Loess Plateau[J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B6):2124.

    Google Scholar

    [67] Jin C S, Liu Q S. Remagnetization mechanism and a new age model for L9 in Chinese loess[J]. Physics of the Earth and Planetary Interiors, 2011, 187(3-4):261-275. doi: 10.1016/j.pepi.2011.03.010

    CrossRef Google Scholar

    [68] 朱日祥, 岳乐平, 白立新. 中国第四纪古地磁学研究进展[J]. 第四纪研究, 1995, 15(2):162-173 doi: 10.3321/j.issn:1001-7410.1995.02.009

    CrossRef Google Scholar

    ZHU Rixiang, YUE Leping, BAI Lixin. Progress of quaternary paleomagnetism in China[J]. Quaternary Sciences, 1995, 15(2):162-173.] doi: 10.3321/j.issn:1001-7410.1995.02.009

    CrossRef Google Scholar

    [69] Rolph T C. The Matuyama-Jaramillo R-N transition recorded in a loess section near Lanzhou, P. R. China[J]. Journal of Geomagnetism and Geoelectricity, 1993, 45(4):301-318. doi: 10.5636/jgg.45.301

    CrossRef Google Scholar

    [70] Yang S L, Ding Z L. Drastic climatic shift at ~ 2.8 Ma as recorded in eolian deposits of China and its implications for redefining the Pliocene-Pleistocene boundary[J]. Quaternary International, 2010, 219(1-2):37-44. doi: 10.1016/j.quaint.2009.10.029

    CrossRef Google Scholar

    [71] 刘平, 张崧, 韩家懋, 等. 甘肃龙担早第四纪黄土堆积古地磁年代研究[J]. 第四纪研究, 2008, 28(5):796-805 doi: 10.3321/j.issn:1001-7410.2008.05.002

    CrossRef Google Scholar

    LIU Ping, ZHANG Song, HAN Jiamao, et al. Paleomagnetic chronology of Quaternary stratigraphy of the Longdan section in Gansu Province of China[J]. Quaternary Sciences, 2008, 28(5):796-805.] doi: 10.3321/j.issn:1001-7410.2008.05.002

    CrossRef Google Scholar

    [72] Yang T S, Hyodo M, Yang Z Y, et al. Latest Olduvai short-lived reversal episodes recorded in Chinese loess[J]. Journal of Geophysical Research:Solid Earth, 2008, 113(B5):B05103.

    Google Scholar

    [73] Spassov S, Hus J, Heller F, et al. The termination of the Olduvai Subchron at Lingtai, Chinese Loess Plateau: geomagnetic field behavior or complex remanence acquisition?[M]//Petrovský E, Ivers D, Harinarayana T, et al. The Earth's Magnetic Interior. Dordrecht: Springer, 2011: 235-245.

    Google Scholar

    [74] Cande S C, Kent D V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic[J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B4):6093-6095. doi: 10.1029/94JB03098

    CrossRef Google Scholar

    [75] Deino A L, Kingston J D, Glen J M, et al. Precessional forcing of lacustrine sedimentation in the late Cenozoic Chemeron Basin, Central Kenya Rift, and calibration of the Gauss/Matuyama boundary[J]. Earth and Planetary Science Letters, 2006, 247(1-2):41-60. doi: 10.1016/j.jpgl.2006.04.009

    CrossRef Google Scholar

    [76] Ohno M, Hayashi T, Komatsu F, et al. A detailed paleomagnetic record between 2.1 and 2.75 Ma at IODP Site U1314 in the North Atlantic: geomagnetic excursions and the Gauss-Matuyama transition[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(5):Q12Z39.

    Google Scholar

    [77] Liu X M, Liu T, Xu T C, et al. The Chinese loess in Xifeng, I. The primary study on magnetostratigraphy of a loess profile in Xifeng area, Gansu province[J]. Geophysical Journal International, 1988, 92(2):345-348. doi: 10.1111/j.1365-246X.1988.tb01146.x

    CrossRef Google Scholar

    [78] 孙建中, 赵景波, 孙秀英, 等. 黄土, 还要更老些[J]. 海洋地质与第四纪地质, 1987, 7(1):105-112

    Google Scholar

    SUN Jianzhong, ZHAO Jingbo, SUN Xiuying, et al. Loess is even older[J]. Marine Geology & Quaternary Geology, 1987, 7(1):105-112.]

    Google Scholar

    [79] Ding Z L, Derbyshire E, Yang S L, et al. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution[J]. Earth and Planetary Science Letters, 2005, 237(1-2):45-55. doi: 10.1016/j.jpgl.2005.06.036

    CrossRef Google Scholar

    [80] 朱日祥, 郭斌, 丁仲礼, 等. Gauss-Matuyama极性转换期间地球磁场方向和强度变化特征[J]. 地球物理学报, 2000, 43(5):621-634 doi: 10.3321/j.issn:0001-5733.2000.05.006

    CrossRef Google Scholar

    ZHU Rixiang, GUO Bin, DING Zhongli, et al. Gauss-Matuyama polarity transition obtained from a loess section at Weinan, North-Central China[J]. Chinese Journal of Geophysics, 2000, 43(5):621-634.] doi: 10.3321/j.issn:0001-5733.2000.05.006

    CrossRef Google Scholar

    [81] Ding Z L, Rutter N W, Liu T. The onset of extensive loess deposition around the G/M boundary in China and its palaeoclimatic implications[J]. Quaternary International, 1997, 40:53-60. doi: 10.1016/S1040-6182(96)00061-4

    CrossRef Google Scholar

    [82] Zhou W J, Kong X H, Du Y J, et al. 10Be indicator for the Matuyama‐Gauss magnetic polarity reversal from Chinese Loess[J]. Geophysical Research Letters, 2023, 50(8):e2022GL102486. doi: 10.1029/2022GL102486

    CrossRef Google Scholar

    [83] Yang T S, Hyodo M, Yang Z Y, et al. High-frequency polarity swings during the Gauss-Matuyama reversal from Baoji loess sediment[J]. Science China Earth Sciences, 2014, 57(8):1929-1943. doi: 10.1007/s11430-014-4825-4

    CrossRef Google Scholar

    [84] 杨石岭, 侯圣山, 王旭, 等. 泾川晚第三纪红粘土的磁性地层及其与灵台剖面的对比[J]. 第四纪研究, 2000, 20(5):423-434 doi: 10.3321/j.issn:1001-7410.2000.05.003

    CrossRef Google Scholar

    YANG Shiling, HOU Shengshan, WANG Xu, et al. Completeness and continuity of the Late Tertiary red clay sequence in Northern China: evidence from the correlation of magnetostratigraphy and pedostratigraphy between Jingchuan and Lingtai[J]. Quaternary Sciences, 2000, 20(5):423-434.] doi: 10.3321/j.issn:1001-7410.2000.05.003

    CrossRef Google Scholar

    [85] 丁仲礼, 孙继敏, 朱日祥, 等. 黄土高原红粘土成因及上新世北方干旱化问题[J]. 第四纪研究, 1997, 17(2):147-157 doi: 10.3321/j.issn:1001-7410.1997.02.007

    CrossRef Google Scholar

    DING Zhongli, SUN Jimin, ZHU Rixiang, et al. Eolian origin of the red clay deposits in the Loess Plateau and implications for Pliocene climatic changes[J]. Quaternary Sciences, 1997, 17(2):147-157.] doi: 10.3321/j.issn:1001-7410.1997.02.007

    CrossRef Google Scholar

    [86] Zan J B, Fang X M, Zhang W L, et al. A new record of late Pliocene-early Pleistocene aeolian loess-red clay deposits from the western Chinese Loess Plateau and its palaeoenvironmental implications[J]. Quaternary Science Reviews, 2018, 186:17-26. doi: 10.1016/j.quascirev.2018.02.010

    CrossRef Google Scholar

    [87] 岳乐平. 中国黄土与红色粘土记录的地磁极性界限及地质意义[J]. 地球物理学报, 1995, 38(3):311-320 doi: 10.3321/j.issn:0001-5733.1995.03.006

    CrossRef Google Scholar

    YUE Leping. Palaeomagnetic polarity boundary were recorded in Chinese loess and red clay, and geological significance[J]. Acta Geophysica Sinica, 1995, 38(3):311-320.] doi: 10.3321/j.issn:0001-5733.1995.03.006

    CrossRef Google Scholar

    [88] 谢兴俊, 周卫健, 鲜锋, 等. 中国黄土中松山-高斯极性倒转事件记录的空间对比[J]. 中山大学学报:自然科学版, 2014, 53(2):121-130

    Google Scholar

    XIE Xingjun, ZHOU Weijian, XIAN Feng, et al. The spatial discrepancy records of Matuyama-Gauss polarity reversal in Chinese loess[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53(2):121-130.]

    Google Scholar

    [89] Zhao X, Roberts A P. How does Chinese loess become magnetized?[J]. Earth and Planetary Science Letters, 2010, 292(1-2):112-122. doi: 10.1016/j.jpgl.2010.01.026

    CrossRef Google Scholar

    [90] Deng C L, Shaw J, Liu Q S, et al. Mineral magnetic variation of the Jingbian loess/paleosol sequence in the northern Loess Plateau of China: implications for Quaternary development of Asian aridification and cooling[J]. Earth and Planetary Science Letters, 2006, 241(1-2):248-259. doi: 10.1016/j.jpgl.2005.10.020

    CrossRef Google Scholar

    [91] Tauxe L, Herbert T, Shackleton N J, et al. Astronomical calibration of the Matuyama-Brunhes boundary: consequences for magnetic remanence acquisition in marine carbonates and the Asian loess sequences[J]. Earth and Planetary Science Letters, 1996, 140(1-4):133-146. doi: 10.1016/0012-821X(96)00030-1

    CrossRef Google Scholar

    [92] Head M J, Gibbard P L. Early-Middle Pleistocene transitions: linking terrestrial and marine realms[J]. Quaternary International, 2015, 389:7-46. doi: 10.1016/j.quaint.2015.09.042

    CrossRef Google Scholar

    [93] Wang X S, Yang Z Y, Løvlie R, et al. A magnetostratigraphic reassessment of correlation between Chinese loess and marine oxygen isotope records over the last 1.1 Ma[J]. Physics of the Earth and Planetary Interiors, 2006, 159(1-2):109-117. doi: 10.1016/j.pepi.2006.07.002

    CrossRef Google Scholar

    [94] Sun J M. Long-term fluvial archives in the Fen Wei Graben, central China, and their bearing on the tectonic history of the India-Asia collision system during the Quaternary[J]. Quaternary Science Reviews, 2005, 24(10-11):1279-1286. doi: 10.1016/j.quascirev.2004.08.018

    CrossRef Google Scholar

    [95] Liu T, Ding Z L, Rutter N. Comparison of Milankovitch periods between continental loess and deep sea records over the last 2.5 Ma[J]. Quaternary Science Reviews, 1999, 18(10-11):1205-1212. doi: 10.1016/S0277-3791(98)00110-3

    CrossRef Google Scholar

    [96] Cai S H, Jin G Y, Tauxe L, et al. Archaeointensity results spanning the past 6 kiloyears from eastern China and implications for extreme behaviors of the geomagnetic field[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(1):39-44.

    Google Scholar

    [97] Tauxe L. Sedimentary records of relative paleointensity of the geomagnetic field: theory and practice[J]. Reviews of Geophysics, 1993, 31(3):319-354. doi: 10.1029/93RG01771

    CrossRef Google Scholar

    [98] Cheng H, Edwards R L, Southon J, et al. Atmospheric 14C/12C changes during the last glacial period from Hulu Cave[J]. Science, 2018, 362(6420):1293-1297. doi: 10.1126/science.aau0747

    CrossRef Google Scholar

    [99] Zhou W J, Xian F, Beck J W, et al. Reconstruction of 130-kyr relative geomagnetic intensities from 10Be in two Chinese loess sections[J]. Radiocarbon, 2010, 52(1):129-147. doi: 10.1017/S0033822200045082

    CrossRef Google Scholar

    [100] Xian F, An Z S, Wu Z K, et al. A simple model for reconstructing geomagnetic field intensity with 10Be production rate and its application in Loess studies[J]. Science in China Series D:Earth Sciences, 2008, 51(6):855-861. doi: 10.1007/s11430-008-0054-z

    CrossRef Google Scholar

    [101] Raisbeck G M, Yiou F, Cattani O, et al. 10Be evidence for the Matuyama-Brunhes geomagnetic reversal in the EPICA Dome C ice core[J]. Nature, 2006, 444(7115):82-84. doi: 10.1038/nature05266

    CrossRef Google Scholar

    [102] Baumgartner S, Beer J, Masarik J, et al. Geomagnetic modulation of the 36Cl flux in the GRIP ice core, Greenland[J]. Science, 1998, 279(5355):1330-1332. doi: 10.1126/science.279.5355.1330

    CrossRef Google Scholar

    [103] Guyodo Y, Valet J P. Relative variations in geomagnetic intensity from sedimentary records: the past 200, 000 years[J]. Earth and Planetary Science Letters, 1996, 143(1-4):23-36. doi: 10.1016/0012-821X(96)00121-5

    CrossRef Google Scholar

    [104] Laj C, Kissel C, Mazaud A, et al. North Atlantic palaeointensity stack since 75ka (NAPIS-75) and the duration of the Laschamp event[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2000, 358(1768): 1009-1025.

    Google Scholar

    [105] Stoner J S, Laj C, Channell J E T, et al. South Atlantic and North Atlantic geomagnetic paleointensity stacks (0-80 ka): implications for inter-hemispheric correlation[J]. Quaternary Science Reviews, 2002, 21(10):1141-1151. doi: 10.1016/S0277-3791(01)00136-6

    CrossRef Google Scholar

    [106] Yamazaki T, Oda H. A geomagnetic paleointensity stack between 0.8 and 3.0 Ma from equatorial Pacific sediment cores[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(11):Q11H20.

    Google Scholar

    [107] Pan Y X, Zhu R X, Shaw J, et al. Can relative paleointensities be determined from the normalized magnetization of the wind-blown loess of China?[J]. Journal of Geophysical Research:Solid Earth, 2001, 106(B9):19221-19232. doi: 10.1029/2001JB000360

    CrossRef Google Scholar

    [108] Kent D V. Apparent correlation of palaeomagnetic intensity and climatic records in deep-sea sediments[J]. Nature, 1982, 299(5883):538-539. doi: 10.1038/299538a0

    CrossRef Google Scholar

    [109] Jin C S, Liu Q S, Larrasoaña J C. A precursor to the Matuyama–Brunhes reversal in Chinese loess and its palaeomagnetic and stratigraphic significance[J]. Geophysical Journal International, 2012, 190(2):829-842. doi: 10.1111/j.1365-246X.2012.05537.x

    CrossRef Google Scholar

    [110] Zhu R X, Ding Z L, Wu H N, et al. Details of magnetic polarity transition recorded in Chinese loess[J]. Journal of Geomagnetism and Geoelectricity, 1993, 45(4):289-299. doi: 10.5636/jgg.45.289

    CrossRef Google Scholar

    [111] Wu Y, Zhu Z Y, Qiu S F, et al. Magnetic stratigraphy constraints on the Matuyama-Brunhes boundary recorded in a loess section at the southern margin of Chinese Loess Plateau[J]. Geophysical Journal International, 2016, 204(2):1072-1085. doi: 10.1093/gji/ggv502

    CrossRef Google Scholar

    [112] Li G H, Xia D S, Appel E, et al. Characteristics of a relative paleointensity record from loess deposits in arid central Asia and chronological implications[J]. Quaternary Geochronology, 2020, 55:101034. doi: 10.1016/j.quageo.2019.101034

    CrossRef Google Scholar

    [113] Liu Q S, Banerjee S K, Jackson M J, et al. Inter-profile correlation of the Chinese loess/paleosol sequences during Marine Oxygen Isotope Stage 5 and indications of pedogenesis[J]. Quaternary Science Reviews, 2005, 24(1-2):195-210. doi: 10.1016/j.quascirev.2004.07.021

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(1934) PDF downloads(194) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint